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Introduction

The main motivation of this thesis lies in the following conjecture by Gromov, which
suggests a connection between the `2-Betti numbers b(2)

k (M) and the simplicial volume
‖M‖ of a closed connected oriented aspherical manifold M :

Conjecture. Let M be a closed connected oriented aspherical manifold with ‖M‖ = 0.
Then

b
(2)
k (M) = 0 ∀ k ≥ 0 .

The `2-Betti numbers for a Riemannian manifold M endowed with a free cocompact
isometric action of a group G were �rst de�ned by Atiyah in terms of the heat kernel

b
(2)
k (M,G) = lim

t→0

∫
F
traceR(e−t∆k(x, x))dVol

where F is a fundamental domain for the action of G and e−t∆k(x, y) is the heat ker-
nel on k-forms on M . Nowadays there is an algebraic and more general approach due
to Lück, who proved that `2-Betti numbers can be computed as the dimensions of cer-
tain homology modules, like ordinary Betti numbers. More precisely, the k-th `2-Betti
number of a CW-complex Z endowed with a free cocompact action of a group G is the
Von Neumann dimension of the k-th cellular reduced homology group of Z with coe�-
cients in `2(G). This algebraic de�nition allows to compare `2-Betti numbers with their
classical counterparts: they share some basic properties such as homotopy invariance,
the Euler-Poincaré formula, Poincaré duality and Künneth formula, but there are also
di�erences. One important feature of `2-Betti numbers is that they are multiplicative
under �nite coverings in the following sense: if p : M → N is a d-sheeted covering, then
b
(2)
p (M) = d · b(2)

p (N). This forces the `2-Betti numbers of a CW-complex X to vanish if
X admits non-trivial self-coverings.

The simplicial volume ‖M‖ is a real valued homotopy invariant for closed oriented con-
nected topological manifolds M , de�ned as the in�mum of the `1-norm of real singular
cycles representing the fundamental class. In some sense, it measures the complexity of
the manifold, as it is always bounded from above by the minimum number of simplices
in a triangulation of M . At �rst sight the de�nition of `2-Betti numbers and of the
simplicial volume do not indicate a relationship between them, but in certain situations
these invariants behave similarly, for example the simplicial volume is multiplicative un-
der �nite coverings, as well.

v
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Gromov gave a suggestion of a possible strategy to prove his conjecture relating `2-Betti
numbers and the simplicial volume of aspherical manifolds. The starting point was the
upper bound

n∑
j=0

b
(2)
j (M) ≤ 2n+1‖M‖Z (1)

where ‖M‖Z denotes the integral simplicial volume, which is de�ned as the minimum of
the `1 norms of integral cycles representing the fundamental class. Unfortunately, the in-
tegral simplicial volume is a rough estimate of its real counterpart, for example ‖M‖Z ≥ 1
for every manifold, whereas ‖M‖ can vanish. Thus, Gromov introduced a more sophis-
ticated version, called integral foliated simplicial volume, combining the rigidity of the
integral coe�cients with the �exibility of measure spaces. More precisely, if G is the fun-
damental group of a closed, connected and oriented manifold M with universal covering
M̃ and X is a standard probabiliy space endowed with a measure-preserving action of G,
we can consider the singular chain complex with twisted coe�cients L∞(X,Z)⊗GC∗(M̃).
This can be endowed with an `1-norm by taking the integral of the absolute values of
the coe�cient functions. The X-parameterized simplicial volume is the in�mum of the
`1 norm of cycles representing the fundamental class and the integral foliated simplicial
volume

M is the in�mum of the X-parameterized simplicial volume over all possible
standard probability spaces X. This version of simplicial volume �ts into the sandwich

‖M‖ ≤
M ≤ ‖M‖Z

and shares the same property of multiplicativity over �nite coverings, like the simplicial
volume. Using this tool, Schmidt ([3]) was able to improve Inequality (1) obtaining that

n∑
j=0

b
(2)
j (M) ≤ 2n+1

M , (2)

thus giving a positive answer to Gromov conjecture if the simplicial volume is replaced by
the integral foliated simplicial volume. Actually, little is known about the relationship
between these two quantities: the integral foliated simplicial volume has been calcu-
lated explicitly only for simply-connected manifolds, product manifolds which split an
S1-factor, or Seifert 3-manifolds. Recently, C. Löh and C.Pagliantini proved that it co-
incides with the simplicial volume for hyperbolic 3-manifolds, also proving a suitable
version of proportionality principle, which reminds the classical proportionality principle
of simplicial volume proved by Gromov and Thurston. Of course, a positive answer to
Gromov's conjecture might be obtained by extending this result to every closed connected
oriented aspherical manifold.

The thesis is organized as follows: in the �rst chapter, we will deal with the integral
foliated simplicial volume, following a recent paper by C. Löh and C. Pagliantini. By
inspecting the behaviour of the parameterized simplicial volume when the probability
space changes, we will prove that the integral foliated simplicial volume is multiplicative
under �nite coverings. In the last section, we will prove the main result of the chapter,
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which states that integral foliated simplicial volume and simplicial volume coincide for
closed connected oriented hyperbolic 3-manifolds. This result is obtained by construct-
ing a sequence of hyperbolic 3-manifolds, whose ratio between the simplicial volume and
the stable integral simplicial volume tends to zero, by means of tools coming from the
3-dimensional topology, in particular Dehn-�lling.
In Chapter 2 we will de�ne the `2-Betti numbers for CW-complexes endowed with a
cocompact cellular action of a group G, according to Lück's algebraic approach. This
requires a concept of dimension in a non-commutative setting, thus the �rst section is
devoted to the exposition of this theory for Hilbert G-modules. In the last section we
will prove the main properties of `2-Betti numbers and we will calculate them explicitly
for 1- and 2-dimensional compact manifolds.
In Chapter 3 we will prove Inequality (2). This will require a more general dimension
theory for modules over a Von Neumann algebra, which will be developed in the �rst
section. The main idea introduced by Schmidt is that the `2-Betti numbers can be com-
puted via singular homology with coe�cients in the Von Neumann algebra of the orbit
equivalence relation of the fundamental group acting on the universal covering. We will
explain these concepts in the last section.
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Chapter 1

The integral foliated simplicial

volume

Integral foliated simplicial volume is a version of simplicial volume combining the rigidity
of integral coe�cients with the �exibility of measure spaces. It was introduced by Gromov
as an instrument to estimate `2-Betti numbers, as we will see in the next chapters.
After a brief review of the main properties of the simplicial volume, we are going to
de�ne the integral foliated simplicial volume of connected, closed and oriented manifolds,
illustrating some basic results. Following a recent article by C.Löh and C. Pagliantini
([10]) we will calculate it for hyperbolic and Seifert 3-manifolds: to this aim we will
introduce the notion of stable integral simplicial volume, as well.

1.1 Simplicial volume and stable integral simplicial volume

In this section we recall brie�y the main properties of the simplicial volume and give the
de�nition of the stable integral simplicial volume, trying to underline their di�erences.

Let X be a topological space and R be a normed ring, usually R = Z,R. We denote
with Si(X) the set of all i-singular simplices of X and with Ci(X,R) the free R-module
generated by Si(X). We indicate with (C∗(X,R), d∗) the singular chain complex of X
and with H∗(X,R) its homology.
We endow the R-module Ci(X,R) with an `1-norm, de�ning∥∥∥ ∑

σ∈Si(X)

aσσ
∥∥∥R

1
=

∑
σ∈Si(X)

|aσ| .

This norm induces a semi-norm on homology in the following way: if α ∈ Hi(X,R)

‖α‖R1 = inf{‖c‖R1 | c ∈ Ci(X,R), di(c) = 0, [c] = α} .

Remark 1.1. Actually, ‖ · ‖Z1 is not a proper semi-norm, as it is not multiplicative.

Let M be a closed, connected and oriented n-manifold. Let [M ]Z be the integral fun-
damental class of M , i.e. the positive generator of Hn(M,Z) ∼= Z. The real fundamental

1



2 CHAPTER 1. THE INTEGRAL FOLIATED SIMPLICIAL VOLUME

class [M ]R is the image of the integral fundamental class under the morphism of change
of coe�cients ι : Hn(M,Z)→ Hn(M,R).

De�nition 1.2. The simplicial volume of M is

‖M‖ := ‖[M ]R‖R1 := ‖[M ]R‖1 .

The integral simplicial volume of M is

‖M‖Z := ‖[M ]Z‖Z1 .

IfM is a connected and oriented n-manifold with non-empty boundary, thenHn(M,Z)
vanishes. In order to de�ne the simplicial volume, we have to consider the relative ho-
mology Hn(M,∂M,Z) ∼= Z. We denote with [M,∂M ]Z its positive generator and with
[M,∂M ]R its image under the morphism of change of coe�cients. We can endow the
R-module of the relative singular chain Cn(M,∂M,R) = Cn(M,R)/Cn(∂M,R) with the
quotient norm, which descends in homology inducing a semi-norm, as described above.

De�nition 1.3. The simplicial volume of M is

‖(M,∂M)‖ := ‖[M,∂M ]R‖1 .

Remark 1.4. By the very de�nition, it is obvious that ‖M‖ ≤ ‖M‖Z, but in general we
do not have the equality. For instance ‖M‖Z ≥ 1, whereas ‖M‖ can vanish, as it will be
clear later.

Lemma 1.5. Let f : X → Y be a continous map between topological spaces. For every
α ∈ Hi(X,R) the following relation holds

‖f∗(α)‖1 ≤ ‖α‖1 .

Proof. Let
∑
σ∈Si(X) cσσ ∈ α. A representative of f∗(α) is

∑
σ∈Si(X) cσ(f ◦σ). Therefore,

‖f∗(α)‖R1 =
∥∥∥[ ∑

σ∈Sk(X)

cσf ◦ σ
]∥∥∥R

1
≤
∥∥∥ ∑
σ∈Sk(X)

cσf ◦ σ
∥∥∥R

1

≤
∑

σ∈Sk(X)

|cσ| =
∥∥∥ ∑
σ∈Sk(X)

cσσ
∥∥∥R

1
.

Taking the in�mum over all representatives of α we have the thesis.

Lemma 1.6. Let f : M → N be a continuos function between closed, connected and
oriented n-manifolds with degree deg(f). Then

‖M‖ ≥ |deg(f)|‖N‖ .

Proof. By the previous lemma we have

‖M‖ = ‖[M ]‖1 ≥ ‖f∗([M ])‖1 = |deg(f)|‖N‖ .
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Corollary 1.7. The simplicial volume is a homotopy invariant.

Corollary 1.8. If a manifold M admits self-maps of degree ≥ 2, then ‖M‖ = 0.

For example, ‖Sn‖ = 0 for every n ≥ 1.

Remark 1.9. This result does not hold for the integral simplicial volume, as, for example,
S1 admits self-maps of arbitrarily high degree, but ‖S1‖Z = 1.

However, the main di�erence between the simplicial volume and its integral version
is their behaviour with respect to �nite coverings.

Proposition 1.10. Let φ : M → N be a d-sheeted covering between closed, connected
and oriented n-manifolds. Then

‖M‖ = d · ‖N‖ .

Proof. Since a d-sheeted covering is a continous map of degree d, we have ‖M‖ ≥ d ·‖N‖.
For the other inequality, let σ : ∆n → N be an n-singular simplex of N . Since ∆n is
simply connected, σ can be lifted to σ̃ : ∆n → M obtaining an n-singular simplex of
M . Since φ is a d-sheeted covering, σ has exaclty d liftings, which we denote with σ̃j for
j ∈ {1, . . . , d}. Let c =

∑
σ∈Si(N) cσσ be a representative of the fundamental class of N .

We notice that

c̃ =
∑

σ∈Sk(N)

cσ

d∑
j=1

σ̃j

is a representative of [M ]R, because it is a cycle, the map φ∗ : Hn(M) → Hn(N) is
injective and

φ∗([c̃]) =
[ ∑
σ∈Sk(N)

cσ

d∑
j=1

φ ◦ σ̃
]

=
[ ∑
σ∈Sk(N)

cσ

d∑
j=1

σ
]

=
[ ∑
σ∈Sk(N)

d · cσσ
]

= d ·
[ ∑
σ∈Sk(N)

cσσ
]

= d · [c] = d · [N ]R = φ∗([M ]R) .

As a consequence,

‖M‖ = ‖[M ]R‖1 ≤ ‖c̃‖1 ≤ d
∑

σ∈Sk(N)

|cσ| = d · ‖c‖1 ,

and taking the in�mum over all representatives of the fundamental class of N we obtain
‖M‖ ≤ d‖N‖.

On the other hand, the integral simplicial volume cannot be multiplicative under �nite
coverings, as this would imply, for example, that ‖S1‖Z = 0. Therefore, we introduce its
stable version.
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De�nition 1.11. The stable integral simplicial volume of a closed, connected and ori-
ented manifold M is

‖M‖∞Z = inf
{‖M̃‖Z

d
| d ∈ N, M̃ →M d-sheeted covering

}
.

Lemma 1.12. The stable integral simplicial volume is multiplicative under �nite cover-
ings and the inequality ‖M‖ ≤ ‖M‖∞Z still holds.

Proof. Let N →M be a d-sheeted covering and Ñ → N be an n-sheeted covering. Then
the composition Ñ →M is a dn-sheeted covering. Therefore,

‖M‖∞Z ≤
‖Ñ‖Z
dn

=
1

d

‖Ñ‖Z
n

.

Taking the in�mun over all possible �nite coverings Ñ → N , we get the inequality

‖M‖∞Z ≤
1

d
‖N‖∞Z .

By de�nition of ‖M‖∞Z , there exists a sequence of mj-sheeted coverings M̃j → M such

that ‖M̃j‖Z
mj

→ ‖M‖∞Z . By replacing M̃j with M̃j×MN , we obtain a dmj-sheeted covering
over M which factorizes on N and

‖M‖∞Z ≤
‖M̃j ×M N‖Z

dmj
≤ ‖M̃j‖Z

mj
→ ‖M‖∞Z .

This means that, in order to calculate ‖M‖∞Z , we can consider only coverings factorizing
over N . As a consequence,

‖N‖∞Z ≤
‖Ñ‖Z
n

= d
‖Ñ‖Z
nd

and taking the in�mum we obtain the thesis.
By the multiplicativity of the simplicial volume we get

‖M‖ =
‖N‖
d
≤ ‖N‖Z

d

ad taking the in�mum we have the inequality ‖M‖ ≤ ‖M‖∞Z .

However, these two quantities are not equal in general, as the following theorem
proved recently by S. Francaviglia, R.Frigerio and B.Martelli ([6]) implies:

Theorem 1.13. For every n ≥ 4 there exists a constant Cn < 1 such that for every
closed, connected and oriented hyperbolic n-manifold, we have

‖M‖ ≤ Cn‖M‖∞Z .
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It is well known that a hyperbolic manifold of �nite volume M is the interior part of
a compact manifold, whose boundary components carry an Euclidean metric. We will
denote with M such a manifold.
We will make widely use of the following result, known as proportionality principle of
the simplicial volume for hyperbolic manifolds.

Theorem 1.14 (Gromov, Thurston). Let M be a connected, oriented, complete hyper-
bolic n-manifold of �nite volume and vn be the volume of the ideal and regular geodesic
simplex in Hn, then

‖M‖ =
Vol(M)

vn
.

We recall a vanishing result for the simplicial volume due to Gromov:

De�nition 1.15. A group G is amenable if there exists an R-linear mapm : `∞(G,R)→
R satisfying the following properties:

1. m(1) = 1;

2. if f ≥ 0, then m(f) ≥ 0

3. for every g ∈ G and f ∈ `∞(G,R) we have m(gf) = m(f), where the G-action on
`∞(G,R) is induced by the left translation of G on G.

Theorem 1.16. Let M be a closed, connected and oriented manifold with amenable
fundamental group. Then ‖M‖ = 0.

1.1.1 Comparison between simplicial volume and stable integral sim-

plicial volume for hyperbolic 3-manifolds

We have seen that simplicial volume and stable integral simplicial volume are di�erent for
closed, connected and oriented hyperbolic n-manifolds when n ≥ 4. A similar result does
not hold in dimension 3, as C. Löh and C. Pagliantini built (in [10]) a sequence of closed,
connected and oriented hyperbolic 3-manifolds, whose ratio between the simplicial volume
and the stable integral simplicial volume tends to 1. In this section we will describe how
to obtain such a family. This result will also be used further for the calculation of the
integral foliated simplicial volume of hyperbolic 3-manifolds.

De�nition 1.17. A triangulation of a closed 3-manifoldM is the realization ofM as the
gluing of �nitely many tetrahedra via some simplicial pairing of their faces. If ∂M 6= ∅,
an ideal triangulation is a decomposition of Int(M) into tetrahedra with their vertices
removed. A (ideal) triangulation is semi-simplicial if every edge has distinct vertices.

Remark 1.18. When we have a closed, connected and oriented manifold M which has
a triangulation consisting of k simplices σi, we are tempted to say that the sum of some
parametrization of the simplices represents the integral fundamental class ofM . Actually,
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this is not true, as the chain obtained with this procedure may not be a cycle. If we work
with real coe�cients, we can overcome this problem by considering

alt(σ) =
1

(k + 1)!

∑
τ∈Sk+1

(−1)sgn(τ)σ ◦ τ̄

where τ̄ is the unique a�ne di�eomorphism of the standard n-simplex corresponding to
the permutation τ of the vertices. In this way, the chain z = alt(σ1) + · · · + alt(σk) is
a cycle representing the fundamental class with norm less than k. Otherwise, we need
some further information about the combinatorial structure of the triangulation. The
notion of semi-simplicial triangulation is su�cient to ensure that the sum of a suitable
parametrization of the simplices of the triangulation σ1 + · · ·+σk is a cycle with integral
coe�cients representing the integral fundamental class of M . Thus an upper-bound for
the integral simplicial volume is the minimun number of tetrahedra in a semi-simplicial
triangulation of M .

De�nition 1.19. A compact polyhedron P is the support of a �nite simplicial complex.
It is simple if the link of every point x ∈ P is homeomorphic to a circle (regular point),
a circle with a diameter (triple point) or a circle with three radii (vertex). A simple
polyhedron is naturally strati�ed:

• a 2-dimensional stratum is one connected component of the set of the regular points;

• a 1-dimensional stratum is a triple line;

• a 0-dimensional stratum is a vertex.

A simple polyhedron is special if the strati�cation is cellular, i.e. each n-dimensional
stratum is an n-cell. A special spine for a compact 3-manifold with boundary M is a
special polyhedron such that there exists a collapse of M onto P , or, equivalently, M \P
consists of a disjoint union of open balls and collars of the boundary components; if M
is closed, a special spine for M is, by de�nition, a special spine for M \B, where B is an
open ball.

Figure 1.1: Allowable neighborhoods in a simple polyhedron

De�nition 1.20. Let M be a compact 3-manifold. The special complexity cS(M) of M
is the minimum number of vertices of a special spine for M .

For our purposes we need to recall the following result proved by Matveev ([14]):



1.1. SIMPLICIAL VOLUME AND STABLE INTEGRAL SIMPLICIAL VOLUME 7

Proposition 1.21. LetM be a compact 3-manifold. Then there exists a bijection between
special spines and ideal triangulations ofM such that the number of vertices in the special
spine is equal to the number of tetrahedra in the corresponding triangulation.

Proof. Each tetrahedron contains a butter�y, which is a special spine with exactly one
vertex (Figure 1.2). Gluing the tetrahedra of the triangulation, we get a special spine for

Figure 1.2: Butter�y in a tetrahedron

M . Viceversa, every special spine ofM can be decomposed into a collection of butter�ies:
if we replace each butter�y with a tetrahedron, we get a triangulation of M .

Proposition 1.22. Let M (5) be the compacti�cation of the complement of the 5-chain

link in S3. Then cS(M (5)) = ‖M (5)‖ = 10. Moreover, cS(M (5)) is realised by a special
spine dual to an ideal semi-simplicial triangulation.

