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Chapter 1

The interpolation theory

1.1 The Fourier transform

In this chapter we will introduce the interpolation theory. One of its consequences will
be the definition of the Fourier transform in L? with p € [1,2].

Fourier transform in L!

Given f € L'(R%), we define the Fourier transform of f as the function

F&) = [ fla)e ™ da.
Rd

[ Theorem 1.1.2 — Minkowski's theorem J

Let us consider (X, u),(Y,r) o-finite measurable spaces. Given f: X xY — R
measurable, if 1 < p < +o0, it holds that

‘ [sa] < [ 15l
Y ng Y

Proof. By duality we have that

lgllr = sup  [{f, g)|
I £llLa=1

By direct computation we get

'/X/Yfgdvdulﬁ/y/xlf!\g\dudv

< / 1z lgl odv = / 11l zdv.
Y Y

[ Theorem 1.1.3 — Young's inequality

Remembering f  g(x) = [pa f(2 — y)g(y)dy it holds that, given f € L? and g € T

1 * gllze <[ fllzrllgllzr-
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f{ Proposition 1.1.4 — Approximate Identity }

Let us consider a family of functions K,, € L' ¥n € N such that:
° ForallneNfKndznzl.
e For all n € N sup,, [|K,| < +oo.
e Forall 6 >0 f|x|>5 | K, |da "2 0.

Then for all 1 < p < +00 we have that

Ky,xf— fin I”.

i Proposition 1.1.5 j

We recall some basic fact about the Fourier transform, where we denote 7, f(x) =

f(z = h) and 0y f(x) = f (%).
1. f is linear.
2. T f(€) = e 2N ],
3. 6\ f(&) = AF ().

4. If f,g € L' then f % g = f4.

d _ ¢l
2

5. The function gy(z) = e~ ™" is such that gi(£) = A~

Proof. These are consequences of some direct computations. We do explicitly the last one:
for the dilatation formula it is sufficient to prove it for the case A = 1:

9(6) = [ ey
Ra

:/ 6_7T($+i§)26—ﬂ'£2d$
Rd

:e‘”52/ e T HiO)? gy
R4

h(€)

2
:eﬂ-g

indeed we have that

B (E) = / e~ @HO? (Lori(y 4 i€))dw = i / @i g — ),
Rd Rd dl’

[ Theorem 1.1.6 — Plancherel }
If we have f € L' N L? then f € L2 and ||f| ;2 = || f||z2- It follows that the map

F_ 3 q . . . . .
f > f has a unique extension to L? and is a surjective isometry.
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Corollary 1.1.7 — Plancherel-Parseval Identity }

/ fgdx = / fodx.

Proof. O

For f,g € L? we have

Fourier transform in L2

Given® {f,} € L' N L? such that f, — f in L?, we define the Fourier transform of

f as R
hatf == lim f,.
n—oo

g sequence exists because L' N L? is dense in L2

Osservazione 1.1.1
The limit surely exists because {f,} is a Cauchy sequence in L? and, thanks to Plancherel-
Parseval identity, also {f,} is.

Fourier antitrasform

We define the Fourier antitrasform as

fla)=f(2) = | fe)e*™e.
Rd

[ Theorem 1.1.10 — Inversion formula }
[ If f € L?, then f = (f)Y almost everywhere. ]

Proof. O
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1.2 Riesz-Thorin theorem

This first result of the interpolation theory will let us define the Fourier! transform in
LP, with 1 <p < 2.
In order to prove the theorem we first need to develop some results of complex analysis?

[ Theorem 1.2.1 — Hadamard Three lines theorem J

( L

Let us consider the strip ¥ = {z € C: 0 < R(2) < 1} in the complex plane. Given
I such that:

e [ is analytic on )

e [ is bounded and continuous on X
|F'(it)] < My

, for all t = R(z)
[F(1+4t)| <M

e There exists My, M7 such that {

It follows that:
|F(2)| < My~* M-

Idea This result allows us to control F' inside the strip, knowing only a control on its

boundary. E
Proof. O
We are now able to prove the Riesz-Thorin theorem:
[ Theorem 1.2.2 — Riesz-Thorin Theorem }
Let po < p1, g0 < ¢1. Given a linear operator 1" where
T:LP0 — L9
T:LP" — L%
such that there exist constants My and M; which make valid the inequalities
[ T#(| oo < Moll f[| zro
1Tl Lo < M| fllLes-
Then, for all p and ¢ of the form
11—ty ¢
TR LT
« = o Tu
for ¢ € (0,1), we have
ITfllLa < My~ M| f| o-
O

Proof.

