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Linear solutions

Functional equations are equations in which a function appears as
an unknown.

Cauchy’s functional equation is the equation:
f (x + y) = f (x) + f (y), where f is a function from R to itself.

It is trivial to verify that every function of the form f (x) = cx with
c ∈ R is a valid solution to the functional equation. In fact, a
stroger result is true.
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Solving over Q

Theorem

Let f be a solution to Cauchy’s functional equation. Then f |Q is a
linear function.

Proof sketch: Let c = f (1) and let p
q be a generic rational number.

It’s easy to show by induction that qf (pq ) = f (pq ) + ...+ f (pq ) =

f (p) = f (1) + ...+ f (1) = cp ⇒ f (pq ) = c(pq ), as desired.
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R as a Q-vector space

These are however not the only solutions to the functional
equation if we accept the axiom of choice, which implies the
existence of a basis for any vector space.

Viewing R as a Q-vector space, we can thus consider a basis B.

With the same reasoning used in the proof of the previous
theorem, we can show that for any b ∈ B, r ∈ Q, f (br) = rf (b).
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Q-linear functions

The aforementioned observation proves that the functions we are
looking for are not only additive, but must be linear functions over
R (viewed as a vector space Q).
In turn, each of these functions will be a solution to Cauchy’s
equation.

Using basic linear algebra, we can now observe that there’s
precisely one linear function, and thus one distinct solution to
Cauchy’s equation, for every choice of f (B) where B is a fixed
Q-basis of R.
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Cardinality of the set of nonlinear solutions

Since for any basis element there are |R| possible choices, the
cardinality of the set of solutions is |R||B|.

We now observe, using cardinal arithmetic, that
|R| = |

⋃
S∈Pfin(B)Q|S||1 = |Pfin(B)||Q| = |B||Q| =

max (|B|; |Q|) ⇒ |B| = |R|

Thus we can conclude that the set of solutions has cardinality
|R||R| = 2|R| > |R|, which is the cardinality of the set of the linear
ones. So in a sense ”most” solutions are nonlinear.

1The copies of Q|S| we are considering the union of are to be understood as
always distinct from each other
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Graph of a nonlinear solution

We now prove a remarkable result about the graph of a nonlinear
solution.

Theorem

Let f be a nonlinear solution to Cauchy’s functional equation and
let Gf = {(x ; f (x)), x ∈ R} be its graph. Then G is dense in R2.

We begin by proving a lemma.
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Lemma

Theorem

For any real function f , if Gf is dense in R2 so is Gf+cx

Proof sketch: For any point (X ,Y ), we can consider find a point of
Gf , (X

′, f (X ′)) arbitrarily close to (X ,Y − cX ). Letting ϵ be this
distance and using the triangle inequality multiple times we obtain

|(X ,Y )− (X ′, f (X ′) + cX ′)| ≤
|X − X ′|+ |Y − cX − f (X ′)|+ |cX − cX ′| ≤ (c + 2)ϵ.

Since we can choose ϵ to be arbitrarily small and
(X ′, f (X ′) + cX ′) ∈ Gf+cx , the lemma is proved.
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Main proof

Let f be a nonlinear solution to Cauchy’s equation. Then by the
lemma we just proved it suffices to prove the graph of
g = f − f (1)x is dense in R2.

Since f is nonlinear there is z ∈ R such that g(z) = w ̸= 0.

We then observe that g(q + rz) = rw for any r , q ∈ Q.
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Main proof

Now let (X ,Y ) be a generic point in R2, then for any ϵ, since wQ
is dense in R, we can choose r such that for any
q ∈ Q|g(q + rz)− Y | ≤ ϵ.

Similarly, since rz +Q is also dense in R, we can choose a q such
that |q + rz − X | ≤ ϵ.

We thus found a point (q + rz , g(q + rz)) which is arbitrarily close
to (X ,Y ), as desired, and the main result is therefore proven.
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Corollaries

This result implies various weaker ones, such that

1 Every nonlinear solution of Cauchy’s functional equation is
nowhere continuous

2 Every nonlinear solution of Cauchy’s functional equation is
unbounded on any interval

3 Every nonlinear solution of Cauchy’s functional equation is
non-monotonic on any interval
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