Figure 1.3: Diagram of the 5-chain link

Proof. It can be proved that M(5) admits a complete �nite volume hyperbolic structure,
triangulated by 10 regular ideal tetrahedra whose vertices lie in di�erent cusps. This
means that M (5) has an ideal semi-simplicial triangulation consisting of 10 tetrahedra.

Thus, cS(M(5)) ≤ 10. By theorem 1.14 we have that ‖M (5)‖ =
V ol(M(5))

v3
= 10. The

equality follows because for every oriented connected �nite volume hyperbolic 3-manifold
M with compacti�cationM the inequality ‖M‖ ≤ cS(M) holds, as the volume ofM can
be computed by straightening any ideal triangulation of M and summing the volume of
the straight version of the tetrahedra ([5]).

Proposition 1.23. Let N be the compacti�cation of a connected, oriented and hyperbolic
3-manifold of �nite volume. Suppose N admits a semi-simplicial triangulation dual to a



8 CHAPTER 1. THE INTEGRAL FOLIATED SIMPLICIAL VOLUME

spine realizing cS(N). Let M be a manifold obtained from N via Dehn-�lling. Then

‖M‖∞Z ≤ cS(N)

Proof. Let P be a special spine of N realizing cS(N) dual to a semi-simplicial triangula-
tion. Let T1, . . . , Tk be the boundary tori of N . For every i = 1, . . . , k let Vi be the open
solid torus in M \P corresponding to the component Ti. Let D1

i and D
2
i be two parallel

meridian discs in Vi. If D1
i and D2

i are in general position with respect to the spine P ,
then Q = P

⋃k
i=1D

1
i ∪D2

i is a special spine forM , dual to a semi-simplicial triangulation
(because we have added two meridian discs). If we colour in green the components of Q
coming from the discs Di, we can distinguish three kinds of vertices in Q, illustrated in
the �gure: the vertices of type A are the vertices of P , the vertices of type B originate

Figure 1.4: The green inserted portions of Q produce three di�erent kinds of vertices

from the intersection of P with one meridian disc and the vertices of type C come from
the intersections of P with meridian discs of di�erent solid tori. We indicate with vA, vB
and vC the number of vertices of each type. In particular vA = cS(N).
Since the fundamental group of M is residually �nite, ∀ n > 0 ∃n0 > n and ∃h > 0
such that there exists a regular covering p : M → M of degree hn0 such that for every
i = 1, . . . k the �ber p−1(Vi) consists of h solid tori V

1
i , . . . V

h
i each winding n0 times

along Vi via p. Then Q = p−1(Q) is a special spine of M with hn0vA + hn0vB + hn0vC
vertices. Each meridian disc Di lifts to n0 copies of meridian discs in each V

j
i . Therefore,

we can decrease the number of vertices of this special spine by removing n0−2 discs from
each V

j
i : we obtain another special spine Q

′
forM dual to a semi-simplicial triangulation

with hn0vA + hvB + hvC vertices. As a consequence,

‖M‖∞Z ≤
‖M‖Z
hn0

≤ vA +
vB + vC
n0

n→∞−−−→ vA = cS(N) .

Theorem 1.24. There exists a sequence (Mn)n∈N of closed, connected and oriented
hyperbolic 3-manifolds such that

lim
n→∞

‖Mn‖∞Z
‖Mn‖

= 1 .
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Proof. Let (Mn)n∈N be a family of hyperbolic 3-manifolds, obtained fromM (5) via Dehn-
�lling, in such a way that the coe�cients of the Dehn-�llings tend to in�nity. By
Thurston's Dehn �lling theorem ([3],[19]) limn→∞Vol(Mn) = Vol(M(5)). By Theorem
1.14 we obtain limn→∞ ‖Mn‖ = ‖M (5)‖. Therefore,

1 ≤ ‖Mn‖∞Z
‖Mn‖

≤
cS(M (5))

‖Mn‖
n→∞−−−→

cS(M (5))

‖M (5)‖
= 1 .

1.2 Integral foliated simplicial volume: �rst properties

In this section we de�ne the integral foliated simplicial volume of a closed, connected and
oriented n-manifold, illustrating its basic properties and providing some easy examples.

Let M be a closed, connected and oriented n-manifold with fundamental group Γ and
universal covering M̃ . Notice that Γ is countable because it is �nitely presented. A stan-
dard Γ-space is a Borel probability space (X,µ) endowed with a left µ-preserving action
of Γ. If (X,µ) is a standard Γ-space, we can de�ne a right action of Γ on L∞(X,µ,Z) by

L∞(X,µ,Z)× Γ→ L∞(X,µ,Z)

(f, g) 7→ f · g(x) = f(gx) .

We consider the singular homology of M with coe�cients in L∞(X,µ,Z), i.e the
homology of the chain-complex C∗(M,L∞(X,Z)) := (L∞(X,Z)⊗ΓC∗(M̃,Z), idL∞⊗d∗),
where C∗(M̃,Z) is the usual singular chain-complex of M̃ , which has a structure of
left Z[Γ]-module induced by the action of the fundamental group of M on its univeral
covering, and d∗ is its usual boundary operator.
We indicate with ιXM the change of co�cients omomorphism

ιXM : C∗(M,Z) ∼= Z⊗Γ C∗(M̃,Z)→ L∞(X,µ,Z)⊗Γ C∗(M̃,Z)

induced by the inclusion Z ↪→ L∞(X,µ,Z) as constant functions, where Z is endowed
with the trivial action of Γ.
We can de�ne an `1-norm on the groups Ci(M,L∞(X,Z)): given a chain

∑k
j=1 fj ⊗σj ∈

Ci(M,L∞(X,Z)) written in its canonical form, i.e. π ◦ σi 6= π ◦ σj if i 6= j where
π : M̃ →M is the universal covering, we put

 k∑
j=1

fj ⊗ σj
X =

k∑
j=1

∫
X
|fj |dµ .

De�nition 1.25. Let (X,µ) be a standard Γ-space. We de�ne the X-parametrised
fundamental class of M as the image of the integral fundamental class under the change
of coe�cients map

[M ]X := Hn(ιXM )([M ]Z) ∈ Hn(M,L∞(X,Z)) = Hn(L∞(X,Z)⊗Γ C∗(M̃,Z)) .

An X-parametrised fundamental cycle is any cicle c ∈ Cn(M,L∞(X,Z)) representing
[M ]X .
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De�nition 1.26. The X-parametrised simplicial volume isMX = inf{
cX | c ∈ Cn(M,L∞(X,Z)), [c]X = [M ]X} .

The integral foliated simplicial volume of M isM = inf
X

MX ,

where X ranges over the standard Γ-spaces.

Proposition 1.27. Let M be a closed, connected and oriented n-manifold with funda-
mental group Γ and let (X,µ) be a standard Γ-space. Then

‖M‖ ≤
MX ≤ ‖M‖Z .

Proof. The inclusion Z ↪→ L∞(X,Z) is isometric and the induced map sends integral fun-

damental cycles into X-parametrised fundamental cycles. Therefore,
MX ≤ ‖M‖Z.

Consider the integration map

p1 : L∞(X,Z)⊗ΓCn(M̃,Z)→ Cn(M,R)

f ⊗ σ 7→
( ∫

X
fdµ

)
(π ◦ σ) :

p1 does not increase the norm and �ts into the commutative diagram

Cn(M,Z)

ι
&&

ιXM // L∞(X,Z)⊗Γ Cn(M̃,Z)

p1uu
Cn(M,R)

In particular p1 sends X-parametrised fundamental cycles into real fundamental cycles.
Therefore, ‖M‖ ≤

MX .
Remark 1.28. IfX is the standard Γ-space consisting of a single point, then L∞(X,Z)⊗Γ

Cn(M̃,Z) ∼= Z⊗Γ Cn(M̃,Z) ∼= Cn(M,Z). Therefore,
MX = ‖M‖Z.

Proposition 1.29 (Integral foliated simplicial volume for simply connected manifolds).
Let M be a closed, connected and simply connected manifold. ThenM = ‖M‖Z .

Proof. Let (X,µ) be a standard probability space. Since Γ = π1(M) = 0, X is a standard
Γ-space. Moreover, we have the isomorphism L∞(X,Z) ⊗Γ Cn(M̃,Z) ∼= L∞(X,Z) ⊗Z
Cn(M,Z). Let c =

∑k
i=1 fi⊗σi ∈ L∞(X,Z)⊗ZCn(M,Z) anX-parametrised fundamental

cycle and cZ an integral fundamental cycle. By de�nition, there exists a singular chain
s ∈ L∞(X,Z)⊗ZCn+1(M,Z) such that c−cZ = dn+1(s). For µ-almost every x, c induces
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an integral singular chain cx =
∑k
i=1 fi(x)⊗σi. Since the relation cx− cZ = dn+1(s) still

holds, cx is an integral fundamental cycle. Therefore,

c =
 k∑
i=1

fi ⊗ σi
 =

k∑
i=1

∫
X
|fi(x)|dµ =

∫
X

k∑
i=1

|fi(x)|dµ∫
X
‖cx‖dµ ≥

∫
X
‖M‖Zdµ = ‖M‖Z .

Taking the in�mum over all possible representatives of [M ]X we have
MX ≥ ‖M‖Z.

Taking the in�mum over all standard Γ-spaces X we obtain the inequality
M ≥

‖M‖Z, which leads to the thesis together with Proposition 1.27.

We are going to analyse what happens when the parameter space (X,µ) changes.

Proposition 1.30 (Comparison between parameter spaces). Let M be a closed, con-
nected and oriented n-manifold with fundamental group Γ. Let (X,µ) and (Y, ν) be two
standard Γ-spaces. Suppose ϕ : X → Y is a measurable Γ-equivariant map such that for
every measurable set A ⊂ Y

µ(ϕ−1(A)) ≤ ν(A) .

Then
MX ≤ MY .

Proof. Consider the chain morphism

φ : L∞(Y,Z)⊗Γ Cn(M̃,Z)→ L∞(X,Z)⊗Γ Cn(M̃,Z)

f ⊗ σ 7→ (f ◦ ϕ)⊗ σ .

The hypothesis implies that for every integrable function f ∈ L1(Y,Z) the inequality∫
X(f ◦ ϕ)dµ ≤

∫
Y fdν holds. In particular for every chain c ∈ L∞(Y,Z) ⊗Γ Cn(M̃,Z)

we have
φ(c)

X ≤ cY . Since µ(Im(ϕ)) ≥ µ(X) = 1, ϕ is ν-almost surjective. This
means that φ sends ν-almost constant functions into µ-almost constant functions and
the following diagram commutes

L∞(Y,Z)⊗Γ Cn(M̃,Z)
φ // L∞(X,Z)⊗Γ Cn(M̃,Z)

Cn(M,Z)

ιYZ

ii

ιXZ

55

Therefore, φ sends Y -parametrised fundamental cycles into X-parametrised fundamental
cycles, so

MX ≤ MY .
Proposition 1.31 (Product of parameter spaces). Let M be a closed, connected and
oriented n-manifold with fundamental group Γ.
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(a) Let I 6= ∅ be a countable set. If (Xi, µi)i∈I is a family of standard Γ-spaces, then the
product

(Z, ζ) = (
∏
i∈I

Xi,
⊗
i∈I

µi)

with the diagonal action of Γ is a standard Γ-space and
MZ ≤ infi∈I

MXi .
(b) Let (X,µ) be a standard Γ-space and (Y, ν) a Borel probability space. De�ning Z =

X×Y endowed with the action of Γ on the factor X and with the probability measure

ζ = µ⊗ ν, we have
MZ =

MX .
Proof. (a) It follows by applying Proposition 1.30 to the projections πi :

∏
i∈I Xi → Xi.

(b) We can see (Y, ν) as a standard Γ-space with trivial action of Γ. By the previous

point,
MZ ≤ MX .

Consider a Z-parametrised fundamental cycle c =
∑k
j=0 fj ⊗ σj . By de�nition, if cZ

is an integral fundamental cycle of M , there exists a singular chain s ∈ L∞(Z,Z)⊗Γ

Cn+1(M̃,Z) such that
c− cZ = dn+1(s) .

For ν-almost every y ∈ Y , the element

cy =
k∑
j=0

(x 7→ fj(x, y))⊗ σj ∈ L∞(X,Z)⊗Γ Cn(M̃,Z)

is a well-de�ned X-parametrised fundamental cycle, because the action of Γ on Y is
trivial and the relation cy − cZ = dn+1(s) holds.
By Fubini's theorem we have

cZ =

∫
X×Y

k∑
j=0

|fj |d(µ⊗ ν) =

∫
Y

∫
X

k∑
j=0

|fj(x, y)|dµdν

=

∫
Y

cyXdν .

As a consequence, there exists y ∈ Y such that cy is an X-parametrised fundamental

cycle and
cyX ≤ cZ . Taking the in�mum over all possible Z-parametrised

fundamental cycles, we obtain the inequality
MX ≤ MZ .

De�nition 1.32. Let (X,µ) be a standard Γ-space. The action of Γ on X is essentially
free if µ-almost every point of X has trivial stabilizer.

Remark 1.33. If Γ is a countable group, it is always possible to �nd a standard Γ-space
with essentially free action. We will illustrate how to construct such a space in Section
1.4.
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Corollary 1.34. LetM be a closed, connected and oriented n-manifold with fundamental
group Γ. There exists a standard Γ-space (X,µ) with essentially free action of Γ such

that
M =

MX .
Proof. Let (X0, µ0) be a standard Γ-space with essentially free action of Γ. Let (Xn, µn)n∈N
be a family of standard Γ-spaces such that

MXn ≤ M+ 1
n . Then the diagonal ac-

tion on (X,µ) = (
∏
n∈NXn,

⊗
n∈N µn) is essentially free and by the previous propositionM ≤ MX ≤ infn∈N

MXn =
M.

Proposition 1.35 (Convex combination of parameter spaces). Let M be a closed, con-
nected and oriented n-manifold with fundamental group Γ. Let (X,µ) and (Y, ν) be two
standard Γ-spaces. Let t ∈ [0, 1]. De�ne Z = X ∪ Y with the probability measure
ζ = tµ+ (1− t)ν and the induced action of Γ. ThenMZ = t

MX + (1− t)
MY .

Proof. We notice that L∞(Z, ζ,Z) ∼= L∞(X,µ,Z)⊕ L∞(Y, ν,Z) via the maps

φ : L∞(Z, ζ,Z)→ L∞(X,µ,Z)⊕ L∞(Y, ν,Z)

f 7→ (f|X , f|Y ) ;

ψ : L∞(X,µ,Z)⊕ L∞(Y, ν,Z)→ L∞(Z, ζ,Z)

(f, g) 7→ fχX + gχY .

Denote with Φ and Ψ the morphism induced between chain complexes. If c =
∑k
j=1 fj ⊗

σj ∈ L∞(Z,Z) ⊗Γ Cn(M̃,Z) is a Z-parametrised fundamental cycle, then both compo-
nents of Φ(c) = (Φ(c)X ,Φ(c)Y ) are parametrised fundamental cycles. Therefore,

cZ =
k∑
j=1

∫
Z
|fj |dζ = t

k∑
j=1

∫
X
|fj |X |dµ+ (1− t)

k∑
j=1

∫
Y
|fj |Y |dν

= t
Φ(c)X

X + (1− t)
Φ(c)Y

Y ≥ tMX + (1− t)
MY .

Taking the in�mum over all Z-parametrised fundamental cycles we obtainMZ ≥ tMX + (1− t)
MY .

Similarly, if cX =
∑k
j=1 fj ⊗ σj is an X-parametrised fundamental cycle and cY =∑k

j=1 gj⊗σj is a Y -parametrised fundamental cycle, then Ψ(cX , cY ) is a Z-parametrised
fundamental cycle, and

MZ ≤ Ψ(c)
Z =

k∑
j=1

∫
Z
|fjχX + gjχY |dζ

≤ t
k∑
j=1

∫
X
|fj |dµ+ (1− t)

k∑
j=1

∫
Y
|gj |dν

= t
cXX + (1− t)

cYY .
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Taking the in�mum over all the X- and Y -parametrised fundamental cycles, we obtainMZ ≤ tMX + (1− t)
MY ,

which gives the thesis.

Corollary 1.36. LetM be a closed, connected and oriented n-manifold with fundamental
group Γ. Then

{
MX | (X,µ)− standard Γ-space} = [

M, ‖M‖Z] ⊂ R .

Let M be a closed, connected and oriented n-manifold with fundamental group Γ.
Let p : N → M be a d-sheeted covering and Λ < Γ the fundamental group of N . Then
Λ has index d in Γ. Fix a system of representatives of Λ in Γ, i.e. a set {g1, . . . , gd} such
that

{g1Λ, . . . , gdΛ} = Γ/Λ .

De�nition 1.37. Let (Y, ν) a standard Λ-space. The induction (Γ ×Λ Y, µ) of (Y, ν)
from Λ to Γ is the standard Γ-space de�ned as follows:

• Γ×Λ Y = (Γ× Y )/ ∼, where (g, y) ∼ (g′, y′) if and only if there exists h ∈ Λ such
that g = g′h and y′ = hy.

• the probability measure on Γ×Λ Y is the one induced by the bijection

ϕ : Γ×Λ Y → Γ/Λ× Y
[gj , y] 7→ (gjΛ, y)

i.e. µ is the pull-back via ϕ of the probability measure 1
dδ ⊗ ν on Γ/Λ× Y , where

δ is the counting measure.

• the action of Γ on Γ×Λ Y is

Γ× (Γ×Λ Y )→ Γ×Λ Y

(g, [g′, y]) 7→ [gg′, y] .

Theorem 1.38 (Induction of parameter spaces). In the setup described aboveMΓ×ΛY =
1

d

NY .

Proof. Consider the following mutually inverse homomorphisms of Z[Γ]-modules

φ : L∞(Γ×Λ Y,Z)→ L∞(Y,Z)⊗Λ Z[Γ]

f 7→
d∑
j=1

f([gj , ·])⊗ gj

ψ : L∞(Y,Z)⊗Λ Z[Γ]→ L∞(Γ×Λ Y,Z)

f ⊗ gj 7→
(

[gk, y] 7→
{
f(y) j = k

0 otherwise

)
.
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Since the universal covering Ñ of N coincides with the universal covering M̃ of M with
the action restricted to the subgroup Λ < Γ, we have C∗(Ñ ,Z) ∼= Z[Γ]⊗ΓC∗(M̃,Z). The
maps φ and ψ induce morphisms of chain complexes

Φ : L∞(Γ×Λ Y,Z)⊗Γ C∗(M̃,Z)→ L∞(Y,Z)⊗Λ Z[Γ]⊗Γ C∗(M̃,Z)

f ⊗ c 7→ φ(f)⊗ c .
Ψ : L∞(Y,Z)⊗Λ C∗(Ñ ,Z)→ L∞(Γ×Λ Y,Z)⊗Γ C∗(M̃,Z)

f ⊗ c 7→ ψ(f ⊗ 1)⊗ c .

If cZ =
∑k
j=1 ajσj ∈ Cn(M,Z) is an integral fundamental cycle of M , we have that

Φ ◦ ιΓ×ΛY
M (cZ) = ιYN

( k∑
j=1

aj

d∑
i=1

giσj
)
.

Therefore, Φ and Ψ send parametrised fundamental cycles into parametrised fundamental
cycles.
If c =

∑k
i=1 fi ⊗ σi is a (Γ×Λ Y )-parametrised fundamental cycle, then

Φ(c)
Y =

k∑
i=1

∫
Y
|
d∑
j=1

fi([gj , y])|dν ≤
k∑
i=1

d∑
j=1

∫
Y
|fi([gj , y])|dν

= d
k∑
i=1

∫
Γ×ΛY

|fi|d(δ ⊗ µ) = d
cΓ×ΛY .

Similarly, if c =
∑k
i=1

∑d
j=1(fi,j ⊗ gj)⊗ σi is a Y -parametrised fundamental cycle, then

Ψ(c)
Γ×ΛY ≤ 1

d

∫
Γ×ΛY

k∑
i=1

d∑
j=1

|ψ(fi,j ⊗ gj)|d(δ ⊗ ν)

=
1

d

∫
Y
|fi,j(y)|dν =

1

d

cY .