'As in L? we will have a Cauchy sequence {fn} C L' N L? which approximates f in LP. Then {f,} will

be a Cauchy sequence and we will define f as its limit.
ZHistorically people proved a lot of results exploiting complex analysis. The breakthrough will arrive

with the Calderén-Zygmund theory, which permitted to prove the results without using complex analysis.
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J Corollary 1.2.3 }

L' L o L2 L?
Considering ! : f and 4 f : f , we can define the

Fourier transform from L? to L7 for all 1 < p <2 ( ¢ is the conjugate exponent of
p). Furthermore,

IFfllza < [ fllze-

\. J

Proof. 1t follows directly from Riesz-Thorin theorem: we know that

[fllzee < I f1lpn

[ fllzz <[ fllz2
The estimate follows because
1-¢t , ¢t _ 1 1 _ ¢t
o ts=13 2=3 1
L1 T\q_i_1 =gty
1 2 P 2 D

O]

Osservazione 1.2.1
The estimate given by the corollary is called Hausdorff- Young inequality®: for 1 < p < 2
1 1 _
and >t o= 1, )
[a]|La < [lul| e

( Corollary 1.2.4 — Young's inequality }

Let us consider pi,pa,r € [1,400] such that pil + p% =1+ % It follows that
Vf € LP1(RY) and Vg € LP?(R?)

1f % 9(@)||r ey < [ fllzer ey (9] o2 (may < 400

Proof. Let us consider p and its conjugate exponent p’. It is known that

1f*gllze <[ fllzellgllr  and [1f  gllze < [fllzellgll Lo

Given f € LP let us consider the operator T : g — f % g. We have that

1Tgllz~ < | fllze llgll e and (| Tgllpe < | fllze [lgll -
—— ——
=My =M,

For Riesz-Thorin we have that
1Tgllee < | fllze llgllzs
~———
=M, "M}

where

30ne can see that the optimal constant in not 1!
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This means

hence the Young inequality is valid. O

1.2.1 A generalisation of Riesz-Thorin theorem

We can generalise the Riesz-Thorin theorem to particular families of operators. First
let us give the following definition:
Admissible family of operators

Let ¥ ={z € C:0<R(z) <1} be the strip in the complex plane and T, a family
of operators parameterised on 3. We say the family {7} is admissible if we have
the following conditions:

e The function
R: ¥ — R
z — fY T.(f)gdx

is analytic in ¥ and continuous in >, where f, g are finitely simple functions
considered on two o-finite measure space.

e There exists a < 7 such that
log <

Hirshman lemma

/Y T.(f)gde

) < ctgen

If we have a function F' which is analytic on XO], continuous in ¥ and a constant
a < 7 such that

sup e Wlog(|F(z + iy)|) < +ooc.
0<z<1
—oo<y<+o00

Then

oo log(|F(iy)) log(F|(1 + iy)|)
s cosh(my) — cos(mz)  cosh(my) + cos(mx)

1.
g, [F(@)| < 5 sin(mo) [

Osservazione 1.2.2
We recall that

= .

1 /+°° sin(7x) 1 /+°° sin(7x)

Z dy=1— d -
2 J_o cosh(my) — cos(mx) 4 Tt g — oo cosh(my) + cos(mx)

Osservazione 1.2.3
If we suppose that both log(|F(iy)|) and log(]F(1 + iy)|) are constant or bounded we get
back |F(z)| < My~*Mf, which recalls Riesz-Thorin.
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Theorem 1.2.7 — Interpolation of analytic family of operators

Let T, be a family of operators such that

| Tiy fllLa0 < Mo(y)|| f1 o
| T piy fllLa < My(y)|l flloe

where there exists b < 7 such that
sup e Wlog(M;(y)) < +oo.
—oo<y<+0o0

Then for all ¢, p; of the form

11—t | t
pt Po + P1
11—t , t
@ Qo + q1

where ¢ € (0,1), we have that
IT: fllzae < M@)|f1 et

where
sin(nt) [T log(Mo(y)) log (M) (y))
) sew ( 2 /_OO cosh(my) — cos(wt)  cosh(mwy) + cos(mt) dt>'

f{ Corollary 1.2.8 — Stein Theorem }
Take® Ky, K1, ug,u; measurable functions. Suppose that

K0T (f)llza0 < Mol| fuol Lro
KT ()l < M| fus e

Then for all ¢, p; of the form

11—t , t
Dt po+p1
11—t | t
@ Qo +q1

where ¢ € (0, 1), it holds
1—tq st
BT ()l pae < My~ Mi [[ur f]| £ee
where K; = K} 'Kt and uy = ud~'ul.
“With this theorem we can have an interpolation of operators with weighted condition.
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1.3 Marcinkiewitz theorem

Distribution function

Given a measurable function f we define the distribution function of f as

dj(0) = plz € RY: |f(2)] > a}.

Proposition 1.3.2 — Layer-Cake decomposition }

For every p € (0,+o00) it holds that

+o0
1712, = p / " ()da

Proof. By applying Fubini we get

“+o00 “+o0
p[ o tagda=p [0 ulif] > ajda

+oo
:p/ aP~! (/ X{|f|>a}(x)dx> da
0 R4
£]
:/ / pa? tdo | do
R4 0
— [ vz,
Rd

Weak LP spaces

For all p € (0, +00) we define the weak LP space, also denoted by LP**° as the set
of measurable function such that

P

I f[lzree = inf {c Vo > 0dg(a) < <

J} < +00.