Taking the in�mum over all parametrised fundamental cycles we have the claim.

Corollary 1.39. Let Γ/Λ be the set of the left lateral classes of Λ in Γ endowed with the
left translatory action of Γ and with the normalised counting measure. It is a standard
Γ-space and MΓ/Λ

=
1

d
‖N‖Z .

Proof. If Y is the standard Λ-space consisting of only one point, then Γ/Λ = Γ ×Λ Y .

Therefore, by the previous theorem and Remark 1.28, we have
MΓ/Λ

= 1
d

NX =
1
d‖N‖Z.

De�nition 1.40. Let Γ be a group and (X,µ) a standard Γ-space. Let Λ < Γ be a
subgroup. The restriction resΓΛ(X,µ) of (X,µ) from Γ to Λ is the standard Λ-space
obtained by restricting the action of Γ on X to Λ.
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Proposition 1.41 (Restriction of parameter spaces). In the setup described above,

1

d

NresΓΛX ≤
MX .

Proof. It is su�cient to prove that
MΓ×Λres

Γ
ΛX ≤

MX . The map

Γ×Λ resΓΛX → X

[g, x] 7→ g · x

satis�es the properties of Proposition 1.30, hence the thesis.

Theorem 1.42 (Multiplicativity of the integral foliated simplicial volume). Let M be a
closed, connected and oriented n-manifold and p : N →M be a d-sheeted covering. Then

M =
1

d

N .

Proof. By Proposition 1.41, we have 1
d

N ≤ M . By Proposition 1.38 we obtain
that

M ≤ 1
d

N.
Corollary 1.43. Let M be a closed, connected and oriented n-manifold. Then

‖M‖ ≤
M ≤ ‖M‖∞Z .

Proof. By Proposition 1.27 we know that ‖M‖ ≤
M ≤ ‖M‖Z. Let N be a d-sheeted

covering of M . Then M =
1

d

N ≤ 1

d
‖N‖Z .

Taking the in�mum over all �nite coverings of M we obtain the inequality
M ≤

‖M‖∞Z .

1.3 Some explicit computations

Using the multiplicativity property of the integral foliated simplicial volume and the in-
equalities which link it to the simplicial volume and the stable integral simplicial volume,
it is possible to calculate it explicitly for surfaces, Seifert 3-manifolds and manifolds with
�nite fundamental group.

Proposition 1.44. Let S be a closed, connected and orientable surface of genus g. Then

S =

{
2 S ∼= S2

‖S‖ = ‖S‖∞Z otherwise
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Proof. If S ∼= S2, then S is simply connected, hence
S = ‖S‖Z = ‖S‖∞Z = 2.

If S is a torus, then it admits self-coverings of arbitrarily high degree, hence ‖S‖ =S = ‖S‖∞Z = 0.
If g ≥ 2, a straightening process of the singular simplices ([3]) produces the inequality

‖S‖ ≥ Vol(S)

v2
= 4g − 4 .

For the other inequality, notice that it is possible to realise S as a quotient of a polygon
with 4g-sides. Using this, one can construct a triangulation with 4g − 2 triangles such
that the sum of the simplices represents the fundamental class. Hence ‖S‖Z ≤ 4g − 2.
Since H1(S,Z) ∼= Z2g, for every d > 0 there exists a surjective homomorphism from π1(S)
to Zd, which corresponds to a d-sheeted covering S̃ → S. Since the euler characteristic
is multiplicative on �nite coverings, S̃ has genus d(g − 1) + 1. Therefore,

‖S‖∞Z ≤
‖S̃‖Z
d
≤ 4d(g − 1) + 2

d
d→∞−−−→ 4g − 4 .

As a consequence, we obtain the inequalities 4g−4 ≤ ‖S‖ ≤
S ≤ ‖S‖∞Z ≤ 4g−4.

Proposition 1.45. Let M be a closed, connected and oriented n-manifold with �nite
fundamental group. Let M̃ be its universal covering. Then

M =
1

|π1(M)|
‖M̃‖Z = ‖M‖∞Z .

By contrast ‖M‖ = 0.

Proof. Since the fundamental group ofM is �nite, M̃ is a �nite |π1(M)|-sheeted covering.
Therefore

‖M‖∞Z ≥
M =

1

|π1(M)|
M̃ =

1

|π1(M)|
‖M̃‖Z ≥ ‖M‖∞Z .

On the other hand, ‖M‖ = 0 because its fundamental group is amenable (Theorem
1.16).

Proposition 1.46. Let M be a closed, connected and oriented Seifert 3-manifold with
in�nite fundamental group. Then

‖M‖ =
M = ‖M‖∞Z = 0 .

Proof. A Seifert 3-manifold admits a �nite covering, which is an S1-bundle over an
orientable surface Σ with Euler number e ≥ 0. We indicate this manifold with (Σ, e).
Moreover, it is well-known that (Σ, e) is either irreducible or S1 × S2 or P3(R)#P3(R).
We analyse each case separately:

• if (Σ, e) = S1 × S2, then it admits non-trivial �nite self-coverings, hence ‖M‖∞Z ≤
‖S1 × S2‖∞Z = 0;
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• if (Σ, e) = P3(R)#P3(R), then it is double-covered by S1 × S2, thus ‖M‖∞Z ≤
‖P3(R)#P3(R)‖∞Z = 1

2‖S
1 × S2‖∞Z = 0;

• if (Σ, e) is irreducible, the estimate cS((Σ, e)) ≤ e+ 6χ−(Σ) + 6 holds ([13]), where
χ−(Σ) = max{−χ(Σ), 0}. Let T be a triangulation of (Σ, e) dual to a special
spine realizing its special complexity. It is not necessarily semi-simplicial, but its
�rst baricentric subdivision T ′ is. Since a baricentric subdivision of a tetrahe-
dron consists of 24 tetrahedra, T ′ is made of 24cS((Σ, e)) tetrahedra. Therefore,
‖(Σ, e)‖Z ≤ 24(e + 6χ−(Σ) + 6). If Σ → Σ is a d-sheeted covering between sur-
faces, it induces a covering of degree d2 between the S1-bundles (Σ, e) → (Σ, e):
this can be obtained by composing the d-sheeted coverings (Σ, de) → (Σ, e) and
(Σ, e) → (Σ, de), the latter being the result of unwrapping the �bers. As a conse-
quence,

‖M‖∞Z ≤ ‖(Σ, e)‖∞Z ≤
1

d2
‖(Σ, e)‖Z

≤ 24(e+ 6χ−(Σ) + 6)

d2
=

24(e+ 6dχ−(Σ) + 6)

d2

d→∞−−−→ 0

Thanks to Proposition 1.43 we have the thesis.

1.4 Ergodic parameters

Among all possible standard Γ-spaces, the ergodic actions have better properties, which
allow us to obtain further results about the integral foliated simplicial volume. In partic-
ular, we will see that the simplicial volume parametrised over an ergodic space approx-
imates with arbitrary precision the integral foliated simplicial volume and that ergodic
actions can be used to calculate the integral foliated simplicial volume of S1.

De�nition 1.47. A standard Γ-space (X,µ) is ergodic if every measurable and Γ-
invariant set E ⊂ X satis�es µ(E) = 0 or µ(E) = 1.

Lemma 1.48. Let (X,µ) be a standard Γ-space. The following conditions are equivalent:

(a) (X,µ) is ergodic;

(b) every Γ-invariant function f : X → R is constant µ-a.e.

Proof. (a)⇒ (b) For each c ∈ R consider the set

Ac = {x ∈ X | f(x) ≤ c} .

It is Γ-invariant, hence µ(Ac) = 1 or µ(Ac) = 0. De�ne c0 = inf{c ∈ R | µ(Ac) = 1}. We
show that f = c0 µ-a.e.. For every n ∈ N the sets Ac0+ 1

n
have full measure and decrease to

Ac0 , hence µ(Ac0) = 1. On the other hand, for every n ∈ N the sets Ac0− 1
n
have measure
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zero and converge increasingly to {x ∈ X | f(x) < c0}. Thus µ({x ∈ X | f(x) = c0}) = 1.
(b) ⇒ (a) Let E be a Γ-invariant measurable set. Its characteristic function χE is Γ-
invariant, hence constant a.e.. This implies that E has measure 1 or 0.

De�nition 1.49. A standard Γ-space is mixing if for every measurable sets A,B ⊂ X
and for every divergent sequence {γn}n∈N of elements of Γ (i.e. γn leaves every �nite
subset de�nitely) we have

µ(A ∩ γn ·B)
n→∞−−−→ µ(A)µ(B) .

Lemma 1.50. If Γ is in�nite, a mixing Γ-space is ergodic.

Proof. Let E be a Γ-invariant set and choose any in�nite sequence {γn} ⊂ Γ. By de�ni-
tion, µ(E) = µ(E ∩ γn · E)

n→∞−−−→ µ(E)2. Therefore, µ(E) = 1 or µ(E) = 0.

It is not obvious from the de�nition that every group Γ admits a standard ergodic
Γ-space. We build explicitly an example when Γ is in�nite and countable, known as
Bernoulli shift. This action will be essentially free, as well. Consider the standard Borel
space X = {0, 1}Γ with the product probability measure µ =

⊗
n∈N

(
1
2δ0 + 1

2δ1
)
where

δj is the atomic probability measure concentrated on the point j. For every �nite set
F ⊂ Γ and Af ⊂ {0, 1}, de�ne

AF = {(xγ)γ∈Γ | xγ ∈ Af ∀ f ∈ F} :

it is well-known that the sets AF generate the product σ-algebra on X let F vary on all
possible �nite subsets of Γ. Moreover, Γ acts on X by left transations, i.e.

Γ×X → X

(γ · (xγ′)γ′∈Γ) 7→ (xγγ′) .

Using the de�nition of the product probablity measure, it is easy to verify that this action
preserves the measure of the sets AF . Moreover, for every divergent sequence {γn}n∈N
and for every pair of �nite subsets F, F ′ ⊂ Γ we have

µ(AF ∩ γn ·AF ′)
n→∞−−−→ µ(AF )µ(AF ′)

because γn · F ′ and F are de�nitely disjoint. It follows that (X,µ) is a mixing, whence
ergodic, standard Γ-space.

The importance of ergodic actions for the calculus of integral foliated simplicial volume
is underlined in the following result:

Lemma 1.51 (ergodic decomposition). Let Γ be a countable group and let (X,µ) be a
standard Γ-space. There exist a probability space (P, ν) and a family (µp)p∈P of ergodic
probability measures on X with the following property: for each Borel subset A ⊂ X, the
function

P → [0, 1]

p 7→ µp(A)
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is measurable and

µ(A) =

∫
P
µp(A)dν .

Proposition 1.52 (ergodic parameters). Let M be a closed, connected and oriented n-
manifold with fundamental group Γ. Let (X,µ) be a standard Γ-space and ε > 0. There
exists an ergodic Γ-invariant probability measure µ′ on X such thatM(X,µ′) ≤

M(X,µ)
+ ε .

In particular, ∀ ε > 0 there exists an ergodic Γ-space X such thatMX ≤ M+ ε .

Proof. By de�nition, there exists an (X,µ)-parametrised fundamental cycle c =
∑k
j=0 fj⊗

σj ∈ L∞(X,µ,Z)⊗Γ Cn(M̃,Z) such that

k∑
j=0

∫
X
|fj |dµ ≤

M(X,µ)
+ ε .

Set B(X,µ,Z) = {f : X → Z | f is bounded µ-almost everywhere} and N(X,µ,Z) =
{f ∈ B(X,µ,Z) | f = 0 µ − almost everywhere}. We have the short exact sequence of
Z[Γ]-modules

0→ N(X,µ,Z)→ B(X,µ,Z)→ L∞(X,µ,Z)→ 0

and, since Cn(M̃,Z) is a free Z[Γ]-module, we obtain that

L∞(X,µ,Z)⊗Γ Cn(M̃,Z) ∼=
B(X,µ,Z)⊗Γ Cn(M̃,Z)

N(X,µ,Z)⊗Γ Cn(M̃,Z)
.

As a consequence, we can consider fj as elements of B(X,µ,Z) and we can re-write the
cycle condition as follows. Let cZ be an integral fundamental cycle. By de�nition, there
exist a chain s ∈ B(X,µ,Z)⊗Γ Cn+1(M̃,Z), a chain s′ ∈ B(X,µ,Z)⊗Γ Cn(M̃,Z) and a
µ-measurable set A ⊂ X, with µ(A) = 0, such that

c− cZ = dn+1(s) + χAs
′ .

The discussion above ensures that, if, after changing the probability measure µ with
another probability measure µ′, the functions fj are still bounded µ′-almost everywhere
and µ′(A) = 0, then c represents an (X,µ′)-parametrised fundamental cycle. We are now
looking for a probability measure µ′ satisfying these properties such that the action of
Γ on (X,µ′) is ergodic. By the ergodic decomposition theorem, there exist a probability
space (P, ν) and a family of Γ-invariant probability measures (µp)p∈P , such that, for
every borel set B ⊂ X,

µ(B) =

∫
P
µp(B)dν
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and for every µ-integrable function f ,∫
X
fdµ =

∫
P

∫
X
fdµpdν .

Taking f =
∑k
j=1 |fj | and B = A, there exists p ∈ P such that

• µp(A) = 0 ;

•
∫
X fdµp ≤

∫
X fdµ .

Consider the chain cp = [c] ∈ B(X,µp,Z)⊗ΓCn(M̃,Z)

N(X,µp,Z)⊗ΓCn(M̃,Z)
∼= L∞(X,µp,Z) ⊗ Cn(M̃,Z): it is an

(X,µp)-parametrised fundamental cycle, because the relation c − cZ = dn+1(s) + χAs
′

continues to hold and µp(A) = 0. Therefore,M(X,µp) ≤
cp(X,µp)

=

∫
X
fdµp ≤

∫
X
fdµ

=
c(X,µ) ≤

M(X,µ)
+ ε .

If (X,µ) is a standard Γ-space realizing the integral foliated simplicial volume of M , we
obtain the second part of the thesis.

We conclude this section with the calculation of the simplicial volume of S1 using
ergodic parameter spaces. We �rst need a general result about ergodic actions:

Theorem 1.53 (Rohlin). Let X be a standard non-atomic probability space and T : X →
X a measure-preserving automorphism. Given ε > 0 and n ∈ N there exists a measurable
set B ⊂ X such that

(1) B, T (B), . . . , Tn−1(B) are pairwise disjoint;

(2) µ
(⋃n−1

j=0 T
j(B)

)
≥ 1− ε.

Proposition 1.54. For every ergodic standard Z-space X we have
S1

X = 0.

Proof. Let X be an ergodic standard Z-space. Let n ∈ N and ε > 0. Consider the
X-parametrised fundamental cycle 1 ⊗ σ ∈ L∞(X,Z) ⊗Z C1(R,Z), where σ : ∆1 → R
is de�ned as σ(t) = t. For every j ∈ Z we indicate with σj : ∆1 → R its translation
σj(t) = t+ j.
By Rohlin's theorem there exists a measurable set B ⊂ X such that B, 1·B, . . . , (n−1)·B
are pairwise disjoint and µ

(
X \

⋃n−1
j=0 j ·B

)
< ε. Set A = X \

⋃n−1
j=0 j ·B. We can write

1⊗ σ = χA ⊗ σ +
n−1∑
j=0

χj·B ⊗ σ = χA ⊗ σ +
n−1∑
j=0

χB ⊗ σ−j .

Notice that
∑n−1
j=0 χBσ−j is homologous to χB ⊗ σ̄, where

σ̄ : ∆1 → R
t 7→ −(n− 1) + nt .
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As a consequence, χA ⊗ σ + χB ⊗ σ̄ is an X-parametrised fundamental cycle and

0 ≤
S1

X ≤ µ(A) + µ(B) ≤ ε+
1

n
n→∞−−−→ ε .

By the arbitrariety of ε > 0, we have
S1

X =
S1

 = 0.

1.5 Integral foliated simplicial volume of hyperbolic

3-manifolds

In this section we will prove a proportionality principle for the integral foliated simplicial
volume of aspherical manifolds. Together with Theorem 1.24, this will imply that integral
foliated simplicial volume and simplicial volume of hyperbolic 3-manifolds concide. To
this aim we need to introduce the concept of measure equivalence of groups and recall
some results about `1-homology and bounded cohomology of groups.

1.5.1 `1-homology and bounded cohomology of groups

Homology and cohomology of groups are important tools for the study of a manifold. For
instance, the homology of an aspherical manifold is naturally isomorphic to the homology
of its fundamental group. In this section, after a brief survey on the classical homology
of groups, we will illustrate a slightly more sophisticated version, called `1-homology,
obtained through the introduction of a norm in the classical chain complex. Its dual
counterpart is the bounded cohomology introduced by Gromov. The main reference for
the missing details and proofs is ([9]).

Let Γ be a discrete group. The bar resolution of Γ with coe�cients in R = R,Z is
the chain complex C∗(Γ) de�ned as follows:

• Cn(Γ) = {
∑
γ∈Γn+1 aγγ0[γ1| · · · |γn] |aγ ∈ R, aγ = 0 for all but a �nite number of γ ∈

Γn+1} is the free left R[Γ]-module generated by the n-tuples [γ1| . . . |γn] of elements
of Γ with the Γ-action given by

Γ× Cn(Γ)→ Cn(Γ)

(γ′, γ0[γ1| . . . |γn]) 7→ (γ′ · γ0)[γ1| · · · |γn] .

• the boundary operator is the G-equivariant homomorphism determined by

∂n : Cn(Γ)→ Cn−1(Γ)

γ0[γ1| · · · |γn] 7→ γ0γ1[γ2| · · · |γn] +
n∑
j=1

(−1)jγ0[γ1| · · · |γj−1|γjγj+1 | · · · |γn]

+ (−1)nγ0[γ1| · · · |γn−1] .
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We can de�ne an `1-norm on Cn(Γ) by setting∥∥∥ ∑
γ∈Γn+1

aγγ0[γ1| · · · |γn]
∥∥∥

1
=

∑
γ∈Γn+1

|aγ | .

De�nition 1.55. Let V be a normed R[Γ]-module.

• The set of the invariants of V is the submodule

V Γ := {v ∈ V | γ · v = v ∀γ ∈ Γ} .

• The set of the coinvariants of V is the quotient

VΓ := V/W

whereW is the R-module generated by the elements of the form (γ ·v−v) for some
v ∈ V and γ ∈ Γ and the closure is taken with respect to the topology induced by
the norm on V .

De�nition 1.56. The homology of Γ with coe�cients in R, denoted by H∗(Γ, R), is
the homology of the chain complex C∗(Γ)Γ. More in general the homology of Γ with
coe�cients in a normed right R[Γ]-module A is the homology of the chain complex
C∗(Γ, A) = (A⊗Γ C∗(Γ), idA ⊗ ∂∗).

Remark 1.57. We can introduce a norm on C∗(Γ, A) by setting∥∥∥ ∑
γ∈Γn+1

aγ ⊗ γ0[γ1| · · · |γn]
∥∥∥

1
=

∑
γ∈Γn+1

‖aγ‖A .

It descends to a semi-norm in homology in the following way: if α ∈ Hn(Γ, A)

‖α‖ = inf{‖c‖ | c ∈ Cn(Γ, A) ∂(c) = 0 [c] = α} .

Let us focus on the case of real coe�cients. In this situation Cn(Γ) is a normed left
R[Γ]-module, but it is not necessarily complete. We indicate with C`

1

n (Γ) the metric com-
pletion of Cn(Γ). It is easy to verify that the boundary operators of the bar resolution
are continuous with respect to the `1-norm, hence they can be extended uniquely to the
completion.

Given V a complete normed right R[Γ]-module, we de�ne

C`
1

∗ (Γ, V ) := (V ⊗̄ΓC
`1

∗ (Γ), idV ⊗ ∂∗) ,

the chain complex, which has in each degree the completion of the real vector space
V ⊗Γ C

`1
n (Γ) with respect to the norm

‖u‖1 := inf{
k∑
j=1

‖vi‖V ‖ci‖1 |
k∑
j=1

vi ⊗ ci represents u ∈ V ⊗R C
`1

n (Γ)} .
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De�nition 1.58. Let V be a complete normed R[Γ]-module. The `1-homology of Γ with
coe�cients in V , denoted by H`1

∗ (Γ, V ), is the homology of the chain complex C`
1

∗ (Γ, V ).

De�nition 1.59. Let V be a complete normed R[Γ]-module. The bounded cohomol-
ogy of Γ with coe�cients in V , denoted by H∗b (Γ, V ), is the cohomology of the cochain
complex C∗b (Γ, V ) = B(C`

1

∗ (Γ), V )Γ, where B(C`
1

∗ (Γ), V ) is the set of all bounded lin-
ear functions from C`

1

∗ (Γ) to V . The cochain complex C∗b (Γ, V ) is endowed with the
supremum norm, which induces a semi-norm in cohomology, as usual.

Remark 1.60. If V is the dual space of a complete normed vector space W , then
C∗b (Γ, V ) = C`

1

∗ (Γ,W )′.

If V is a complete normed R[Γ]-module, both H∗(Γ, V ) and H`1
∗ (Γ, V ) are well-

de�ned. The natural inclusion ι : C∗(Γ, V ) → C`
1

∗ (Γ, V ) as a dense subcomplex allows
us to compare the two homology groups, thanks to this general result:

Proposition 1.61. Let D be a chain complex endowed with a norm and C be a dense
subcomplex. The map induced in homology by the inclusion is isometric.

Proof. Set ι : C → D the inclusion and H∗(ι) the map induced in homology. Clearly
‖H∗(ι)‖ ≤ 1. We have to prove the other inequality. Let z ∈ Cn be a cycle and z̄ ∈ Dn

a cycle such that
[z̄] = Hn(ι)([z]) ∈ Hn(D) .

It is su�cient to prove that for every ε > 0 there exists z′ ∈ Cn such that

[z′] = [z] ‖z′‖ ≤ ‖z̄‖+ ε

By de�nition, there exists a chain w̄ ∈ Dn+1 such that ∂n+1(w̄) = ι(z)− z̄. Since Cn+1 is
dense in Dn+1 and the boundary operator is continuous, there exists a chain w ∈ Cn+1

such that
‖w̄ − ι(w)‖ ≤ ε

‖∂n+1‖
.

Set z′ = z − ∂n+1(w): it is a cycle homologous to z and

‖z̄ − ι(z′)‖ = ‖∂n+1(w̄ − ι(w))‖ ≤ ε .

In particular, we have ‖z′‖ ≤ ‖z̄‖+ ε.

Since `1-homology and bounded cohomology are de�ned from dual complexes, we
expect some kind of duality relations between the two theories.
The evaluation C∗b (Γ, V ′)⊗C`1∗ (Γ, V )→ R descends in (co)-homology, de�ning a duality
pairing

〈·, ·〉 : H∗b (Γ, V ′)⊗H`1

∗ (Γ, V )→ R .

De�nition 1.62. We say that two maps f : H`1
∗ (Γ, V )→ H`1

∗ (Λ,W ) and g : H∗b (Λ,W ′)→
H∗b (Γ, V ′) are mutually adjoint if for every cohomology class φ ∈ H∗b (Λ,W ′) and for every
homology class α ∈ H`1

∗ (Γ, V ) we have

〈φ, f(α)〉 = 〈g(φ), α〉 .
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Example 1.63. If f : C`
1

∗ (Γ, V )→ C`
1

∗ (Λ,W ) is a bounded morphism of chain complexes
and f ′ : C∗b (Λ,W ′)→ C∗b (Γ, V ′) is its dual, then the maps induced in (co)-homology are
mutually adjoint.

Proposition 1.64. ([10], Corollary 4.1.) Let f : C`
1

∗ (Γ, V )→ C`
1

∗ (Λ,W ) be a morphism
of chain complexes constisting of continuos maps. Let f ′ : C∗b (Λ,W ′) → C∗b (Γ, V ′) be

its dual. Indicate with H∗b (f ′) and with H`1
∗ (f) the homomorphisms induced in (co)-

homology.

1. H∗b (f ′) is an isomorphism of real vector spaces if and only if H`1
∗ (f) is an isomor-

phism.

2. If H∗b (f) is an isometric isomorphism, then H`1
∗ (f) is an isometric isomorphism.

1.5.2 ME-coupling and proportionality principle

We recall the notion of measure equivalence for groups introduced by Gromov and we
use it to prove a proportionality principle for the integral foliated simplicial volume.

De�nition 1.65. Two countable groups Γ and Λ are measure equivalent (ME) if there
exists a measure space (Ω,m) endowed with commuting and m-preserving actions of Γ
and Λ, which admit fundamental domains of �nite measure. We say that (Ω,m) is an
ME-coupling.

Remark 1.66. Since the actions commute, each group acts on the orbits of the other
and consequently on its fundamental domain.

Example 1.67. Consider two lattices Γ,Λ ⊂ Isom(Hn) = G. It is well-known that G is
unimodular ([3]), i.e. its Haar measure mG is both left- and right-invariant. Therefore
(G,mG) endowed with the left translatory action of Γ and with the right translatory
action of Λ is an ME-coupling.

Let (Ω,m) be an ME-coupling for two countable groups Γ and Λ. Let XΛ and XΓ

be two �nite-measure fundamental domains for the actions of Λ and Γ respectively. It is
possible to associate a measure cocycle to the ME-coupling with the following procedure:

αΛ : Γ×XΛ → Λ

(γ, x) 7→ αΛ(γ, x)

where αΛ(γ, x) is the unique element in Λ such that γx ∈ αΛ(γ, x)−1XΛ. The de�nition
for the function αΓ is similar.
It is quite easy to verify from the de�nition that the above functions satisfy the following
properties:

• for every γ1, γ2 ∈ Γ and for every x ∈ XΛ, we have

αΛ(γ1γ2, x) = αΛ(γ1, γ2 · x)αΛ(γ2, x)
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• if X ′Λ is another fundamental domain for the action of Λ, the new measure cocycle
α′Λ is related to αΛ by the relation

α′Λ(γ, θ(x)) = ζ(γ · x)−1αΛ(γ, x)ζ(x)

where θ : XΛ → X ′Λ is the isomorphism induced by the natural bijections XΛ →
X/Λ→ X ′Λ and ζ(x) is de�ned as the unique element of Λ such that ζ(x)x ∈ X ′Λ.

This allows us to describe explicitly the action of each group on the fundamental
domain of the other as follows:

Γ×XΛ → XΛ Λ×XΓ → XΓ

(γ, x) 7→ γ · x = αΛ(γ, x)γx (λ, y) 7→ λ · y = αΓ(λ, x)λy

De�nition 1.68. Suppose now that Γ and Λ are �nitely generated. Let ` be some
word-norm on the groups. Let (Ω,m) be an ME-coupling and XΓ, XΛ two fundamental
domains. We say that XΓ is bounded if for every λ ∈ Λ the function

XΓ → R
x 7→ `(αΓ(λ, x))

is an element of L∞(XΓ,mΓ,R). The ME-coupling (Ω,m) is bounded if it is possible to
�nd bounded fundamental domains.

De�nition 1.69. An ME-coupling (Ω,m) for Γ and Λ is ergodic (risp. mixing) if the
actions of Γ on XΛ and of Λ on XΓ are ergodic (risp. mixing).

De�nition 1.70. Given an ME-coupling (Ω,m) for the groups Γ and Λ and two �nite-
measure fundamental domains XΛ and XΓ for their actions, the ME-coupling index is
the ratio

cΩ =
m(XΛ)

m(XΓ)
.

Example 1.71. Let Γ,Λ ⊂ Isom(Hn) be two countable groups acting freely and proper
discontinouosly on Hn. We have seen that Ω = Isom(Hn) with its bi-invariant Haar
measure is an ME-coupling (Remark 1.67). It can be proved that it is mixing ([2],
Theorem III.2.1) and bounded ([18], Corollary 6.12), as well. Let XΛ and XΓ be two
�nite-measure fundamental domains. The ME-coupling index is

cΩ =
Covol(Λ)

Covol(Γ)

where Covol(Γ) = Vol(Hn/Γ).

An ME-coupling enables us to connect the bounded cohomology groups of Γ and
Λ with coe�cient in a suitable space of functions. Keeping the notations introduced
above, we endow the fundamental domains XΓ and XΛ with the normalised measures
mΓ = 1

m(XΓ)m|Γ and mΛ = 1
m(XΛ)m|Λ , so that (XΛ,mλ) and (XΓ,mΓ) become standard

probability spaces.
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Theorem 1.72. (Monod-Shalom [15]) Let (Ω,m) be an ME-coupling for two countable
groups Λ and Γ. Let XΓ and XΛ be two fundamental domains. Let αΓ be the associated
measure cocycle. The map

α∗Γ : C∗b (Γ, L∞(XΛ,R))→ C∗b (Λ, L∞(XΓ,R))

(αkΓf)(λ0, λ1, . . . , λk)(x) = f(αΓ(λ−1
0 , x), . . . , αΓ(λ−1

k , x))(Λx ∩XΛ)

restricts to the invariants and induces an isometric isomorphism Hb
∗(αΓ) in cohomology.

Due to Theorem 1.64 and Remark 1.60, we expect a similar result for the `1-homology
with coe�cients in the space of integrable functions. We need �rst an easy lemma:

Lemma 1.73. Let (X,µ) and (Y, ν) two standard measure spaces. Let p : X → Y be a
measurable map such that

1. the �ber p−1(y) is countable for ν-almost every y ∈ Y ;

2. for every measurable subset A ⊂ X such that p|A is injective µ(A) = ν(p(A)).

Then for every f ∈ L1(X,µ) the function y 7→
∑
x∈p−1(y) f(x) is integrable and∫

X
fdµ =

∫
Y

∑
x∈p−1(y)

f(x)dν

Proof. The assumption is true when f is the characteristic function of a set A satisfying
2). Since every function f ∈ L1(X,µ) can be approximated by �nite linear combination
of such functions, we are done.

Remark 1.74. We can identify

L1(XΛ,R)⊗R Ck(Γ)↔ L1(Γk+1 ×XΛ,R)fin

where the caption fin indicates that for every function f belonging to the set there exists
a �nite subset F ⊂ Γk+1 such that the support of f is contained in F ×XΓ.
As a consequence we get the following identi�cation for the coinvariants

L1(XΛ,R)⊗Γ Ck(Γ)↔ L1(Γk+1 ×XΛ,R)finΓ

and for the completion

L1(XΛ,R)⊗Γ C
`1

k (Γ)↔ L1(Γk+1 ×XΛ,R)Γ .

Consider the function

φαk : Λk+1 ×XΓ → Γk+1 ×XΛ

(λ0, . . . , λk, x) 7→ (αΓ(λ−1
0 , x), . . . , αΓ(λ−1

k , x),Λx ∩XΛ) :

it satis�es the hypothesis of the function p in the previous lemma. Hence we obtain the
following result:
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Theorem 1.75. Let (Ω,m) be an ME-coupling for two countable groups Λ and Γ. Let
XΓ and XΛ two fundamental domains. Let αΓ be the associated measure cocycle. Using
the identi�cation of Remark 1.74, the map

αΓ
k : L1(XΓ,R)⊗R C

`1

k (Λ)→ L1(XΛ,R)⊗R C
`1

k (Γ)

αΓ
kf(γ̄, x) = cΩ

∑
(λ̄,y)∈φα

k
−1(γ̄,x)

f(λ̄, y)

is well-de�ned on the level of coinvariants and the induced map in `1-homology

H`1

∗ (αΓ) : H`1

∗ (Λ, L1(XΓ,R))→ H`1

∗ (Γ, L1(XΛ,R))

is an isometric isomorphism. Moreover, H`1
∗ (αΓ) is adjoint to H∗b (αΓ).

Proof. We �rst verify that αΓ
k and αkΓ are mutually adjoint on the level of (co)-chains,

i.e for every f ∈ L1(XΓ,R)⊗R C
`1
k (Λ) and for every g ∈ Ckb (Γ, L∞(XΛ,R)) we have

〈αΓ
k (f), g〉 = 〈f, αkΓ(g)〉 .

This follows from the previous lemma:

〈αΓ
k (f), g〉 =

m(XΛ)

m(XΓ)

∑
γ∈Γn+1

∫
XΛ

∑
(λ̄,y)∈φα

k
−1(γ̄,x)

f(λ̄, y)g(γ̄, x)
dm

m(XΛ)

=
1

m(XΓ)

∑
γ∈Γn+1

∫
XΛ

∑
(λ̄,y)∈φα

k
−1(γ̄,x)

f(λ̄, y)(g ◦ φαk )(λ̄, y)dm

=
1

m(XΓ)

∑
λ̄∈Λk+1

∫
XΓ

f(λ̄, y)(g ◦ φαk )(λ̄, y)dm = 〈f, αkΓ(g)〉

Therefore, αΓ
k restricts to the coinvariants and commutes with the boundary operators,

because αkΓ does. The thesis follows from Theorem 1.64.

We are now ready to prove the proportionality principle for the integral foliated
simplicial volume.

Theorem 1.76 (Proportionality principle for the integral foliated simplicial volume).
Let M and N be closed, connected and oriented aspherical n-manifolds with positive
simplicial volume. Suppose that there exists an ergodic and bounded ME-coupling (Ω,m)
between their fundamental groups Γ and Λ. Let cΩ be the ME-coupling index. We have

1)
MΛ/Ω

= cΩ

NΓ/Ω
;

2) if the coupling is mixing, then
M = cΩ

N.
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Proof. 1) Let XΓ and XΛ be two fundamental domains for the actions of Γ and Λ
respectively. Let αΓ and αΛ be the measure cocycles associated to them. Like in Remark
1.74, we can identify

L1(XΓ,Z)⊗Λ Ck(Λ,Z)↔ L1(Λk+1 ×XΓ,Z)finΛ .

Consider the function

φαΓ
k : Λk+1 ×XΓ → Γk+1 ×XΛ

(λ0, . . . , λn, x) 7→ (αΓ(λ−1
0 , x), . . . , αΓ(λ−1

n , x),Λx ∩XΛ)

and de�ne
(αZ

Γ)k : L1(Λk+1 ×XΓ,Z)finΛ → L1(Γk+1 ×XΛ,Z)finΓ

((αΓ)Zkf)(γ̄, x) =
∑

(λ̄,y)∈(φ
αΓ
n )−1(γ̄,x)

f(λ̄, y) .

Similarly we de�ne (αZ
Λ)k. It can be veri�ed directly that (αZ

Γ)∗ is well-de�ned because
of the boundedness of the ME-coupling and that it is a chain morphism with norm at
most 1

cΩ
. As a consequence the induced map in homology Hn(αZ

Γ) : Hn(Λ, L1(XΓ,Z))→
Hn(Γ, L1(XΛ,Z)) has norm at most 1

cΩ
, as well.

Consider the following commutative diagram:

H`1
n (Λ, L1(XΓ,R))

H`1
n (αR

Γ)
- H`1

n (Γ, L1(XΛ,R))
H`1
n (αR

Λ)
- H`1

n (Λ, L1(XΓ,R))

Hn(Λ, L1(XΓ,R))

ιΛ

6

Hn(αR
Γ)
- Hn(Γ, L1(XΛ,R))

ιΓ

6

Hn(αR
Λ)
- Hn(Λ, L1(XΓ,R))

ιΛ

6

Hn(Λ, L1(XΓ,Z))

jRΛ

6

Hn(αZ
Γ)
- Hn(Γ, L1(XΛ,Z))

jRΓ

6

Hn(αZ
Λ)
- Hn(Λ, L1(XΓ,Z))

ιΓ

6

Hn(Λ,Z)

jΛ

6

Hn(Γ,Z)

jΓ

6

Hn(Λ,Z)

jΛ

6

Hn(N,Z)

cΛ

6

Hn(M,Z)

cΓ

6

Hn(N,Z)

cΛ

6

where the vertical maps are induced by the natural inclusions and cΛ, cΓ are the isomor-
phisms between the homology of an aspherical manifold and the homology of its fun-
damental group. Notice that all vertical maps are norm non-increasing and cΩH

`1
n (αR

Γ),
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1
cΩ
H`1
n (αR

Λ) are exactly the maps involved in the previous theorem, hence they are isome-
tries.
By ergodicity (and Poincaré duality)

Hn(Λ, L1(XΓ,Z)) ∼= H0(Λ, L1(XΓ,Z)) ∼= L1(XΓ,Z)Γ ∼= Z ,

hence there exists m ∈ Z such that

Hn(αR
Γ) ◦ jRΛ ◦ jΛ ◦ cΛ([N ]Z) = m(jRΓ ◦ jΓ ◦ cΓ([M ]Z)) .

Since the simplicial volume of N is positive, by Proposition 1.61 we have that ‖ιΛ ◦ jRΛ ◦
jΛ ◦ cΛ([N ]Z)‖ > 0 and

H`1

n (αR
Γ) ◦ ιΛ ◦ ιRΛ ◦ jΛ ◦ cΛ([N ]Z) 6= 0 .

From the commutativity of the upper left square we obtain that m 6= 0, thus

‖(jRΓ ◦ jΓ ◦ cΓ([M ]Z)‖ ≤ |m|‖jRΓ ◦ jΓ ◦ cΓ([M ]Z)‖

≤
∥∥∥H`1

n (αR
Γ) ◦ jRΛ ◦ jΛ ◦ cΛ([N ]Z)

∥∥∥
≤ 1

cΩ
‖jRΛ ◦ jΛ ◦ cΛ([N ]Z)‖ .

The same argument applied to the right part of the diagram produces the inequalities

‖(jRΓ ◦ jΓ ◦ cΓ([M ]Z)‖ ≤ 1

cΩ
‖jRΛ ◦ jΛ ◦ cΛ([N ]Z)‖ ≤ ‖(jRΓ ◦ jΓ ◦ cΓ([M ]Z)‖,

which imply that m = 1 and Hn(αZ
Γ) ◦ jΛ ◦ cΛ([N ]Z) is an XΛ-parametrised fundamental

cycle. Therefore,

MXΛ = ‖jΓ ◦ cΓ([M ]Z)‖ = ‖Hn(αZ
Γ) ◦ jΛ ◦ cΛ([M ]Z)‖ ≤ 1

cΩ

NXΓ .

The same argument applied to the right part of the diagram gives the opposite inequality.
This implies the thesis as the composition

XΓ → Ω→ Γ/Ω

induces an isometry between Hn(Γ, L1(XΛ,Z)) and Hn(Γ, L1(Γ/Ω,Z)).
2) Assume that the ME-coupling (Ω,m) is mixing. Let (X,mx) be an ergodic standard
Γ-space on which Λ acts trivially. Then (X ×Ω,mx⊗m) is a bounded and ergodic ME-
coupling between Γ and Λ with respect to their diagonal actions. Notice that X × XΓ

and X ×XΛ are bounded, �nite-measure fundamental domains for the actions of Γ and
Λ on (X × Ω). By the previous resultNΓ/(X×Ω)

= cX×Ω

MΛ/(X×Ω)
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where cX×Ω = (mx⊗m)(X×XΛ)
(mx⊗m)(X×XΓ) = cΩ. As a consequence,

N ≤ NΓ/(X×Ω)
= cΩ

MX×Λ/Ω ≤ cΩ

MX
and taking the in�mum over all possible ergodic Γ-spaces X we get

N ≤ cΩ

M
from Proposition 1.52. Repeating the same argument applied to an ergodic standard
Λ-space (Y,my) on which Γ acts trivially, we get the other inequality.

Corollary 1.77. Let n ∈ N and Γ,Λ ⊂ G = Isom(Hn) be uniform lattices. ThenHn/Γ


Covol(Γ)
=

Hn/Λ


Covol(Λ)
.