We have that LP**° are quasi-normed spaces:
If 4+ gllzre < Cp(llfllzree + lgllzree)

where C), = max(2, 2%)

Proposition 1.3.4 \

For all p € (0, +00)
[fl[Lroe < [ f]lLr

hence LP C LP+o°,

Proof. O
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Corollary 1.3.5 — Chebychev Inequality |

We also have the Chebychev inequality:

p
REESVESS S

Example 1.3.6. We can see that the inclusion is strict:indeed there exist f e
LP>°\LP. As example,we can consider the function f(x) = |z| ».

Let us consider an operator 7. We say that 7' is

o Sublinear: if for all f, g
T(f +9) <|T()+T(9)]
e Strong (p, p)-continuous: if

1T fllze < ellfllze-

o Weak (p, p)-continuous: if
I e
Osservazione 1.3.1

It is clear that if T is strong (p,p) continuous, then it is also weak (p,p): indeed by
Chebychev inequality we have

p{ITf > At <

ITf e I
PV Y A

[ Theorem 1.3.8 — Marcinkiewitz theorem }

Let us consider pg, p1 such that 1 < py < p1 < +oo. If T': LP0 + LP1 — {measurable
functions} is sublinear, (pg, po)-weak and (pi, p1)-weak continuous, then T is (p, p)-
strong continuous for all p € (pg, p1).
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Chapter 2

The Hardy-Littlewood-Sobolev
inequality

The inequality we want to see is the following!: Hﬁ * fHL < [ fllze-
q

Given f € C¥ and Cp =72 (). If 0 < o < d we have that
C, _O‘AV:C_Q/ &d
(Call™F) dea | T g

Proof. Let’s remember the definition of the Gamma function: T'(x f o0 e—tpr=lp
which has the property that I'(z)['(1 — z) = We notice that 1f 0 < a < d then

sm(7rac)

—+o0 o 00 t %71 1
cgfﬁ‘”%:t/q e‘“fPAA2_1dA::(/Q e_t[] —_dt
= o ¢ Lmer] e
— [etintig
0
=T (;‘) m3 g

Thanks to this equality we have that

(C |€| af /Rd /Rd/ —7r|§\2>\)\7—1d)\f( ) —27rz§ydy€27rz§rd§

-, o
R4

:/ f(y)/ el= 5 e mle—y)? 565572d€dy
R4 0

:/ f(y) / e e T dedy
R4 0

— [ Cirala =y
R4

ZCd_a/R &dy.

a |z —yld-«

A2 d\dy

by < we mean that there is the inequality up to a constant, i.e. =< C.

15
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O

Osservazione 2.0.1
Since f € CZ we have that f is well defined, analytic and, for |{| — oo, all of its derivatives

decay faster than the inverse of any polynomial? in &, hence |¢|~¢ f € L'. Since, a priori,
Jra ‘x_fﬁd)_a dy decays only as |z|*~¢ it is not in LP for any p < 2 but, if 0 < a < %, thanks

to the Hardy-Littlewood-Sobolev inequality it is a L? function, hence it admits Fourier
transform. This gives us the relation:

Calé|f = Cu_a ( /. mf(jﬁl_ady).

Idea We can study the Poisson equation: —Au = f on R? where f € CZ. We remember
that?

Du ou

axz‘ - 87:,

—\ 2
Ou —A4n2(e2 [ wlp)e 2Tk
<a) — 4 (¢)? [ ula)e e

So if we apply the Fourier transform to the Poisson equation we get:

(z)e 2% dy = 2m¢; /11,(:10)6_27”5"’j

1

1 N
e

—&L:f:>471'2|§’2ﬂ:f:>ﬂ:

Thanks to the previous formula, with a = 2 and d = 3 we have:

1 /1Y 1 )
“‘W<|a2> ) g™

(Klwf):g/ il
- vy [
v (3) [y
= [ L
-7

indeed:

2This type of function will be really useful.
3you can think that v has compact support.
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2.1 The maximal function

Centered maximal function

Given f € L} (R?) we define the centered mazimal function M f as

loc

M f(x) = sup Avgp(,. )| f]
5>0

1
=su

p/ flz —y)|dy.
550 Wqd? |y\<6’ ( )

Example 2.1.2. Let us compute M f where f = x[q4 (7). We start by noticing
that, if > b, then having for § > 0 I = (z — 6,2 + J) it holds that

1 0—(z—0)
— dy = ———~.
55 @y = =
If we consider § = z — a then
Z\ba::aa\ r=a
Mf(z)=<1 a<x<b.
b—a
Jap] LT20

Since M f ~ ﬁ then Mf ¢ L.

Given f € L} (RY) if M f € LY(R?) then f = 0.

Proof. Tt is clear that B(0,R) C B(z,||z|| + R) for all z € RY and R € RT. So for all
R € R" it holds:

1
Mf(z) = / f(y)ldy
@2 BT+ B oo )
1 /
> SW)ldy.
el + B Jpomy )
This means that if M f € L' then fB(O R) |f(y)|dy = 0 which is f =0 a.e. O

Osservazione 2.1.1
It holds that {M f > A} C R is an open subset, i.e. M f is lower semi continuos.

Non centered maximal function
We have

My(z) = sup Avgp g lfl
550
ly—z|<d
— s s [ il
s>0 M(B(z,7) JB@m '

ly—z|<d
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Osservazione 2.1.2 }
It holds that {M; > A} C R< is an open subset, i.e. M ¢ is lower semi continuos.