Proof. Consider the hyperbolic manifolds Hn/Γ and Hn/Λ. We have seen that the group
G endowed with its bi-invariant Haar measure is a mixing and bounded ME-coupling
between Γ and Λ (Remark 1.67). Moreover, cG = Covol(Λ)

Covol(Γ) (Remark 1.71). Therefore, by
the proportionality principle

Hn/Λ
 =

Covol(Λ)

Covol(Γ)

Hn/Γ
 .

Theorem 1.78. Let n ∈ N and let M and N be closed, connected and oriented hyper-
bolic n-manifolds with fundamental groups Γ and Λ, respectively. Let G = Isom+(Hn).
Let S be a set of uniform lattices of G containing one representative for each isometry
class of hyperbolic n-manifolds. The product X =

∏
Λ′∈S G/Λ

′ endowed with the product
probability measure and the translatory action of Γ is a standard Γ-space and

M ≤ MX ≤ Vol(M)

Vol(N)
‖N‖∞Z .

Proof. X is a standard Γ-space because, once the dimension n is �xed, there is only a
countable quantity of distinct isometry classes of hyperbolic n-manifolds. Hence S is
countable and Proposition 1.31 holds.
We know that M = Hn/Γ, N = Hn/Λ and Covol(Γ) = Vol(M), Covol(Λ) = Vol(N).
Let N ′ → N be a �nite covering of N . Let π1(N ′) = Λ′ < Λ with index d. Then

M =
Hn/Γ

 ≤ Hn/Γ
∏Λ′′∈S G/Λ

′′
≤
Hn/Γ

G/Λ′ =
Covol(Γ)

Covol(Λ′)

Hn/Λ′
G/Γ

=
Covol(Γ)

Covol(Λ)

1

[Λ′ : Λ]

N ′G/Γ ≤ Vol(M)

Vol(N)

1

d
‖N ′‖Z

Taking the in�mum over all possible �nite coverings of N we get the thesis.

Theorem 1.79 (Integral foliated simplicial volume for hyperbolic 3-manifolds). Let M
be a closed, connected and oriented hyperbolic 3-manifold. ThenM = ‖M‖
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Proof. Let S be a set of uniform lattices of G = Isom+(Hn) containing one representa-
tive for each isometry class of hyperbolic 3-manifolds. By Theorem 1.24 there exists a
sequence of closed, connected and oriented hyperbolic 3-manifolds (Mn)n∈N such that

lim
n→∞

‖Mn‖∞Z
‖Mn‖

= 1 .

By the previous theorem

‖M‖ ≤
M ≤ M∏Λ∈S G/Λ ≤ Vol(M)

Vol(Mn)
‖Mn‖∞Z .

Taking the limit for n tending to in�nity we get the thesis.



Chapter 2

`2-Betti numbers

A classical invariant of a �nite CW-complex X is its p-th Betti number bp(X), which
is the dimension of the real vector space Hp(X,R), where Hp(X,R) denotes the p-th
singular homology module of X with real coe�cients. Consider a G-covering p : X → X:
if G is in�nite the p-th Betti number of X may be in�nite and hence useless. We can
overcome this problem by considering the reduced homology of X with coe�cients in the
Hilbert space of square summable functions from G to R. In this way, the p-th homology
group will have a structure of a �nite Hilbert G-module and the p-th `2-Betti number
will be de�ned as its Von Neumann dimension. In this chapter we will introduce this
invariant and illustrate its basic properties.

2.1 Von Neumann dimension

In this section we de�ne the Von Neumann dimension, which provides the required con-
cept of dimension in a non-commutative setting.

Let G be a group and R be a ring (usually R = R,Z). We denote with R[G] the set
whose elements are

∑
x∈G r(x)x, where r(x) ∈ R and r(x) 6= 0 only for a �nite number

of x ∈ G. This is a ring with the operations:(∑
x∈G

r(x)x

)
+

(∑
x∈G

s(x)x

)
=
∑
x∈G

(r(x) + s(x))x ;

(∑
x∈G

r(x)x

)
·

∑
y∈G

s(y)y

 =
∑
x∈G

∑
y∈G

r(x)s(y)xy .

We denote with `2(G) the real Hilbert space of square summable functions f : G→ R,
with the scalar product

〈·, ·〉 : `2(G)× `2(G)→ R

〈f, g〉 =
∑
x∈G

f(x)g(x) .

33
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There is a canonical immersion of R-vector spaces R[G] ↪→ `2(G), by considering the
elements of R[G] as square summable functions with �nite support.
With this in mind, we indicate a function f ∈ `2(G) as a formal series f =

∑
x∈G f(x)x,

with f(x) ∈ R and
∑
x∈G f(x)2 <∞ .

De�nition 2.1. We say that M is a left R[G]-module if it is a left module over the ring
R[G] or, equivalently, if it is an R-module endowed with a left action of G.

We can de�ne on `2(G) both a left and a right isometric action of G by setting(∑
x∈G

f(x)x

)
· y =

∑
x∈G

f(xy−1)x .

y ·
(∑
x∈G

f(x)x

)
=
∑
x∈G

f(y−1x)x .

These actions can be extended to `2(G)n by letting G act diagonally. Therefore, `2(G)n

has a structure of R[G]-bimodule.

Remark 2.2. These actions are bounded, i.e. for every c =
∑
x∈G c(x)x ∈ R[G] and for

every f ∈ `2(G) we have

‖f · c‖ ≤ |c|‖f‖ ‖c · f‖ ≤ |c|‖f‖

where |c| =
∑
x∈G |c(x)|.

De�nition 2.3. A Hilbert G-module is a left R[G]-module M endowed with a Hilbert
structure with respect to which G acts via isometries. In addition, we require that M is
G-equivariantly isometric to a G-invariant Hilbert subspace of `2(G)n for some n ∈ N.

Example 2.4. The left translation of G described above endows `2(G) with a structure
of Hilbert G-module.

Remark 2.5. If M is a Hilbert G-module and H < G is of �nite index d, then M has
a structure of Hilbert H-module, as well. Fix a set of representatives {x1, . . . , xd} such
that G/H = {Hx1, . . . ,Hxd}. Then G =

⋃d
i=1Hxi and `

2(G) ∼=⊥di=1 `
2(H) ·xi ∼= `2(H)d

as left H-module. Therefore, if M is G-equivariantly isometric to a G-invariant Hilbert
subspace of `2(G)n, then it is H-equivariant isometric to an H-invariant Hilbert subspace
of `2(H)nd.

We want to de�ne a function dimG : {Hilbert G-modules} → R+ satisfying the
following properties:

• dimGM ≥ 0 and dimGM = 0 i� M = 0;

• if M ∼= N then dimGM = dimGN ;

• if N ⊆M then dimGN ≤ dimGM ;
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• dimG(M ⊕N) = dimGM + dimGN ;

• dimG `
2(G) = 1;

• if G is �nite, then dimGM = 1
|G| dimRM ;

• if H < G has �nite index, then dimGM = 1
[G:H] dimHM .

De�nition 2.6. The Von Neumann algebra N (G) is the algebra of the bounded G-
equivariant operators from `2(G) into `2(G), where `2(G) is considered as a leftG-module.

Remark 2.7. Since the right action of R[G] on `2(G) de�nes a bounded G-equivariant
operator from `2(G) to `2(G), we can consider R[G] as a subalgebra of the Von Neumann
algebra.

Given φ ∈ N (G), we denote with φ∗ ∈ N (G) its adjoint operator, i.e. the unique
operator such that for every f, g ∈ `2(G) the relation 〈φ(f), g〉 = 〈f, φ∗(g)〉 holds. The
adjoint of an element φ ∈ N (G) always exists because it is a bounded operator between
Hilbert spaces. Moreover, φ∗ ∈ N (G) because if φ is G-equivariant, then φ∗ is G-
equivariant, as well.

Example 2.8. The adjoint of the right translation by an element x ∈ G is the right
translation by x−1, which will be indicated as x̄ thereafter. More in general, given
f =

∑
x∈G f(x)x ∈ `2(G) we denote with f̄ the element

∑
x∈G f(x)x−1.

The Kaplansky trace is the map

ρ : R[G]→ R∑
x∈G

r(x)x 7→ r(1)

where 1 ∈ G is the identity.
We want to extend the Kaplansky trace to all elements of N (G).

De�nition 2.9. Let φ ∈ N (G) and 1 ∈ R[G] ⊂ `2(G) be the identity. We de�ne

traceG : N (G)→ R
φ 7→ 〈φ(1), 1〉 .

This is an extention of the Kaplansky trace, because, considering w =
∑
x∈G r(x)x ∈

R[G] as an element of N (G), we have

traceG(w) = 〈1 ·
∑
x∈G

r(x)x, 1〉 = 〈
∑
x∈G

r(x)x, 1〉 = r(1) = ρ(w) .

Remark 2.10. traceG(φ) = traceG(φ∗) since traceG(φ) = 〈φ(1), 1〉 = 〈1, φ∗(1)〉 =
traceG(φ∗).
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Lemma 2.11. Let θ : N (G) → `2(G) be the R-linear map de�ned by φ 7→ φ(1). Then,
θ is injective and satis�es θ(φ∗) = φ(1).

Proof. Let φ ∈ N (G) belong to ker θ. Then φ(1) = 0 and for every x ∈ G we have
φ(x) = xφ(1) = 0. Therefore, φ vanishes on R[G], which is dense in `2(G). Being
bounded, φ is the null map.
Moreover, for every x ∈ G we have

〈φ∗(1), x〉 = 〈1, φ(x)〉 = 〈1, xφ(1)〉 = 〈x̄, φ(1)〉 = 〈φ(1), x̄〉 = 〈φ(1), x〉 ,

thus, by the same density argument used before, θ(φ∗) = φ∗(1) = φ(1).

Corollary 2.12. We can see N (G) as a G-submodule of `2(G).

Lemma 2.13 (Properties of the Von Neumann trace). The Von Neumann trace satis�es
the following properties:

1) the Von Neumann trace is linear;

2) let {φi}i∈I be a directed system of positive operators in N (G) (i.e. 〈φ(x), x〉 > 0 for
every x ∈ `2(G), x 6= 0 or, equivalently, φ = ψ∗ψ for some ψ ∈ N (G)) such that if
i ≤ j then φi ≤ φj. If φi converges weakly to φ, then

traceG(φ) = sup
i∈I

traceG(φi) ;

3) If φ ∈ N (G) is a positive operator, then

traceG(φ) = 0⇔ φ = 0 ;

4) if φ, ψ ∈ N (G) are positive and φ ≤ ψ, then traceG(φ) ≤ traceG(ψ);

5) for every φ, ψ ∈ N (G) we have

traceG(φψ) = traceG(ψφ) .

Proof. 1) It is clear by de�nition.
2) We recall that φi converges weakly to φ if and only if for every x, y ∈ `2(G) we have
|〈φi(x), y〉| → |〈φ(x), y〉|. We start proving that φi ≤ φ for every i ∈ I. Let x ∈ `2(G) be
a �xed element and i ∈ I be a �xed index. Given ε > 0, there exists an index i ≤ i(ε)
such that

〈φi(x), x〉 − ε ≤ 〈φi(ε)(x), x〉 − ε ≤ 〈φ(x), x〉 .

It follows that traceG(φ) ≥ supi∈I traceG(φi). By weakly convergence, for every ε > 0
there exists an index i(ε) ∈ I such that 〈φ(1), 1〉 ≤ 〈φi(ε)(1), 1〉+ ε. Therefore,

traceG(φ) ≤ traceG(φi(ε)) + ε ≤ sup
i∈I

traceG(φi) + ε .
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3) By polar decomposition, there exists a self-adjoint operator h ∈ N (G) such that
φ = h∗ ◦ h. Therefore,

traceG(φ) = 〈φ(1), 1〉 = 〈h(1), h(1)〉 = ‖h(1)‖2

is null if and only if h(1) = 0. Since h is G-equivariant and linear φ vanishes on R[G],
which is dense in `2(G). Being bounded, it is the null map, whence φ = 0.
4) By de�nition, ψ − φ is a positive operator, hence its trace is positive. The result
follows by linearity.
5) Using the previous lemma, we have

traceG(φψ) = 〈φ(ψ(1)), 1〉 = 〈ψ(1), φ∗(1)〉 = 〈ψ(1), φ(1)〉
= 〈ψ(1), φ(1)〉 = 〈ψ∗(1), φ(1)〉 = 〈1, ψ(φ(1))〉 = traceG(ψφ).

We denote with Mn(N (G)) the R-algebra of G-equivariant bounded operators from
`2(G)n into `2(G)n. An element F ∈ Mn(N (G)) is uniquely determined by a matrix
(Fi,j)i,j=1,...,n where Fi,j ∈ N (G). We extend the trace operator to an element F ∈
Mn(N (G)), by de�ning

traceG(F ) =
n∑
i=1

traceG(Fi,i) .

The following properties are straightforward consequences of the previous lemmas:

• traceG(F ) = traceG(F ∗);

• traceG(F1 ◦ F2) = traceG(F2 ◦ F1)

Lemma 2.14. Suppose F ∈Mn(N (G)) is self-adjoint and idempotent, then

traceG(F ) =
n∑

i,j=1

‖Fi,j(1)‖2 .

In particular, traceG(F ) ≥ 0 and traceG(F ) = 0 if and only if F is identically null.

Proof. Since F is self-adjoint, Fi,j = F ∗j,i, hence

traceG(F ) =
n∑
j=1

〈Fj,j(1), 1〉 =
n∑
j=1

〈F 2
j,j(1), 1〉

=
n∑

i,j=1

〈Fj,iFi,j(1), 1〉 =
n∑

i,j=1

〈Fi,j(1), Fi,j(1)〉 =
n∑

i,j=1

‖Fi,j(1)‖2 .

Let V ⊂ `2(G)n be a G-invariant Hilbert subspace of `2(G)n and let πV be the
orthogonal projection onto V . Since for every T ∈ `2(G)n and for every x ∈ G we have

xT = πV (xT )︸ ︷︷ ︸
∈ V

+ (xT − πV (xT ))︸ ︷︷ ︸
∈ V ⊥

= xπV (T )︸ ︷︷ ︸
∈ V

+ (xT − xπV (T ))︸ ︷︷ ︸
∈ V ⊥

,

πV is G-equivariant and hence is a element of Mn(N (G)).
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De�nition 2.15. We de�ne the Von Neumann dimension of a G-invariant Hilbert sub-
space V ⊂ `2(G)n as

dimG V = traceG(πV ) .

Remark 2.16. Since πV is self-adjoint and idempotent, dimG V ≥ 0 and dimG V = 0 if
and only if V = 0.

Example 2.17. If V = `2(G), the orthogonal projection onto V is just the identity.
Therefore dimG `

2(G) = traceG(id) = 〈1, 1〉 = 1.

In the general case, let M be a Hilbert G-module. By de�nition there exists a G-
equivariant isometry α : M → V ⊂ `2(G)n. We de�ne

dimGM = dimG V .

Wemust verify that this de�nition is independent of the choice of the isometry α. Suppose
that β : M →W ⊂ `2(G)m is another G-equivariant isometry. Without loss of generality
we can suppose that m = n + k ≥ n. Let V ′ be the image of the inclusion of V
into `2(G)m = `2(G)n ⊕ `2(G)k. It is obvious that dimG V = dimG V

′, hence we can
suppose m = n. De�ne h = β ◦ α−1 : V → W and extend it to an element H ∈
Mn(N (G)) by putting H|V = h and H|

V⊥
= 0. By construction H∗H : `2(G)→ V is the

orthogonal projection onto V and HH∗ : `2(G) → W is the orthogonal projection onto
W . Therefore, we have

dimG V = traceG(H∗H) = traceG(HH∗) = dimGW .

Remark 2.18. Let G = {1} be the trivial group and M be a Hilbert G-module. We
want to calculate the Von Neumann dimension of M in this simple situation. Since G
acts trivially, M is just an R-vector space. We can suppose M = Rn = `2(G)n. Then
the orthogonal projection from `2(G)n to M is the identity. Therefore

dimGM = traceG(id`2(G)n) =
n∑
k=1

〈id`2(G)n(1), 1〉 = n = dimRM

It is easy to verify from the very de�nition that dimG satis�es the following properties:

• dimG(M ⊕N) = dimGM + dimGN ;

• if M ∼= N , then dimGM = dimGN ;

• if N ⊆M , then dimGN ≤ dimGM ;

Let us verify the other properties we pointed out at the beginning of the section.

Lemma 2.19. Let H < G be a subgroup of G of �nite index and M a Hilbert G-module.
Then dimGM = 1

[G:H] dimHM .



2.1. VON NEUMANN DIMENSION 39

Proof. Let d = [G : H]. By Remark 2.5, there exist elements x1, . . . , xd such that
G =

⋃d
i=1Hxi and `

2(G) =⊥ni=1 `
2(H) · xi. Therefore, for every element F ∈ N (G) we

have

traceH(F ) =
d∑
i=1

〈F (xi), xi〉 =
d∑
i=1

〈F (1), 1〉 = d · traceG(F ) .

The same result holds for F ∈Mn(N (G)), thus dimHM = ddimGM .

Corollary 2.20. If G is �nite andM is a Hilbert G-module, then dimGM = 1
|G| dimRM .

Proof. Since G is �nite, we can take H = {1} as subgroup of G with �nite index. By
Remark 2.18 and Lemma 2.19 we have

dimRM = dimHM = [G : H] dimGM = |G| dimGM .

Let V1 and V2 be Hilbert spaces. Let V1 ⊗R V2 be the tensor product of V1 and V2 in
the category of vector spaces, i.e the set of �nite linear combinations of the elementary
tensors v1 ⊗ v2, where v1 ∈ V1 and v2 ∈ V2. This vector space is naturally endowed with
the scalar product determined by the relation

〈〈v1 ⊗ v2, w1 ⊗ w2〉〉 = 〈v1, w1〉V1〈v2, w2〉V2 .

The tensor product of the Hilbert spaces V1 and V2, denoted by V1⊗̄V2, is the completion
of V1 ⊗ V2 with respect to the metric induced by the scalar product 〈〈·, ·〉〉.

Proposition 2.21. Let M1 be a Hilbert G-module and M2 be a Hilbert H-module. Then
the tensor product M1⊗̄RM2 is a Hilbert (G×H)-module and

dim(G×H)(M1⊗̄RM2) = dimGM1 · dimHM2 .

Proof. Obviously `2(G)⊗̄R`
2(H) is isometrically (G × H)-equivariantly isomorphic to

`2(G×H). HenceM1⊗̄RM2 is a Hilbert (G×H)-module. Let f1 ∈ N (G) and f2 ∈ N (H),
then f1 ⊗ f2 ∈ N (G×H) and

traceG×H(f1 ⊗ f2) = 〈〈(f1 ⊗ f2)(1G ⊗ 1H), 1G ⊗ 1H〉〉
= 〈〈f1(1G)⊗ f2(1H), 1G ⊗ 1H〉〉
= 〈f1(1G), 1G〉 · 〈f2(1H), 1H〉
= traceG(f1) · traceH(f2) .

A similar formula holds when f1 ∈Mn(N (G)) and f2 ∈Mn(N (H)) and the claim follows
by applying it to the orthogonal projection onto M1 and M2.
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2.2 `2-chain complexes and `2-Betti numbers

We are going to apply the theory of Von Neumann dimension to the Hilbert G-modules
resulting from a G-equivariant homology theory of CW-complexes. This will lead to the
de�nition of `2-Betti numbers as the Von Neumann dimension of the reduced `2-homology
groups.

De�nition 2.22. A chain complex of Hilbert G-modules

· · · → Vi+1
di+1−−−→ Vi

di−→ Vi−1 → . . .

is said to be an `2-chain complex if every homomorphism di is bounded andG-equivariant.
The reduced homology of the `2-chain complex (V∗, d∗) is de�ned as

redHi(V∗) = Ker(di)/Im(di+1) .

The chain complex (V∗, d∗) is weak-exact if redHi(V∗) = 0.