Proof. If we consider = € {M; > A}, there exists y such that

1

5o /B(%R) £(2)|dz > A Va € B(y, R).

This means that B(y, R) C {M; > A}, hence the thesis. O

Proposition 2.1.5 }

Given f we have )
Mf<Mf<2Mf.

Proof. 1t is clear that M f < Mf. Let see ]\fo < 2de. We start by seeing that, if
x € B(y, R) then B(y, R) C B(x,2R). It follows that:

1 / 1
_ f(2)]dz < —/ f(z)|dz
w(B(y, R)) B(y,R) U w(B(z, R)) B(x,2R) I#(=)1
24 /
S — f(2)|dz < 2¢M f.
,LL(B(:L‘,2R)) B(z,2R)| ( )|
O
i Corollary 2.1.6 J
We have that
p{Mf <A} < c“ﬂA‘Ll — pu{M; <A} < a”fl“.
i Lemma 2.1.7 — Vitali covering lemma }
Let {Bi, ..., Bg} be a finite collection of balls in RY. THen there exists a subset
{Bj,,...,Bj of pointwise disjoint balls such that
k ~
UBicl3B,,
=1 r=1
Furthermore
L ! . 1 k
n(UBi | = nBi) = gn | UBi
r=1 r=1 =1
Proof. Omitted. O

[ Theorem 2.1.8 — Hardy-Littlewood }
It holds that 1 < p < 400

||Mf||LP < Cp”f“LP-
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Proof. The thesis will follow thanks to Marcienkiewitz theorem. It is clear that | M f||p~ <
| fllzee. We now want a (1, 1)-weak estimate.

Let us call Ey = {Mf > \}. The (1,1)-weak continuity will follow by an estimate of
p(Ey). Since it is a measurable set we can find K C F) compact such that u(K)+e = pu(E))
and Vx € K 3B, such that

u(1131)/ £(2)|dz > A

n
Since K is compact we can find B, such that K = |J B,,. For the Vitali covering lemma
i=1
we also have .
K CUB; C 3Bj

where Bj are disjoint. It follows that:
p() < p(JBi ) <37 > n(B))
i J

1
<> 3 [ fy)dy
S [

3d
A U;B;

3d
< XHfHLl(Rdy

f(y)dy

Maximal operator

If we have a family of linear operators {7, } we define the mazimal operator associeted
to the family as

T" f(x) = s%p\Tnf(fv)!-

Let {T,,} be a family of linear operators, such that for each n
T, : LP — {maximal functions}
such that T* is of weak type (p,p). Then the following set is closed:

C ={f € L? such that lim 7T,f = f almost every x}.
n—+o0o

Proof. Since LP is a metric space we have that
C closed <= C sequentially closed.

We want to prove that if f € C and fr, — f then f € C. Given ¢ > 0 we have || f — f]| < e.
Fix A we want to prove that there exists ¢ € RT such that:

,u{a; :limsup [T, f — f| > )\} < ce.
n—-+00
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Idea The following argument is really useful and many proofs use this basic idea: if we
xr >

have that x + y + 2z > X then, worst case scenario, we surely have ¢ y >
z >

WI> > wol>
L

Thanks to the linearity of T' we can write:

u{wilimsuplTnf—f > )\} Zu{fv31imsup|Tnf—Tnfk+Tnfk—fk+fk—fl > /\}

n——+oo n—-+o00

SM{:U Climsup | T, (f — fr)| > ;\}4_

n—-+0o00

A

n—-+o0o

A
—|—,u{m:limsup|fk—f| >3}

n—-+o0o

P

€
:A—|—B+C<ﬁ

where the last estimate follows because:
. A
A<psx:|T (f—fk)|>§

Al
<ol =]

P
< kﬁ thanks to the (p — p)-weak continuity

B =0 having f, € C

P
C< k% thanks to the Cebychev inequality

Lebesgue differentiation theorem

If f € L' then
1

71}3% m /B(a:,r) fly)dy = f(x)

for almost every .

Proof. Let us define the family of operators 7). where
i@ =1 )y
B(a,r)

and consider the maximal operator 7% f(z). We notice that T* is (1, 1)-weak, indeed

/ fy)dy| < / 1F()ldy
B(x,r) B(z,r)
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which means that T f(z) < M f(z). Having that M f is (1, 1)-weak, also T™ f is. For the
previous lemma, the following is a closed set of L!:

{feLl:}igéTrfzfa.e.}.

We conclude because for f € Cg it is clear that lir% T.f = f and they are a dense subset
r—r
of L!. O

Given K € L' such that K(z) = K(||z]|) is a radial, non-increasing function we
have that
[K + f(2)| < | K[ M f ().

Proof. Let us suppose K € C°, then:

Kl =| [ K=

“+o00

= K(r) ( g flz— y)dar> dr

0

“+o0

= |- K'(r) /7’ flx —y)dods | dr
0 0 JXs

fB(,;,,«) f(y)dy

L B :
=) FOuBaE) /B@,r) fy)dyd

+oo
/0 K/ p(B(a, 1) M f (x)dr

IN

+oo
< Mf /0 K (1) (B, r))dr

=Mf /OJFOO—K'(T)/OT </31d05> dsdr

SMf/O ]K(T)|/2Tdardr
= Mf| K]l

1t is important to have —K'(r) > 0 so that we can consider M f without any problem.
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If we consider K.(z) = E%K (%) with K € L', non increasing and radial. Then K*

is (1,1)-weak.

Proof. We have Ve
[ K+ fz)] < [|KellpnMf < || K[ Mf.

This implies
K*f =sup |[K.f| < || K1 M f.

Assume [ Kdz =1 then Vf € LP with 1 < p < 400 we have

Kg*fﬂfa.e.

Proof. Let us consider the maximal operator K* f = sup.. |K: * f|. Let us see that it is
(p — p)-weak:
cllF11Zo 1117
W{KTf >0 < p{||K [l Mf > N} < ——H0 =
We conclude thanks to the lemma above. O

Osservazione 2.1.3

The previous result still holds, in a certain way, even if K which is not radial nor non-
incresing: it is sufficient to consider a radially symmetric majorant, i.e. a function Ky such
that Ky is radially simmetric, non increasing and

K (z)| < |Ko(z)].
Using the result on Ky we get

[ K f| < [ Koll g M f(x).

2.1.1 Applications

The Lemma (2.1) has some non-obvious consequences in the theory of PDEs. Let us
study the case of the heat equation and Schridinger’s equation.

Heat Kernel
Given the heat equation with initial datum f € L?(I), i.e.:

{8tu = Au
u(z) = f

we say u is a solution if
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where we definite the heat kernel as
1 —m|x|?

e 4nt
(4mt)2

H, =

Osservazione 2.1.4
We can show that a solution exists using the Fourier transform:

86 = —4n2|¢|%0

This implies u = e—dm?lef*t f and so®

u = (6—47r2|§|2t)\/ « f

1 —nlz|?
= 7€ Int % f
(4mt)>2

:Ht*f

Example 2.1.16. If u is the solution of the heat equation with initial datum
f € L*(R?) then H; * f — f a.e.x.

Proof. We can see that ||Hy||;1 = ||Hi||z1 = 1, which means that H; is scaling invariant.

We notice also that sup, [|Hy| and V§ > 0 f|x |H,| =8 0. Thus Hjy is an approzimate
identity, i.e.

[>d

Hyx f — f in L%

The pointwise convergence follows because

sup |Hy x f| < M f(x)

hence C' = {f € L? such that lim; ,q H;f = f almost every z} is closed. The state-
ment is clearly true for the C& which are a dense, so the thesis follows for all f € L?. [

Schrodinger's kernel

Given the Schridinger’s equation with initial datum g € L2(I), i.e.:

Oru = iAu

u(xz) =g
we say u is a solution if

u = St * g,

where we definite the Schridinger’s kernel as
1 —rlz|?

e 4ant |
(4mt)

S =

ol

5We consider initial datum f € L?, so that f: f-
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Osservazione 2.1.5
We can show that a solution exists using the Fourier transform:

Opts = —4m?i|¢)* 0

N _An2i|€12¢ A
so 4 = e 4 "G and so
251412
U= (6 42i|€| t)V*g
1 m|z|?
frnd Qe 4t *g
(4mti)2
= St *g.
—an2i|¢|?t

Notice that in this case nor e® or u are in L': the equalities follow by direct

computations.

Example 2.1.18. If u is the solution of the Schréidinger’s equation with initial
datum g € L?(R?) it is not true in general that S; * g — g a.e.x.

Proof. The counterexample in d = 1 to this was given by Konig-Dalbert in 1984. If we add
some stronger hypotesis, such as® g € H*(R%) with s > %, thanks to Carleson theorem, we
get that Sy x g — ¢ a.e.x.
Another difference to the heat equation is the following: if we write

Sy kg =By
then we have that this is a semigroup action on the initial datum, which is also an isometry”
on L2 i.e.

it A

e gll2 = llgll 2

It is also true that

. 1
A
le™®glle < < llgllzr
t2

By the Riesz-Thorin theorem we get the dispersitive estimate, i.e.:

. 1
A
e gllLe < FQHQHLW
2

The exponents p, g given by the theorem are such that

+ 1 1
+-=1

:>7
p q

Q=S =
DI N
[SIISSGTISN

where it is important that p € [1,2] and ¢ € [2,+o0]. Since 6 = % — 1 we get?

. 1
A
€2l e < —5=llgl
t2
1
= "4 _d H!]HLP
tr 2

Sby H® we denote the fractional Sobolev space.
"This is not true for the heat equation
8the exponent of ¢ is positive because p < 2.
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2.2 Hardy-Littlewood-Sobolev inequality

Prior to statement and proof of the Hardy- Littlewood-Sobolev inequality, we need the
following:

Volume and surface of balls

vg = p({x||ge <1} and wy—1 = surface area (ossia ||z||gs = 1).