De�nition 2.23. Let (V∗, d∗) and (W∗, d̃∗) be two `2-chain complexes. A morphism
φ∗ : V∗ → W∗ is a family of bounded and G-equivariant homomorphisms φi : Vi → Wi

such that φi ◦ di+1 = d̃i+1 ◦ φi+1 for every i.
Two morphisms φ∗, ψ∗ : V∗ → W∗ are `2-homotopic if there exists a family of G-
equivariant and bounded operators Ki : Vi → Wi+1 such that Ki ◦ di+1 ± d̃i+1 ◦ Ki =
φi+1 − ψi+1 for every i.

Remark 2.24. A morphism between `2-chain complexes φ∗ : V∗ → W∗ induces a
bounded and G-equivariant map φ∗ :red H∗(V∗) →red H∗(W∗), which depends only on
the `2-homotopy class of φ∗.

De�nition 2.25. A map f : M1 →M2 between Hilbert G-modules is

• a weak isomorphism, if it is injective, bounded, G-equivariant and with dense image;

• a strong isomorphism, if it is a G-equivariant bijective isometry.

Lemma 2.26. If there exists a weak isomorphism between two G-modules M1 and M2,
then there exists a strong one, as well.

Proof. Let f : M1 → M2 be a weak isomorphism. The operator f∗ ◦ f : M1 → M1 is
positive, as for every v ∈ M1, v 6= 0, we have 〈f∗f(v), v〉 = 〈f(v), f(v)〉 > 0, and with
dense image, as w ∈M1 is orthogonal to Im(f∗ ◦ f) if and only if f(w) is orthogonal to
Im(f), which is dense. For the polar decomposition there exists a self-adjoint operator
g : M1 → M2 such that g2 = f∗ ◦ f and Im(g2) ⊂ Im(g) is dense. De�ne h = f ◦ g−1 :
Im(g)→M2. Notice that Im(h) = Im(f) is dense. In addition, ∀x, y ∈ Im(g) we have

〈h(x), h(y)〉 = 〈f(g−1(x)), f(g−1(y))〉 = 〈f∗(f(g−1(x))), g−1(y)〉
= 〈g2(g−1(x), g−1(y)〉 = 〈g(g−1(x)), g(g−1(y))〉 = 〈x, y〉 .
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Therefore, h : Im(g) → Im(f) is an isometry. Since Im(g) ⊂ M1 and Im(f) ⊂ M2 are
dense, h can be extended in a unique way to a bijective isometry h̃ : M1 →M2. Since f
and f∗ are G-equivariant, g is G-equivariant too and so is h. It follows that h̃ is a strong
isomorphism of Hilbert G-modules.

If V is a Hilbert G-module and W ⊂ V is a G-equivariant closed subspace, then the
quotient V/W has a natural structure of Hilbert G-module, where the norm is given by

‖[v]‖ = inf{‖z‖ | [z] = [v]}.

Corollary 2.27. Let φ : M1 →M2 be a bounded G-equivariant operator between Hilbert
G-modules. Then we have the following strong isomorphisms:

(Ker(φ))⊥ ∼= M1/Ker(φ) ∼= Im(φ) .

Lemma 2.28. Let 0→ U → V
α−→W → 0 be a weak-exact `2-chain complex. Then

dimG V = dimG U + dimGW .

Proof. It is easy to verify that V ∼= Ker(α)⊕Ker(α)⊥ as Hilbert G-modules and, by the
previous corollary, Ker(α)⊥ ∼= Im(α). Therefore,

dimG V = dimGKer(α) + dimG Im(α) = dimG U + dimG Im(α)

= dimG U + dimGW .

Corollary 2.29. Let 0 → Vn
dn−→ Vn−1

dn−1−−−→ · · · → . . .
d1−→ V0 → 0 be an `2(G)-chain

complex. Then
∑n
i=0(−1)i dimG Vi =

∑n
i=0(−1)i dimred

G Hi(V∗).

Proof. LetKi = Ker(di) and Ji = Im(di+1). We have the following weak-exact complexes
of Hilbert G-modules:

0→ Ki → Vi → Ji−1 → 0 0→ Ji → Ki →red Hi(V∗)→ 0

Using repeatedly the relations of the previous lemma, we are done.

2.2.1 `2-homology of CW-complexes

We are going to produce the fundamental example of `2(G)-chain complex. Let Y be
a connected CW-complex and G be a group acting on Y via permutations of the cells.
Suppose X = Y/G is a compact CW-complex. We denote with Ki(Y ) the free Z module
generated by the i-dimensional cells of Y : since the action of G is cellular, G acts on
Ki(Y ) giving it a structure of a left Z[G]-module, generated by the i-dimensional cells
of X. We de�ne Ci(Y, `2(G)) = `2(G)⊗Z[G] Ki(Y ), where `2(G) is considered as a right
Z[G]-module (i.e. G acts via right translations) and Ki(Y ) has the structure of left Z[G]-
module described above. The resulting tensor product is a left R[G]-module: let τ̄µi be a
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representative i-cell of each G-orbit for µ = 1, . . . , αi, where αi = rankZKi(X), then the
action is determined by:

R[G]× Ci(Y, `2(G))→ Ci(Y, `
2(G))(

agg,
k∑

µ=1

fµ ⊗ τ̄µi
)
7→

k∑
µ=1

agfµ ⊗ gτ̄µi .

We can endow Ci(Y, `
2(G)) with a Hilbert structure: we declare that

{x⊗ τ̄µi | x ∈ G, µ ∈ {1, . . . αi}}

is a complete orthonormal basis for Ci(Y, `2(G)).

Remark 2.30. It follows immediately that the map

(`2(G))αi → Ci(Y )

(f1, . . . , fαi) 7→
αi∑
µ=1

fµ ⊗ τ̄µi

is a G-equivariant isometry, i.e. Ci(Y, `2(G)) is a Hilbert G-module.

Denoting with di the usual boundary operator of the cellular chain complex, we de�ne
the `2-boundary operator

id`2 ⊗ di : Ci(Y, `
2(G))→ Ci−1(Y, `2(G))

f ⊗ σ 7→ f ⊗ di(σ) .

It is evidently G-equivariant and the following lemma ensures that it is bounded.

Lemma 2.31. Let φ : (R[G])n → (R[G])m be a G-equivariant morphism between R[G]-
modules. Then the unique operator φ̃ : `2(G)n → `2(G)m which concides with φ on
(R[G])n is bounded.

Proof. Let (φi,j) be the elements of a matrix representing φ. Notice that

HomG(R[G],R[G]) ∼= R[G]

by the map that associates to a G-morphism the value it takes on the identity. Therefore,
each φi,j can be thought of as an element of R[G] acting on R[G] by right translation
and it can be written as φi,j =

∑
x∈G ci,j(x)x. Set |φi,j | =

∑
x∈G |ci,j(x)|. It is easy to

veri�y that ‖f · φi,j‖ ≤ |φi,j |‖f‖. Therefore

‖φ̃(f1, . . . , fn)‖2 =
∑
j

∥∥∥∑
i

fiφi,j
∥∥∥2
≤
∑
i,j

|φi,j |2‖fi‖2 ≤
(∑
i,j

|φi,j |2
)
‖(f1, . . . , fn)‖2 .
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The reduced homology of the `2-chain complex (Ci(Y, `
2(G)), id`2 ⊗ di) de�nes the

`2-homology groups of Y :

redHi(Y, `
2(G)) := Ker(id`2 ⊗ di)/Im(id`2 ⊗ di+1)

The particular case in which we are interested in is when X is a compact connected
CW-complex, G is its fundamental group and Y is its universal covering.

There is another possible de�nition of the reduced `2-homology, which will be useful
later. Let δi : Ci(Y, `

2(G)) → Ci+1(Y, `2(G)) be the adjoint operator of di+1. We de�ne
the following G-equivariant closed subspaces of Ci(Y, `2(G)):

Zi(Y, `
2(G)) = Ker(di) Zi(Y, `2(G)) = Ker(δi)

Hi(Y, `2(G)) = Zi(Y, `
2(G)) ∩ Zi(Y, `2(G)) .

We can interpret Hi(Y, `2(G)) as the kernel of a bounded self-adjoint G-equivariant map:
if we de�ne the laplacian ∆i = di+1 ◦ δi + δi−1 ◦ di : Ci(Y, `

2(G)) → Ci(Y, `
2(G)), then

Hi(Y, `2(G)) = Ker(∆i). Namely, if c ∈ Ker(∆i), then 〈δi−1 ◦ di(c), di+1 ◦ δi(c)〉 =
〈δi ◦ δi−1 ◦ di(c), δi(c)〉 = 0, so

0 = ‖∆i(c)‖2 = ‖δi−1 ◦ di(c)‖2 + ‖di+1 ◦ δi(c)‖2

which implies that di(c) ∈ Ker(δi−1) and δi(c) ∈ Ker(di+1). Therefore,

0 = 〈δi−1 ◦ di(c), c〉+ 〈di+1 ◦ δi(c), c〉 = ‖di(c)‖2 + ‖δi(c)‖2

which gives the thesis.
We denote by Bi(Y, `2(G)) and Bi(Y, `2(G)) the images of di+1 and δi−1 respectively:
they are not necessarily closed.
Recall this general result of functional analysis:

Lemma 2.32. Let T : H → H be a bounded operator between Hilbert spaces and T ∗ be
its adjoint. Then H = Ker(T ) ⊥ Im(T ∗) = Ker(T ∗) ⊥ Im(T ).

Therefore, we have the following orthogonal decompositions:

Ci(Y, `
2(G)) ∼= Bi(Y, `2(G)) ⊥ Zi(Y, `2(G))

∼= Bi(Y, `2(G)) ⊥ Zi(Y, `2(G))

∼= Bi(Y, `2(G)) ⊥ Bi(Y, `2(G)) ⊥ Hi(Y, `2(G))

The latter isomorphism follows from the fact that Hi(Y, `2(G)) = Ker(∆i) = Zi(Y, `
2(G))∩

Zi(Y, `2(G)) and, by the previous lemma, Im(∆i) ∼= (Ker(∆i))
⊥ = (Ker(di)∩Ker(δi))⊥ =

Ker(di)⊥ ⊕Ker(δi)⊥ ∼= Im(δi−1) ⊥ Im(di+1).
In particular Zi(Y, `2(G)) ∼= Bi(Y, `2(G)) ⊥ Hi(Y, `2(G)) and the orthogonal projec-
tion Zi(Y, `

2(G)) → Hi(Y, `2(G)) induces an isomorphism between Hi(Y, `2(G)) and
redHi(Y, `

2(G)). Similarly, if we de�ne

redH i(Y, `2(G)) = Zi(Y, `2(G))/Bi(Y, `2(G)) ,
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the orthogonal projection Zi(Y, `2(G))→ Hi(Y, `2(G)) induces an isomorphism between
Hi(Y, `2(G)) and redH i(Y, `2(G)).
Moreover, the map δi|

(Zi)
⊥ : (Zi(Y, `2(G)))⊥ → Bi+1(Y, `2(G)) induces an isomorphism

between Bi(Y, `2(G)) and Bi+1(Y, `2(G)).

Proposition 2.33. redH∗ de�nes a covariant functor from the category of CW-complexes
with a cocompact action of a group G and G-homotopy classes of cellular maps to the
category of Hilbert G-modules with bounded G-equivariant maps.

Proof. Let f : Y → Z be a cellular G-equivariant map between CW-complexes. It in-
duces a morphism f∗ : K∗(Y )→ K∗(Z), whose extension f̃∗ : C∗(Y, `

2(G))→ C∗(Z, `
2(G))

is bounded and G-equivariant. By continuity, fi(Bi+1(Y, `2(G))) = Bi+1(Z, `2(G)), so f
induces a well-de�ned map redHi(f̃) :red Hi(Y, `

2(G))→red Hi(Z, `
2(G)).

Moreover, if g : Y → Z is G-homotopic to f via a cellular homotopy, we know that
f∗ and g∗ are algebraically homotopic, i.e. there exists a family of G-equivariant maps
Ki : Ki(Y ) → Ki+1(Z) such that Ki ◦ dYi+1 ± dZi+1 ◦Ki = fi+1 − gi+1 for every i. Their
extensions de�ne a bounded G-equivariant homotopy between f̃∗ and g̃∗. Therefore
redHi(f̃) =red Hi(g̃).

Remark 2.34. We will see (Theorem 3.22) that `2-Betti numbers can be computed via
singular homology, as well. This will imply that they are independent of the cellular
structure. Moreover, they are homotopy invariants, where the homotopy needn't be
cellular.

Let us now calculate explicitly redH0(Y, `2(G)). We need the following lemma:

Lemma 2.35. If G is an in�nite group, then the only G-invariant element of `2(G)n is
the trivial one.

Proof. Set F = (f1, . . . , fn) ∈ `2(G)n. Since F is G-invariant i� every fi is G-invariant,
it is su�cient to prove the thesis when n = 1. If

∑
x∈G f(x)x ∈ `2(G) is G-invariant,

then f(x) does not depend on x. On the other hand, by de�nition,
∑
x∈G f(x)2 < ∞.

Therefore, f(x) = 0 for every x ∈ G.

Proposition 2.36. Let Y be a connected CW-complex endowed with a cellular cocompact
action of an in�nite group G. Then

redH0(Y, `2(G)) = 0 .

Proof. By de�nition redH0(Y,G) = C0(Y, `2(G))/Im(d1) ∼= Im(d1)⊥. We want to show
that Im(d1)⊥ ⊆ C0(Y, `2(G))G, the submodule of G-invariant `2-chains.
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If
∑α0
µ=1 fµ ⊗ τ̄

µ
0 ∈ Im(d1)⊥, then ∀ g, x ∈ G and ∀ β ∈ {1, . . . , α0} we have

0 =
α0∑
µ=1

〈fµ ⊗ τ̄µ0 , x⊗ (1− g−1)τ̄β0 〉

=
〈 α0∑
µ=1

fµ ⊗ τ̄µ0 , x · (1− g
−1)⊗ τ̄β0 〉

=
〈 α0∑
µ=1

fµ · (1− g)⊗ τ̄µ0 , x⊗ τ̄
β
0 〉

= 〈fβ · (1− g), x〉 = fβ · (1− g)(x) = fβ(x)− (fβ · g)(x) ,

which implies that
∑α0
µ=1 fµ ⊗ τ̄

µ
0 is G-invariant.

As a consequence of the previous lemma, redH0(Y, `2(G)) ⊆ C0(Y, `2(G))G = {0}.

Example 2.37. Let Y = R be endowed with the action of Z by translations. It is well
known that X = Y/G = S1 has a cellular structure with only one 0-cell e0 and one 1-cell
e1. We obtain the `2-chain complex

0→ `2(Z)
d1−→ `2(Z)→ 0 .

If x ∈ Z is a generator, then we can write an element f ∈ `2(Z) as f =
∑
n∈Z anx

n, where
an are real numbers. With this identi�cation

d1(f) = (1− x)
∑
n∈Z

anx
n .

It is easy to verify that d1 is injective and Im(d1) is dense. Therefore,

redH1(R, `2(Z)) = 0 and redH0(R, `2(Z)) = 0 .

2.2.2 `2-Betti numbers

Let Y be a connected CW-complex endowed with a free, cellular and cocompact action
of a group G.

De�nition 2.38. The i-th `2-Betti number of Y with respect to G is

b
(2)
i (Y,G) = dimred

G Hi(Y, `
2(G)) .

We are particularly interested in the case where Y is the universal covering of a �nite
CW-complex X and G = π1(X). In this situation we set b(2)

i (Y,G) := b
(2)
i (X).

The properties of the Von Neumann dimension give us some information on the `2-Betti
numbers of X, which are summarised in the following propositions:

Proposition 2.39. Let X be a �nite n-dimensional CW-complex with fundamental group
G. Let αi be the number of its i-cells and Y be its universal covering.
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(1) b
(2)
i (X) ≤ αi;

(2) if X̃ is an m-sheet covering of X, then b
(2)
i (X̃) = m · b(2)

i (X);

(3) χ(X) =
∑n
i=0(−1)ib

(2)
i (X), where χ(X) is the Euler characteristic of X;

(4)
∑k
i=0(−1)k−iαi ≥

∑k
i=0(−1)k−ib

(2)
i (X);

(5) if G is in�nite, then b
(2)
0 (X) = 0;

(6) if G is �nite, then b
(2)
i (X) = 1

|G|bi(Y ).

Proof. (1) Since Ker(d̃i) ⊂ Ci(Y, `2(G)), we have dimG(Ker(d̃i)) ≤ dimGCi(Y, `
2(G)) =

αi, because Ci(Y, `2(G)) ∼= (`2(G))αi . The additivity of the Von Neumann dimension
on the weak-exact complex (Lemma 2.28) applied to

0→ Im(d̃i+1)→ Ker(d̃i)→red Hi(Y, `
2(G))→ 0

implies that b(2)
i (X) ≤ dimGKer(d̃i) ≤ αi.

(2) Let H be a subgroup of G associated to the covering X̃, so that X̃ = Y/H. H has
index m in G. Therefore,

b
(2)
i (X̃) = dimred

H Hi(Y, `
2(G)) = [G : H] dimred

G Hi(Y, `
2(G)) = m · b(2)

i (X) .

(3) It follows from Corollary 2.29 applied to the cellular `2-chain complex of Y .

(4) Recalling the orthogonal decomposition Ci(Y, `2(G)) = Bi(Y, `2(G)) ⊥ Bi(Y, `2(G)) ⊥
Hi(Y, `2(G)) and the isomorphism Bi(Y, `

2(G)) ∼= Bi+1(Y, `2(G)), we have

k∑
i=0

(−1)k−iαi −
k∑
i=0

(−1)k−iβi(X) =
k∑
i=0

(−1)k−i dimG[Bi(Y, `
2(G)) ⊥ Bi(Y, `2(G))]

=
k∑
i=0

(−1)k−i dimG[Bi(Y, `
2(G))⊕Bi−1(Y, `2(G))]

=
k∑
i=0

(−1)k−i[dimGBi(Y, `
2(G)) + dimGBi−1(Y, `2(G))]

= dimGBk(Y, `
2(G)) ≥ 0 .

(5) It follows directly from Proposition 2.36.

(6) From the properties of the Von Neumann dimension

b
(2)
i (X) = dimred

G Hi(Y, `
2(G)) =

1

|G|
dimRHi(Y ) =

1

|G|
bi(Y ) .
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Proposition 2.40 (Künneth formula). Let X and Y be �nite CW-complexes endowed
with free cellular actions of the groups G and H respectively. Then X × Y is a �nite
CW-complex with a G×H free cellular action and

b
(2)
i (X × Y,G×H) =

∑
p+q=i

b(2)
p (X,G)b(2)

q (Y,H) .

Proof. Using the cross product, there is a Z[G × H]-isomorphism between the cellular
complexes K∗(X)⊗ZK∗(Y ) and K∗(X×Y ). It induces an isomorphism between the `2-
chain complexes C∗(X, `2(G))⊗̄RC∗(Y, `

2(H)) and C∗(X × Y, `2(G×H)). The assertion
follows from Proposition 2.21.

We are going to prove a Poincaré Duality formula for `2-Betti numbers: in Chapter
3 we will give an alternative de�nition of `2-Betti numbers, which will imply that they
are indipendent of the cellular structure (Theorem 3.22). Therefore, we will not describe
any particular cellular structure on the manifold involved in the next proposition.

Proposition 2.41 (Poincaré Duality). Let M be an n-manifold without boundary en-
dowed with a free, proper and cocompact action of a group G, such that M and M/G are
orientable. Then

b
(2)
i (M,G) = b

(2)
n−i(M,G) .

Proof. It is possible to de�ne a suitable cap product on the cellular chain complex ([20],
Theorem 2.1)

∩[M/G] : Kn−∗(M)→ K∗(M) ,

which induces a homotopy equivalence between the `2-chain complexes Cn−∗(M, `2(G))
and C∗(M, `2(G)). The assertion follows because

dimGHi(C
n−∗(M, `2(G))) = dimG Hn−i(M, `2(G)) = b

(2)
n−i(M,G) .