/ Proposition 2.2.2 |
For every d it holds that

Wd—1 =

Proof. Tt is an easy computation®:

o0
|2 —r2 d—
:/ eIl dx:wd_lf e " ritar
R? 0

o0
=wd‘1/ et dt
2 Jo

()
2 2

! Wi—1
Vg = / ldx = / wa1r?tdr = 4
B(0,1) 0

[NlfsH

By definition we have

We define the multiplicative operator |D|* such that:
[D*f = (2nl¢))*f
This means®, if we are allowed, that

IDI*f = (2m|¢°f)Y.

“Remembering that &g/—:f = 2mi&; f , we see, in the sense of distributions, that \D|2 is a derivative
operator.

[ Theorem 2.2.4 — Hardy-Littlewood-Sobolev inequality }

For0<fy<dand1+%=%+1,With1<p,q<oowehave

< Ol flze (HLS)

1
— %
H || J La

t3dt.

9We used the following change of variables:r® = ¢, dr = 1
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Osservazione 2.2.1
It is a generalization of Young inequality. Thanks to Example (1.3.6) we have that
2| € LP*> for p = %, indeed

1 1 1
I W QU S G
’”‘{\xV} “{AW‘} Vi

[l
oo

It follows that

1 1
|| / Le ’]mh

LR
which is like Young inequality with the exponents being

1 1 A
1+-==-+2.
p q d

Osservazione QAQQ
Having (€] 7% f)¥ = ¢ [ LY it holds that

lz—y|d-

Hence (HLS) becomes:
1D~ fllps S M1F1lze-

Osservazione 2.2.3
The exponents p,q given in the statement of (HLS) are the only one possible: we see
this thanks to a scaling argument. If the inequality is true Vf € LP then it true also for

f)\ = f(%), le.:
~ y—d — y—d < _
AP e = NP~ fallze < 1falle = AP ([ f] Lo
We need to understand what — is: remembering 0,, f)(z) = +0,, f(%) we have that
[e% —Q (63 €z
DI () = XDl (2.

This means that ., .,
AT fll e < AP (| £l 2o

which implies

d d
d—v+—-=-.
qQ p
We are finally ready to prove HLS.

Proof of HLS inequality.
1 1
—xf= | —f(x —y)d
S5t = [ ot
[ onfe-gdyt [ fa -y
- Tl \F T y)ay TR/ —y)ay
wi<r [yl s>k Y7

1 1
=fx(— —f(x — y)dy.
d <|yrvXBR> +/y|>R PR
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We now proceed to estimate separately the two integrals. The first one is an easy compu-

tation!O:

1 1
[x —=xBr| < Mfll—=xBglL
‘IW f [y R
=Mf [y
B Y[

R ,d-1
=M fwg_1 Ty = YL pd—y
Y
o T d—r

< Mf(z)R¥.

For the second integral we see that!!:

1
I
ly[y *Pr

1
—flx —y)dy <
|t vy <15l y

00 Tdfl
— ”fHL:D wd_l/}; Wd?"

/

L
Y

d*’;/p
~[fllze R

where we remember that, having ¢ # +oo, the is finite'? since

1 1 ~ ¥ 1
I<l+-=-+-===>=.
YT a7 ATy
We proved we have the following estimate:
1 d_
T * @ S MR + R

d
Having different exponents we want to find R such that M fR*7 = || f||»R¥ . Tt is
p
M d_ _d M - d
f _pid_p sz:( f) ‘
£l e 1f1ze
With this choice of R we have:

‘_1,7 « f(2)

clear that

P
a.,

<1115 M ()

which implies that its L? norm is:

Lt

-7

1-2 P
S A “NM I 2o

La

The Hardy-Littlewood-Sobolev inequality follows sinche M f is (p,p) weak, hence

1 1_2 ya
‘W*f(ﬂ:) <1 e,

La
1-2 P
LAl “NFN 2

< I fllze-

N

We observe that this proof gives a better estimate than the HLS since we have a control
O

with the maximal function.

10We stress that it is pointwise
'We notice that R is elevated to a negative power.

2we need to have d — 1 — vp’ < —1.
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2.2.1 Applications

Thanks to the Hardy-Littlewood-Sobolev inequality we can see if, given the energy F to a
problem, we have coercivity. By this term we mean the possibility that, if |Vu||z» — +o0
then E(u) — +o0.

Example 2.2.5. Given the problem —A¢ = |u|?, which energy is

Blu ‘//ms \x‘—’u(\ iy

there exists p such that |E(u)| < ||ul|ze-

Proof. If we are in R? we know the solution to this problem is

uP

|z — y|

Remembering that [ @@ _ (% * |u|2) |u|? then thanks to HLS we see that p has

lz—y]
to be such that
1+1—1+1:>2 1—1+1:> _ 0
Y p 3 p p 3 7%

This means that

0= flp M iy [ ()

1
< Jlu?|oe ||~ *
x

L’

< NlullZo llulls

= [[u?[? g = flull® 2.
L3 LS

The fact that there is a fourth power should not shock us, as a matter of fact we could

immediatly see that, for homogeneity of HLS, we need to have something like ||ul|%,,

whichever p is. In conclusion we have that, for p = % we have

[E(u)| < [l

Example 2.2.6. What if we consider the same problem for any dimension d? The

energy in this case is:
2
[ R,
RixRd [T — Y|

Proof. In this case the solution is, where C'is a constant we do not care about, the following:

o =
O/p: |d2
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The exponent given by HLS is

PP d P= a1
So we have
) 2 u(y) o
L dedy < ,
//Rded |z — yl|di—2 y < el
S 2 = lull® ae
Ld+2 Ld+2

O]

We now see whether or not we have coercivity: in order to this we need the Sobolev
inequality, stated in 3.1.3, which tells us that in R? we have ||u||;s < [[Vul/z2. In general,
if we have an energy F we can write £ = K + U where K is the kinetic energy and U is
the potential one. In this case we want to study

1 1 2 2
inf — /|Vu2—/ dedy>+oo .
| p2=12 4 |z —y|
ueH!