Example 2.42. We give the values of the `2-Betti numbers for all compact connected
orientable 1- and 2-manifolds. Due to Theorem 3.22, `2-Betti numbers are independent
of the cellular structure and they are homotopy invariants. Thus, we will not introduce
an explicit cellular structure on 1- and 2-manifolds and we will use homotopy arguments
to calculate `2-Betti numbers.
In dimension 1 there are only S1 and the unit interval I. Since the fundamental group
of S1 is in�nite and the euler characteristic is zero, we have b(2)

i (S1) = 0 for all i ≥ 0. As
I is contractible, the `2-Betti numbers of I concide with the classical ones.
Let F dg be the orientable closed surface of genus g with d discs removed. Obviously,

b
(2)
i (F dg ) = 0 for i ≥ 3. If g = 0 and d = 0, 1, F dg is simply connected, hence the `2-
Betti numbers coincide with the classical ones. If d > 0, F dg is homotopy equivalent to

a bouquet of 2g + d− 1 circles, hence b(2)
2 (F dg ) = 0. Moreover, b(2)

0 (F dg ) = 0 because the

fundamental group is in�nite and b(2)
1 (F dg ) = d + 2(g − 1) is the opposite of the Euler

characteristic (Proposition 2.39). In the closed case with g > 0, the 0-th `2 Betti number
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is zero, because the fundamental group is in�nite. By Poincaré duality, the second `2-
Betti-number vanishes, as well. By Proposition 2.39, the �rst `2-Betti number must
coincide with the opposite of the Euler characteristic. To sum up,

b
(2)
0 (F dg ) =

{
1 if g = 0 d = 0, 1

0 otherwise

b
(2)
1 (F dg ) =

{
0 if g = 0 d = 0, 1

d+ 2(g − 1) otherwise

b
(2)
2 (F dg ) =

{
1 if g = 0 d = 0

0 otherwise



Chapter 3

A vanishing result for the `2-Betti
numbers

A conjecture by Gromov suggests a connection between the vanishing of the simplicial
volume of a closed, connected, oriented and aspherical n-manifoldM and the vanishing of
its `2-Betti numbers. More precisely, ifM is a closed, connected, oriented and aspherical
manifold with ‖M‖ = 0, then b(2)

k (M) = 0 for every k ≥ 0. The conjecture is trivial in
dimension 2 and it has been proved in dimension 3. On the other hand, little is known for
n ≥ 4. An important step in this �eld has been made by Schmidt, who proved (in [17])

that if M is a closed, connected and oriented manifold, then b(2)
k (M) ≤

(n+1
k

)M. In
order to explain this result, we will introduce a particular Von Neumann algebra related
to the orbit equivalence relation of the fundamental group acting on the universal covering
and study some algebraic properties of modules over Von Neumann algebras.

3.1 Dimension theory for modules over a Von Neumann al-

gebra

In Section 2.1 we de�ned the notion of dimension for Hilbert G-modules, which are
particular examples of �nitely generated modules over a Von Neumann algebra (in that
case N (G)). In this section we generalise the theory so that we can deal with not
necessarily �nitely generated modules over an arbitrary Von Neumann algebra. The
construction is purely algebraic and can be applied to every ring.

De�nition 3.1. Given a (real) Hilbert space H, we endow the space of linear and
bounded operators B(H,H) of H into itself with the topology generated by the semi-
norms ηx,y(f) = 〈f(x), y〉H . A Von Neumann algebra N is a closed ∗-subalgebra of
B(H,H) containing the identity. The involution * assigns to an element f ∈ N its
adjoint f∗ ∈ N .

De�nition 3.2. Let N be a Von Neumann algebra. A �nite trace on N is a linear map
traceN : N → R satisfying the following properties:

49
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i) traceN (ab) = traceN (ba);

ii) if a ∈ N is positive (i.e. 〈a(x), x〉H ≥ 0 for every x ∈ H) then trace(a) = 0 if and
only if a = 0;

iii) let {ai}i∈I ∈ N be a directed family of positive operators such that if i < j, then
ai < aj . If {ai}i∈I converges to a ∈ N , then

traceN (a) = sup
i∈I
{traceN (ai)} .

A Von Neumann algebra is �nite if it admits a �nite trace.

Remark 3.3. The same theory can be developed for complex Hilbert spaces. In that
case a �nite trace is required to be C-linear. The extension to complex numbers is useful
to prove that traceN (x∗y) = traceN (y∗x) for every x, y ∈ H: namely, by linearity and
the relation

4x∗y = (y + x)∗(y + x)− (y − x)∗(y − x) + i(y + ix)∗(y + ix)− i(y − ix)∗(y − ix) ,

it is su�cient to show that traceN (x∗x) = traceN (xx∗) for every x ∈ H. By polar
decomposition, x = sq where s is self-adjoint and q∗q = Id. Therefore,

traceN (x∗x) = traceN (q∗s2q) = traceN (s2) = traceN (xx∗) .

The trace de�ned in Section 2.1 satis�es these properties (Proposition 2.13), so the
Von Neumann algebra N (G) is �nite. Actually, it can be proved that every �nite Von
Neumann algebra is of this form:

Theorem 3.4. Let N be a �nite Von Neumann algebra. Let `2(N ) be the completion of
N with respect to the metric induced by the scalar product 〈x, y〉 = traceN (x∗y). Then
`2(N ) is a left N -module on which N acts by left translations. Moreover, the map

N → B(`2(N ), `2(N ))N

assigning to an element a ∈ N the right moltiplication by a is an isometric homomor-
phism.

The �rst step to generalise the dimension theory introduced in Section 2.1 consists in
replacing the Hilbert structure of a G-module with a purely algebraic property. We will
show that the Hilbert G-modules introduced in De�nition 2.3 correspond to the �nitely
generated projective N (G)-modules.
Let us begin with free (hence projective) �nitely generated N (G)-modules. We de�ne a
correspondence τ as follows:

• τ(N (G)n) = `2(G)n;
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• given an N (G)-homomorphism, i.e. a linear N (G)-equivariant map, f : N (G)m →
N (G)n, choose a matrix A ∈ M(m,n,N (G)) such that f(x) = xA for every x ∈
N (G)m. We de�ne

τ(f) : `2(G)m → `2(G)n

y 7→ ((At)∗yt)t .

We sketch brie�y how this correspondence can be extended to every �nitely generated
projective N (G)-module.

De�nition 3.5. Let P be a �nitely generated projective N (G)-module. An inner product
on P is a map µ : P × P → N (G) satisfying the following properties

i µ is N (G)-linear in the �rst variable;

ii µ(x, y) = µ(y, x)∗ for every x, y ∈ P ;

iii µ(x, x) is positive and µ(x, x) = 0 if and only if x = 0;

iv the map µ̄ : P → HomN (G)(P,N (G)) given by µ̄(x)(y) = µ(x, y) is bijective.

The following result holds:

Proposition 3.6. Every �nitely generated projective N (G)-module admits an inner prod-
uct. Moreover, two �nitely generated projective N (G)-modules endowed with an inner
product are isometrically isomorphic if and only if they are N (G)-isomorphic.

Example 3.7. The standard inner product µst on the free N (G)-module N (G)n is
de�ned as

µst : N (G)n × N (G)n → N (G)n

(x, y) 7→
n∑
i=1

xiy
∗
i

Given two �nitely generated projective N (G)-modules endowed with inner products
(P0, µ0) and (P1, µ1), we can de�ne an involution

HomN (G)(P0, P1)→ HomN (G)(P1, P0)

f 7→ f∗

where f∗ is the unique homomorphism such that µ1(f(x), y) = µ0(x, f∗(y)) for every
x ∈ P0 and y ∈ P1.

Given a �nitely generated projective N (G)-module P endowed with an inner product
µ, we can de�ne on P a pre-Hilbert structure by setting

P × P → R
(x, y) 7→ traceN (G)(µ(x, y))

We denote with τ(P, µ) the associated Hilbert space.



52 CHAPTER 3. A VANISHING RESULT FOR THE `2-BETTI NUMBERS

Example 3.8. The Hilbert space corresponding to (N (G)n, µst) is exactly `2(G)n en-
dowed with the scalar product introduced in Section 2.1.

The left G-action on P , given by

G× P → P

(g, x) 7→ g · x = Rg−1x

where Rg−1 ∈ N (G) is the right translation on `2(G) induced by the element g−1, induces
a G-action on τ(P, µ). Then τ(P, µ) is a Hilbert G-module: namely, by projectivity and
Proposition 3.6 there exists another �nitely generated projective N (G)-module P ′ en-
dowed with an inner product µ′ such that (P, µ)⊕ (P ′, µ′) ∼= (N (G)n, µst).
In addition, every N (G)-homomorphism f : (P, µ) → (P ′, µ′) between �nitely gener-
ated projective N (G)-modules with inner product extends to a morphism of Hilbert
G-modules τ(f) : τ(P, µ)→ τ(P ′, µ′).

Theorem 3.9. ([12], Theorem 6.24) The construction above de�nes an equivalence τ
from the category of �nitely generated projective N (G)-modules to the category of Hilbert
G-modules. Moreover, denoting with τ−1 its inverse, both τ and τ−1 are exact functors
and commute with the adjoint.

De�nition 3.10. The Von Neumann dimension of a �nitely generated projective N (G)-
module P is

dimN (G) P = dimG(τ(P ))

Actually, there is a more practical de�nition for the dimension of a �nitely generated
projective N (G)-module P . By projectivity there exists an N (G)-homomorphism q :
N (G)n → N (G)n such that q ◦ q = q and Im(q) = P . Let p : N (G)n → N (G)n be such
that the corresponding map τ(p) is the orthogonal projection onto τ(P ). Then p◦p = p,
p∗ = p and Im(p) = Im(q). We denote with A = (ai,j)i,j a matrix with coe�cients in
N (G) such that p(x) = xA for every x ∈ N (G)n. By de�nition, τ(p) is represented by
the same matrix A, thus

dimG(τ(P )) = traceG(A) .

Therefore, we could de�ne dimN (G) P = traceG(A), where A ∈ Mn(N (G)) is a matrix
such that A2 = A, A∗ = A and P ∼= N (G)nA. This de�nition is independent of the
choice of the matrix A: suppose B ∈ Mm(N (G)) is another matrix satisfying the same
properties. By possibly taking the direct sum with a zero-square matrix we can achieve
that n = m without changing their traces and their images. We denote with rA the
right moltiplication by the matrix A so that P = Im(rA). Let C ∈ Mn(N (G)) be an
invertible matrix such that rC maps Im(rA) to Im(rB) and Im(r1−A) to Im(r1−B). Then
rB ◦ rC = rB ◦ rC ◦ rA = rC ◦ rA and hence CBC−1 = A. This implies

traceG(B) = traceG(C−1CB) = traceG(CBC−1) = traceG(A) .
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This suggests how to de�ne the dimension of a �nitely generated projective N -module
P over an arbitrary �nite Von Neumann algebra: choose a matrix A ∈Mk(N ) such that
A2 = A, A∗ = A and P ∼= N kA. Then

dimN P = traceN (A) .

De�nition 3.11. Let M ⊂ N be a submodule of the R-module N . The closure of M in
N is the R-submodule

M = {x ∈ N | f(x) = 0 ∀ f ∈ HomR(N,R) s.t. M ⊂ Ker(f)} .

We de�ne
TM := {x ∈M |f(x) = 0 ∀ f ∈ HomR(N,R)} = {0}

PM :=
M

TM
.

The dimension de�ned above satis�es the following key properties, which are essential
to extend the notion of dimension to arbitrary modules:

Theorem 3.12. ([12], Theorem 6.5) Let Q be a �nitely generated projective N -module.
Then

1) if P is another �nitely generated projective N -module such that P ∼= Q then dimN P =
dimN Q;

2) if P is another �nitely generated projective N -module then dimN P ⊕Q = dimN P +
dimN Q;

3) if K ⊂ Q is a submodule, then the closure K is a direct summand in Q and

dimN K̄ = sup{dimN P | P ⊂ K �nitely generated and projective} .

We can now extend the dimension theory to every N -module. This procedure can be
applied to modules over an arbitrary ring R, provided one can de�ne a dimension over
�nitely generated projective R-modules satisfying Theorem 3.12.

De�nition 3.13. Let M be an N -module. The extended dimension of M is

dim′N M = sup{dimN P |P ⊂M, P is �nitely generated and projective} .

The following proposition describes the main properties of the extended dimension.

Theorem 3.14. 1) Every �nitely generated submodule of a projective N -module is pro-
jective;

2) if M is a �nitely generated N -module and K ⊂M is a submodule, then K is a direct
summand of M and M/K is �nitely generated and projective;
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3) if M is a �nitely generated N -module, then PM is projective �nitely generated and
M ∼= PM ⊕ TM ;

4) the extended dimension satis�es the following properties:

a) if M is a �nitely generated projective N -module, then dimN M = dim′N M ;

b) (additivity) if 0→M0
ι−→M1

p−→M2 → 0 is an exact sequence of N -modules, then
dim′N M1 = dim′N M0 + dim′N M2;

c) (co�nality) if M =
⋃
i∈IMi and for every i, j ∈ I there exists k ∈ I such that

Mi,Mj ⊂Mk, then dim′N M = sup{dim′N Mi | i ∈ I};
d) (continuity) if M is a �nitely generated N -module and K ⊂ M is a submodule,

then dim′N K = dim′N K;

e) if M is a �nitely generated N -module, then

dim′N M = dimN (PM) dim′N (TM) = 0

Proof. 1) Let M ⊂ P be a �nitely generated submodule of a projective N -module P .
Let q : N n → P be a homomorphism such that Im(q) = M . It can be veri�ed that
Ker(q) = Ker(q), so, by Theorem 3.12, Ker(q) is a direct summand of N n. Therefore,
M ∼= N n/Ker(q) and N n ∼= M ⊕Ker(q), hence M is projective.
2) Let q : N n → M be a surjective homomorphism. A direct computation shows that
q−1(K) = q−1(K) and N n/q−1(K) ∼= M/K. By Theorem 3.12, N n/q−1(K) is a direct
summand of N n, hence M/K is projective.
3) It follows from the previous point applied to K = {0}.
4) Let us verify the properties of the extended dimension.
a) Let P ⊂ M be a �nitely generated projective N -submodule. By Theorem 3.12, P is
a direct summand of M and

dimN P ≤ dimN P = dimN M − dimN (M/P ) ≤ dimN M .

Since M is �nitely generated and projective we have

dimN M ≤ dim′N M = sup
P⊂M

dimN P ≤ dimN M .

b) Let P ⊂ M2 be a �nitely generated projective submodule. We have a short exact
sequence

0→M0 → p−1(P )→ P → 0

and by projectivity p−1(P ) ∼= P ⊕M0. Therefore,

dim′N M0 + dimN P ≤ dim′N p−1(P ) ≤ dim′N M1 .

Since this relation holds for every �nitely generated and projective submodule P ⊂M2,
we have

dim′N M0 + dim′N M2 ≤ dim′N M1 .



3.1. DIMENSION THEORY 55

Let Q ⊂M1 be a �nitely generated projective submodule. Let ι(M0) ∩Q be the closure
of ι(M0) ∩Q in Q. We get the following short exact sequences

0→ ι(M0) ∩Q→ Q→ p(Q)→ 0

0→ ι(M0) ∩Q→ Q→ Q/ι(M0) ∩Q→ 0 .

By Theorem 3.12, the submodule ι(M0) ∩Q is a direct summand of Q, so

dimN Q = dimN (ι(M0) ∩Q) + dimN (Q/ι(M0) ∩Q)

≤ dim′N (ι(M0) ∩Q) + dim′N (p(Q))

≤ dim′N (M0) + dim′N (M2) .

c) Let P ⊂ M be a �nitely generated projective submodule. By co�nality, there exists
i ∈ I such that P ⊂Mi. Therefore,

dim′N M = sup
P⊂M

dimN P ≤ sup
i∈I

dim′N Mi ≤ dim′N M .

d) Let 0 → L → N n q−→ M → 0 be a short exact sequence. Since q−1(K) = q−1(K) we
have

dim′N (K) = dim′N (q−1(K))− dim′N (L)

= dim′N (q−1(K))− dim′N (L)

= dim′N (q−1(K))− dim′N (L)

= dim′N (K) .

e) If follows by the previous point applied to K = {0} and the decomposition M =
PM ⊕ TM .

Remark 3.15. In view of Theorem 3.14, we will not distinguish between dimN and
dim′N , when dealing with �nitely generated projective modules.

Proposition 3.16 (Dimension and colimit). Let {Mi}i∈I be a directed system of N (G)-
modules over a directed set I. For i ≤ j let φi,j : Mi → Mj be the associated morphism.
For i ∈ I let ψi : Mi → colimi∈IMi be the canonical morphism. Then

dimN (G)(colimi∈IMi) = sup
i∈I
{dimN (G)(Im(ψi))} .

Proof. Recall that the colimit colimi∈IMi is
⋃
i∈IMi/ ∼ where the equivalence relation

is the following: x ∈ Mi is equivalent to y ∈ Mj if there exists k ∈ I with i ≤ k and
j ≤ k such that φi,k(x) = φj,k(x). Therefore,

colimi∈IMi =
⋃
i∈I

Im(ψi)

and the thesis follows by co�nality.
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We will now prove some results about �at modules over Von Neumann algebras.

De�nition 3.17. A ∗-homomorphism f : N → M between �nite Von Neumann algebras
is a homomorphism of algebras such that f(a∗) = f(a)∗ for every a ∈ N .

De�nition 3.18. A ∗-homomorphism f : N → M between �nite Von Neumann algebras
is trace preserving if

traceM (f(x)) = traceN (x) ∀ x ∈ N

Lemma 3.19. ([16], Theorem 1.48) A trace preserving ∗-homomorphism f : N → M
between �nite Von Neumann algebras is �at, i.e M is a �at N -module via f .

Theorem 3.20. Let φ : N → M be a trace preserving ∗-homomorphism between �nite
Von Neumann algebras. Then, for every N -module N we have

dimN N = dimM (M ⊗N N) .

Proof. We start checking that the result holds when N is a projective �nitely generated
N -module. Let A ∈ Mn(N ) be such that A2 = A, A∗ = A and N ∼= N nA. Then
M ⊗N N ∼= M nφ(A) as N -modules. Therefore,

dimN N =
n∑
i=1

traceN (ai,i) = traceM (φ(ai,i)) = dimM (M ⊗N N) .

We will now deduce that the thesis holds for �nitely presented N (G)-modules. By The-
orem 3.14, we can decompose N = PN ⊕ TN and there exists a short exact sequence

0→ P → N n → TN → 0 ,

where P is �nitely generated and projective. By the previous lemma M is a �at N -
module, hence when tensoring with M the sequence remains exact and by additivity
dimM (M ⊗N TN) = n− dimM (M ⊗N P ) = n− dimN (P ) = 0. Therefore,

dimM (M ⊗N N) = dimM (M ⊗N PN) + dimM (M ⊗N TN)

= dimN (PN)

where the last equality holds because PN is a �nitely generated projective N -module.
Suppose now that N is �nitely generated. There exists a short exact sequence

0→ K → P → N → 0

where P is a �nitely generated projective N -module. We writeK = colimi∈IKi as colimit
of its �nitely generated submodules. Then

dimN N = dimN P − dimN K = dimN P − sup
i∈I

dimN Ki

= inf
i∈I

(dimN P − dimN Ki) = inf
i∈I

dimN (P/Ki) .
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Since the tensor product preserves colimits, we have M ⊗N K = colimi∈I(M ⊗N Ki). As
a consequence, the same computation shows that

dimM (M ⊗N N) = inf
i∈I

dimM (M ⊗N P/Ki) = inf
i∈I

(dimN (P/Ki))

= dimN N

where the last inequality holds because P/Ki is �nitely presented.
By writing an N -module N as the colimit of its �nitely generated submodules, a similar
computation implies the thesis.

The extended dimension enables us to de�ne `2-Betti numbers in terms of singular
homology. Therefore, one could deal with CW-complexes endowed with the action of a
group G, which is not necessarily cocompact. Actually, we are only interested in the case
of the universal covering of a closed, connected and oriented manifold M with the action
of the fundamental group G = π1(M), but, in order to obtain an upper bound for the
`2-Betti numbers, we will use singular homology. We recall here the main notions we will
use in the next section.

Let X be a CW-complex endowed with a free cellular action of a group G. The
singular chain complex (Csing∗ (X), ∂∗) consists of Z[G]-modules, as G acts on a singular
simplex by left translation, and the boundary operators are G-equivariant.

De�nition 3.21. The p-th (singular) `2-Betti number of X is

b(2)
p (X,N (G)) := dimN (G)Hp((N (G)⊗G Csing∗ (X), idN (G) ⊗ ∂∗))

The following result ensures that this de�nition is equivalent to De�nition 2.38 in
case the action of G is free and cocompact:

Theorem 3.22. Let X be a free G-CW-complex of �nite type. Then

dimN (G)Hp(X,N (G)) = dimred
G Hp(X, `

2(G))

Proof. It is well-known that there exists a chain map

f : Csing∗ (X)→ Ccell∗ (X)

which induces isomorphisms in homology. De�ning

Cone(f)n = Csingn−1 (X)⊕ Ccelln (X)

with the boundary operator dn : Cone(f)n → Cone(f)n−1 given by

dn(c, c′) = (−∂singn−1 (c), f(c) + ∂celln (c′)) ,

we obtain a chain complex of free left Z[G]-modules. It �ts in the exact sequence

0→ Ccell∗ (X)→ Cone(f)∗ → Csing∗−1 (X)→ 0 .
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Studying the corresponding long exact sequence in homology, we obtain that Cone(f)∗
has trivial homology. Since it consists of projective modules, it is also contractible. This
implies that f is a chain homotopy equivalence. By tensoring the involved maps, the
same holds for

idN (G) ⊗ f : N (G)⊗G Csing∗ (X)→ N (G)⊗G Ccell∗ (X) ,

thus we obtain an isomorphism Hp(N (G) ⊗G Ccell∗ )
∼=−→ Hp(N (G) ⊗G Csing(X)). In

addition, there exists an isomorphism

hp : τ−1(redHp(X, `
2(G)))→ PHp(X,N (G))

de�ned by the following diagram:

0 0

τ−1(redHp(X, `
2(G)))

6

hp−→ PHp(X,N (G))

6

τ−1(Ker(id`2 ⊗ ∂p))

τ−1(q)

6

→ Ker(idN (G) ⊗ ∂p)

q

6

τ−1(Im(id`2 ⊗ ∂p+1))

τ−1(j)

6

→ Im(idN (G) ⊗ ∂p+1)

j

6

0

6

0

6

The columns are exact, the middle and lower arrows are isomorphisms and hp is an
isomorphism by the �ve lemma. Therefore,

dimN (G)Hp(X,N (G)) = dimN (G) PHp(X,N (G))

= dimN (G) τ
−1(redHp(X, `

2(G)))

= dimred
G Hp(X, `

2(G)) .
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3.2 An upper bound for the `2-Betti numbers

In this section we will establish a connection between the integral foliated simplicial
volume of a closed, connected and oriented manifold M and its `2-Betti numbers. It
is based on a generalised cap product which induces a sort of Poincaré isomorphism in
(co)-homology with coe�cients in the Von Neumann algebra NRGyX .

3.2.1 The Von Neumann algebra NRGyX

We are going to de�ne the Von Neumann algebra related to the orbit equivalence relation
of a group G acting on a standard G-space. The construction is analogue to that of N (G).

We recall this general result which will be useful later:

Theorem 3.23. ([16], Theorem 1.3) Let f : X → Y be a measurable map between stan-
dard Borel spaces which is countable-to-one, i.e. for each y ∈ Y the preimage f−1(y) is
countable. Then the image f(X) is measurable and there is a countable partition (Xn)n∈N
of X by measurable subsets Xn, such that f|Xn is injective and a Borel isomorphism onto
f(Xn) for every n ∈ N.

De�nition 3.24. Let (X,µ) be a standard probability space. A standard equivalence
relation R on X is an equivalence relation R ⊂ X ×X such that

i) R is a measurable subset of X ×X;

ii) the equivalence classes of R are countable;

iii) For each Borel isomorphism φ : A→ B between measurable subsets A,B ⊂ X such
that (a, φ(a)) ∈ R for every a ∈ A one has µ(A) = µ(B).

The main example is given by the orbit equivalence relation of a countable group G
acting on a standard G-space.

Lemma 3.25. Let (X,µ) be a standard G-space. The orbit equivalence relation

RGyX = {(x, gx) | x ∈ X , g ∈ G}

is a standard equivalence relation.

Proof. For a �xed g0 ∈ G the subset {(x, g0x) | x ∈ X} is a Borel subset, hence RGyX

is measurable because it is the countable union of Borel sets. The equivalence classes
are countable because G is. Let φ : A→ B be a Borel isomorphism between measurable
subsets A,B ⊂ X such that (a, φ(a)) ∈ RGyX for every a ∈ A. Fix an enumeration of
G = {g1, g2, . . . }. Then A is the disjoint countable union of An where

An = {a ∈ A | φ(a) = gna and φ(a) 6= gja ∀j < n} .
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Since the G-action is measure-preserving, we have µ(gnAn) = µ(An). Therefore

µ(φ(A)) =
∞∑
i=1

µ(φ(An)) =
∞∑
i=1

µ(gnAn) =
∞∑
i=1

µ(An) = µ(A) .

The following fact is important for the de�nition of a somehow canonical measure on
a standard equivalence relation R .

Lemma 3.26. Let R ⊂ X × X be a standard equivalence relation and A ⊂ R be a
measurable subset. Then there exists a partition A =

⋃
n∈NAn into measurable subsets

An such that both coordinate projections are injective on each An.

Proof. Since the equivalence classes are countable, the coordinate projections are countable-
to-one. Hence we can apply Theorem 3.23 twice.

We de�ne a measure on a standard equivalence relation R , which is induced by the
measure onX in a natural way. By the previous lemma, there exists a countable partition
R =

⋃
n∈N Rn such that both coordinate projections p1 and p2 are injective on each Rn.

If follows that for a measurable subset B ⊂ R the function

X → N ∪ {∞}

x 7→
∑
n∈N

χp1(Rn∩B)(x) = |B ∩ p−1
1 (x)|

is measurable.

De�nition 3.27. The measure ν on R is given by

ν(B) =

∫
X
|B ∩ p−1

1 (x)|dµ .

Remark 3.28. We could de�ne the measure using the coordinate projection p2. The
resulting measure would be the same: namely, the map

p2 ◦ p−1
1 : p1(B ∩ Rn)→ p2(B ∩ Rn)

is a Borel isomorphism because both coordinate projections are injective on each Rn.
Hence, by condition (iii) in the de�nition of a standard equivalence relation, we have
µ(p1(B ∩ Rn)) = µ(p2(B ∩ Rn)). As a consequence,

ν(B) =

∫
X
|B ∩ p−1

1 (x)|dµ =
∑
n∈N

∫
X
χp1(Rn∩B)(x)dµ

=
∑
n∈N

µ(p1(B ∩ Rn)) =
∑
n∈N

µ(p2(B ∩ Rn))

=

∫
X
|B ∩ p−1

2 (x)|dµ .

We will now de�ne the Von Neumann algebra of a standard equivalence relation R .
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De�nition 3.29. Let R be a standard equivalence relation and S = Z,R a ring. The
equivalence relation ring S[R ] is de�ned by

S[R ] = {f ∈ L∞(R , S) |∃ n ∈ N s.t.

∀x ∈ X |{y ∈ X | f(x, y) 6= 0}| ≤ n and |{y ∈ X | f(y, x) 6= 0}| ≤ n}

where the addition is pointwise and the multiplication is given by

(f · g)(x, y) =
∑
z∼x

f(x, z)g(z, y) .

Remark 3.30. There is an embedding of rings

j : L∞(X,S)→ S[R ]

f 7→
(

(x, y) 7→
{
f(x) if x = y

0 otherwise

)

Thereafter, we will never distinguish between f and j(f), if the ring we are considering
is clear from the context.

Remark 3.31. In the special case R is the orbit equivalence relation of a group G on a
standard probability space X, the map

S[G]→ S[RGyX ]∑
g∈G

agg 7→
(
(gx, x) 7→ ag

)
is an injective homomorphism of rings.

We indicate with `2(R ) the Hilbert space of real square summable functions on R
with respect to the measure ν introduced in De�nition 3.27. The scalar product on `2(R )
is given by

〈·, ·〉 : `2(R )× `2(R )→ R

〈φ, ψ〉 =

∫
R
φ(x, y)ψ(x, y)dν .

It is a left R[R ]-module, where the action is de�ned by

ρl : R[R ]→ B(`2(R ), `2(R ))

ρl(f)(φ)(x, y) =
∑
z∼x

f(x, z)φ(z, y) .

The ring R[R ] can act on `2(R ) via right translations, as well

ρr : R[R ]→ B(`2(R ), `2(R ))

ρr(f)(φ)(x, y) =
∑
z∼x

φ(x, z)f(z, y) .
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De�nition 3.32. The Von Neumann algebra NR is the weak closure of ρr(R[R ]) in
B(`2(R ), `2(R )). It is �nite and the trace is given by

traceNR : NR → R
T 7→ 〈T (χ∆X

), χ∆X
〉`2(R )

where ∆X ⊂ R is the diagonal in X ×X.

Remark 3.33. In Section 2.1 we presented the de�nition of the Von Neumann algebra
N (G) using a di�erent procedure. Actually, one could verify that N (G) is exactly the
weak closure of R[G] in B(`2(G), `2(G)), where R[G] acts on `2(G) via right translation.
Moreover, the trace on NR is based on the same idea of De�nition 2.9, as χ∆X

is the
identity in the ring R[R ].

In the special case R is the orbit equivalence relation of a group G, Sauer ([16]) proved
the following result:

Proposition 3.34. There is a trace-preserving ∗-homomorphism N (G) → NRGyX . So
NRGyX is a �at N (G)-module.

This result implies that we can calculate the `2-Betti numbers of a G-CW-complex
Z using the Von Neumann algebra NRG∩X , where X is a standard G-space. We denote
with

Cn(Z,NRGyX) := NRGyX ⊗G Cn(Z)

the set of n-singular chains of Z with coe�cients in NRGyX . In the de�nition, Cn(Z)
stands for the left Z[G]-module of the integral n-singular chains and NRGyX is consid-
ered as a right Z[G]-module. Notice that Cn(Z,NRGyX) has a natural structure of left
NRGyX -module given by

NRGyX × NRGyX ⊗G Cn(Z)→ NRGyX ⊗G Cn(Z)

(g, f ⊗ σ) 7→ fg∗ ⊗ σ .

where g∗ denotes the adjoint operator.

De�nition 3.35. The homology of Z with coe�cients in NRGyX is

H∗(Z,NRGyX) := H∗((Cn(Z,NRGyX), idNRGyX ⊗ ∂∗))

Proposition 3.36. Let G be a countable group and X be a standard G-space. Let Z be
a G-CW-complex. Then

b
(2)
k (X,N (G)) = dimNRGyX Hk(Z,NRGyX)

Proof. Since N (G) is a subring of NRGyX , we have

NRGyX ⊗G Cn(Z) = NRGyX ⊗N (G) N (G)⊗G Cn(Z) .

By �atness, we deduce that

Hn(Z,NRGyX) ∼= NRGyX ⊗N (G) Hn(Z,N (G)) .

The thesis follows from Theorem 3.20.
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3.2.2 A generalised cap product

Let M be a closed, connected and oriented manifold with fundamental group G and
universal covering M̃ . Let X be a standard G-space. Let A be a ring with involution,
denoted like the complex conjugation, containing Z[G] as a subring. Then A has a natural
Z[G]-bimodule structure. Let B ⊂ A be a subring closed under involution such that for
every b ∈ B and g ∈ G the product gbg−1 belongs to B. We explain the other module
stuctures we will use:

• B has a left Z[G]-module structure given by

g ? b = gbg−1 .

• In Chapter 2 we de�ned a left action of G on the set of singular n-chains Cn(M̃)
via left translations. We can introduce a right action by setting

σ · g = g−1 · σ .

We will denote with Crn(M̃) the corresponding right Z[G]-module.

• On HomG(Cj(M̃), A)⊗Z C
r
n(M̃) a right Z[G]-module structure is given by

(φ⊗ σ) · g = φ⊗ g−1 · σ .

In addition, it is a left A-module with the action de�ned by

a · (φ⊗ σ) = φ · ā⊗ σ .

• On A⊗Z C
r
n−j(M̃), a right Z[G]-module structure is given by

(a⊗ σ) · g = a · g ⊗ g−1 · σ .

De�nition 3.37. Given a cochain φ ∈ HomG(Cj(M̃), A) and a chain c ∈ B ⊗G Cn(M̃),
the generalised cap product _ ∩_ is the linear map determined by the formula

HomG(Cj(M̃), A)⊗Z B ⊗G Cn(M̃)→ A⊗G Cn−j(M̃)

φ⊗ b⊗ σ 7→ φ(σ|j ) · b̄⊗|n−j σ

where σ|j indicates the singular j-simplex obtained by restricting σ to the front j-
dimensional face of ∆n and |n−jσ denotes the singular (n − j)-simplex obtained by re-
stricting σ to the back (n− j)-dimensional face of ∆n.

A direct computation shows that

∂n−j(φ ∩ c) = (−1)j(δj−1 ∩ c− φ ∩ ∂n(c))

hence the generalised cap product descends to (co)-homology.
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We will apply this construction in the case A = NRGyX and B = L∞(X,Z). Recall
that the involution in A is the map which associates to an operator T ∈ NRGyX its
adjoint T ∗ ∈ NRGyX . Moreover, L∞(X,Z) can be seen as a subring of NRGyX , because,
given a function f ∈ L∞(X,Z), we de�ned in Remark 3.30 the element j(f) ∈ Z[RGyX ],
which acts on `2(RGyX) by right translation. In addition, L∞(X,Z) is closed under
involution, as every element f ∈ L∞(X,Z) is self-adjoint.

With the aid of the change of coe�cient morphism ιXM : Z ⊗G Cn(M̃) → L∞(X,Z) ⊗G
Cn(M̃) we can establish a relationship between the extended cap product and the clas-
sical one.

Lemma 3.38. The diagram

HomG(Cj(M̃),NRGyX)⊗Z Z⊗G Cn(M̃)
_∩_ - NRGyX ⊗G Cn−j(M̃)

HomG(Cj(M̃),NRGyX)⊗Z L
∞(X,Z)⊗G Cn(M̃)

idHom⊗ιXM

?
_∩_- NRGyX ⊗G Cn−j(M̃)

id

?

commutes, i.e for a cochain φ ∈ HomG(Cj(M̃),NRGyX) and a chain c ∈ Z ⊗G Cn(M̃)
one gets

φ ∩ c = φ ∩ ιXM (c) .

Proof. Since cap products are linear, it is su�cient to prove commutativity when c =
1⊗ σ, where σ : ∆n → M̃ is a singular simplex. We get

φ ∩ (1⊗ σ) = φ(σ|j )⊗ |n−jσ = φ(σ|j ) · χ∆X
⊗ |n−jσ

= χ∆X
· φ(σ|j )⊗ |n−jσ = const1 · φ(σ|j )⊗ |n−jσ

= φ ∩ (const1 ⊗ σ) = φ ∩ ιXM (1⊗ σ)

because the characteristic function of the diagonal in X ×X is the identity in NRGyX

and it is the image of the constant function const1 ∈ L∞(X,Z) under the inclusion
j : L∞(X,Z)→ Z[RGyX ] (Remark 3.30) .

Corollary 3.39. Let [M ]Z ∈ Hn(M,Z) be the integral fundamental class. Then the map

_ ∩Hn(ιXM )([M ]) : Hj(M̃,NRGyX)→ Hn−j(M̃,NRGyX)

is an NRGyX-isomorphism.

3.2.3 An upper bound for the `2-Betti numbers

We now use the above construction to prove an upper bound for the `2-Betti numbers.
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Theorem 3.40. Let M be a closed, connected and oriented n-manifold with fundamental
group G and universal covering M̃ . Let (X,µ) be a standard G-space. Let

z =
k∑
i=1

fi ⊗ σi ∈ L∞(X,Z)⊗G Cn(M̃,Z)

be an X-parametrised fundamental cycle. Then for every j ≥ 0 we have

b
(2)
j (M) ≤

(
n+ 1

j

)
k∑
i=1

µ(supp(fi)) .

Proof. Consider the evaluation homomorphism

evn−j : HomG(Cn−j(M̃),NRGyX)→
k⊕
i=1

⊕
(n−j)−faces

NRGyX · fi

φ 7→ φ(σli) · fi

where σli denotes the l-th (n− j)-face of σi.
Let φ ∈ Hn−j(M̃,NRGyX) be a cohomology class which can be represented by a cocycle
in Ker(evn−j). By de�nition of the cap product, we obtain that φ∩ z = 0. Since the cap
product _∩ιXM (z) induces an isomorphism in homology, it follows that φ = 0. Therefore,
we obtain the following commutative diagram

Ker(δn−j) - Hn−j(M̃,NRGyX)

Ker(δn−j)
Ker(evn−j)∩Ker(δn−j)

-

-

Due to the additivity of the Von Neumann dimension, we conclude that

dimNRGyX (Hn−j(M̃,NRGyX)) ≤ dimNRGyX

( Ker(δn−j)
Ker(evn−j) ∩Ker(δn−j)

)
.

Consider the composition of injective NRGyX -homomorphisms

Ker(δn−j)
Ker(evn−j) ∩Ker(δn−j)

→ HomG(Cn−j(M̃,NRGyX))

Ker(evn−j)
evn−j−−−→

k⊕
i=1

⊕
(n−j)−faces

NRGyX ·fi :

noticing that NRGyX · fi ⊂ NRGyX · χsupp(fi), the additivity of the Von Neumann di-
mension implies that

dimNRGyX

( Ker(δn−j)
Ker(evn−j) ∩Ker(δn−j)

)
≤ dimNRGyX

( k⊕
i=1

⊕
(n−j)−faces

NRGyX · χsupp(fi)

)
.
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From the de�nition of the Von Neumann dimension, it follows that

dimNRGyX (NRGyX · χsupp(fi)) = traceNRGyX (χsupp(fi))

= 〈χ∆X
· χsupp(fi), χ∆X

〉`2(NRGyX)

=

∫
∆X

χsupp(fi)dν = ν(∆X ∩ supp(fi))

=

∫
X
χsupp(fi)dµ = µ(supp(fi)) .

Hence we obtain

dimNRGyX (Hj(M̃,NRGyX)) ≤
(
n+ 1

j

)
·
k∑
i=1

µ(supp(fi))

and Proposition 3.36 completes the proof.

Corollary 3.41. Let M be a closed, connected and oriented n-manifold. Then

b
(2)
j (M) ≤

(
n+ 1

j

)
·
M .

Proof. Fix ε > 0. Let (X,µ) be a standard G-space such that
M =

MX . Let
z =

k∑
i=1

fi ⊗ σi

be anX-parametrized fundamental cycle such that
zX ≤ MX+ε. By the previous

theorem we know that

b
(2)
j (M) ≤

(
n+ 1

j

)
k∑
i=1

µ(supp(fi)) .

Since the functions fj are integer valued, for almost every x ∈ supp(fi) we have |fi(x)| ≥
1, so

k∑
i=1

µ(supp(fi)) ≤
k∑
i=1

∫
X
|fi(x)|dµ =

zX ≤ M+ ε .

The arbitrariety of ε > 0 gives the thesis.

Corollary 3.42. Let M be a closed, connected and oriented n-manifold. If the integral
foliated simplicial volume vanishes, then the Euler characteristic does, as well.

Proof. By Proposition 2.39 the Euler characteristic can be computed via the `2-Betti
numbers. Therefore, by the previous corollary,

|χ(M)| ≤
n∑
j=0

b
(2)
j (M) ≤

n∑
j=0

(
n+ 1

j

)M ≤ 2n+1
M

which implies the assertion.
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