In this case we have!® K = [ |Vu|? and U = 1 [ fut x|)g|6 |Z‘ dxdy. We can see that:

USllull} s < lull 22 llelFs S lull§alVullZ,
We have coercivity if 8 < 2. Indeed by Holder we have

0 1-0
[ull e < flullzzllullzs”

Ve 19 se41-0 20 1 1 6 6
= _ _ — +1- :>7:7_7:;p:>0:;p.
p 2 6 6 6 p 6 6p 2p
Ifp= % we get 6 = % hence
U < llull7alIVul 2
O
Example 2.2.7. Given the problem? i0;u = —Au — ﬁu, prove that
1 1 2
inf — / |Vu|?dz — = / de > —00.
lull p2=1 2 2 ||
It arises from quantum mechanics
Proof. Using the Hardy inequality (3.1.1):
1
> \*_ 2
—=d < —V
<éﬂﬂ2x < 11Vl
we have inf > —oo. O

13Physically this are the kinetic and potential energy associated to an electric charge



30

CHAPTER 2. THE HARDY-LITTLEWOOD-SOBOLEV INEQUALITY



Chapter 3

The Hilbert and Riesz Transform

3.1 Schwartz class and Distributions

Thanks to Plancherel equality and Riesz-Thorin theorem we are able to define the
Fourier transform for fuctions f € LP with 1 < p < 2. The aim of this chapter is to
generalize this definition, in order to have a Fourier transform for more objects, which will
be the tempered distributions.

3.1.1 Schwartz class of functions

The idea will be, given some linear operator 1" acting on a class of function S, to define
T such that
(T'yu) = (T, u).

It is immediate that we need to define the class of function S in order that, if u € S, also
ues.
Let us now fix some notation': given z € R? and o = (a1,...,0q) a multiindex, where
a; > 0Viand |af = 25:1 o, we write
x® =ty

9 f = or .. o

It is immediate to observe that:

For every z € R? and o multiindex the following hold:

1.
|2 < Caale]®.

2. Forall k e Z+
2" < Cra Y 27

laf=k

Proof. This inequalities follow in the same way: let us considere the following maps:

51: Sd_l — R
x> |z%

Lwe will use the same notation as in Grafakos

31
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52 : Sd_l — R
la|=k

Both of them have the minimum which is greater then 0 for costruction, by omogeneity we
get the thesis. O

Osservazione 3.1.1
In the first inequality, it is not possible to have an inequality where we have two different
multiindexes «, 3:

2] <[],

In order to see this it is sufficient to do a rescaling argument: if it true for x it should also
hold for Az, where A € R.

Leibnitz rule

For all f,g € R? we have

Qi Qg _
o = P foo—h
(f9) ; (ﬁj (Bd) f0° g
where 3 < aif 8; < a; V1 < j < d.
Schwartz function

f € C* is in the Schwartz class S if Vo, § multiindex we have

Pas(f) = sup [220° f| < +o0.
R4

This will be a class of test functions.

Osservazione 3.1.2
We will often use this equivalent definition: given f € C*° the following holds:

fes = [0°f(x) VBvn.

1
<CgNn—F+
=N Y
This means that Schwartz functions decay faster then every polynomial.

Convergence in Schwartz's class
We say that given f, € S, f € S then f, 5, fifvVa,

pa,ﬁ(fn - f) nﬂo 0.

For p € [1,+o0] if f, 5, f then® f, N f and

10° fllr < Cap Y. paplf).

jof<| 252 |+1
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“This implies that the convergence in S is stronger than convergence in all L”.

Proof. Let us prove that, given the estimate, than the S-convergence implies the LP-
convergence:

an_fHLP < Z pa,ﬁ(fn_f)ﬁo

jol< | 42|+

because is a finite sum of numbers going to 0.
Let us prove the estimate:

10110 = ( [ 10170z’
- ( [ i+ [ \aﬁf\pdw)p
lz|<1 |z|>1

p
va <sup !35f1> + Csup [z|*+1107 f|P
r>1

B =

IN

VAN
e
N
~/
wn
o
o}
Q
Sy
=
S
S |

z€R4

d+1
T osupla|lF 08 e
R4 z>1

where the last inequality follows from the property of multindexes and where we also used
the fact that

[0 rde = [ (et al 08 e < Csup el 107
|z|>1 |z|>1 x>1

O]

We can see that the S class is closed under many operations such as convolution and
fourier transform.

Given f,g € § we have that fxg € S.

Proof. For any =,y € R¢ and N € N we have:

LY
A+ le o)V = T+ )Y

It is sufficient to prove this for N = 1 and then it will follow for induction. When N =1
we can see that

Ltz =14z —y+y| <14z —y[+ |yl <A+ |z —y))(1+|y]).
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If we now compute f * g(x) we have:

frgl = ’/fw— ‘
dy

/ (1+ \fv —yPN (L + [yt

1 L+ [yl)
S Ay / (1+ [y VT

1 1
= < +o0.
(1+[z))¥ / (1+ [yt

We now have to check all the derivatives 9°(f * g), but this is easy by observing that:
(fxg)=0"f*g.

For any f € § and any a multiindex we have:

1. §of = (2mi€)* f(€)

2. 0°f(€) = (—2mix)>f(€)

Proof. For semplicity we will assume we only have one derivative, i.e. a = (1,0,...,0).
Proof of 1):

8/0‘70 — / 8af(l,)6727ri§-xdx

|a| / —2mi€)® —27Ti£~xdx
= (2mig)* f(S)-
The integration by parts is possible because, considering R — +oo, the following holds:
/ Oy, fe 8Ty = — f(—2mi&y)e 2™ dy 4 fe ™Dy do
Br Br dBR

Idea This trick is quite common for Schwartz functions which decay really fast. We want
to see that the second term goes to zero so it’s done: it is quite obvious because f decays

faster then any polynomial. J
Proof of 2):
 f(E+her) — f(©)
O, f(6) = lim -
— 1 l —2mi(§+her)x _ —2mi&x
= [ 10 o] e
—2mi(hxz1)—1

— 1 —2rig-x €

finy [ et

— [ s(@im(

— (—2miz)e .
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where the limit passed inside because
—2mi(hay)—1

—2mi&-x e
h

e — (—2mizy)e 2T = H(x)

needs to go to 0 in L'. We need to see |H(z)| < C|z| in order to apply dominance
convergence, which follows from

st =s0)|

sup |g'| > ‘

| Theorem 3.1.8 ]
[ If f €S then f € S. ]

Proof. We want to see that 2®9% f in L for any o, 3. The idea is to see that something
like this holds:
120" fll e = = Nlpee < || = |l

Let us understand what the — is: by the previous formulas we have

(27T)|5|

< C’H@O‘(ajﬁf)HU < +o00.
27lal

12°0° fl| L = 027 )] ==

Example 3.1.9. For d =1 let g = xjo)(z). We want to compute g.

b
96 = [ sy dn =

a

6—27ri£z L e—27ri§a _ Z'e—27ri§b
—2mi& 2mi&

a

Example 3.1.10. For any d let us consider g = H?Zl X[as,b:) (i) So

a©) =11 TiE,

d [e—zmgiai _ ie—meibi]
i=1

Is it true that g goes like ﬁ? We see that if ¢ € R?\{0} then there exists 4y such
that |&,| > %. If this were not the case we would have

2
g2 =32 < S EE 2

which is absurd. So in the previous computation we have:

501 < 1o

e—27‘ri§iai _Z'e—27ri.§l-b
2mi&;

where we used the Lagrange’s estimate to write L < (b — ay).
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[ Theorem 3.1.11 }
If f € L' we have f(&) — 0 for €] — +oo.

Proof. We know that for each f € L' there exist g simple function such that, for € > 0,
If —gllzr < 5. We see that

IF O =1£) —9(&) + 9| < [£(E) = g + 13 < [If — gl + %

The thesis follows because for || > My we have [g| < §, which gives | fo|<e. O

J Proposition 3.1.12 — Hardy inequality }
Given d > 3 for all f € CF(R\{0}) we have:

@R, \?
(/R B dx) < 2SIV S lge

Proof of Hardy. The best costant is never achieved (non capito come si vede)
The reason why we ask f € C*°(R?\{0}) is that we dont want problems when integrating

by parts. Remember?
1 1 1
w5V ()
So if we define R(f) = xig—ai we have the following properties:
1 1 1
= ——R —
|z[? <|~’C|2>
> w0 ()| Z 2N 0 f1P =Y a3V

Let’s prove the inequality:

|f(z o 1 ( )
/Rd ‘.%"2 /’f‘ ( z-V | ’2 )dl’
1 1
- / Zam<xi|f|2> e
|fP? P Ll s
where we use the fact that, having |f|? = ff, it follows that O,,(ff) = fe,f + ffz;- For

now we have that: _ _
/2 _ L [BOT BDiy,

EEARENPE

2 |:10|2 — 2

2 1 =2z = i i =
O, GE SRR = T |4 e quindi > ; T =
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By applying Cauchy-Schwartz we get

[rad - (fiaey’ (piaey

S/ (/)
< </|Vf|2dw>%-

R(f)f

|z ?

dzx

and in conclusion

[

Osservazione 3.1.3
From this inequality we have:

|fI?

R

dz < ||V fII22 = |I€1F]] 2

It is possible to generalize and get,Vs,0 < s < %

|fI?

|JI’25

< MEP -

Heisenberg's inequality

For any f € s we have
2 dm 2 2 : : 21 F(£)]2 :
1512 < 7 it (flo—oir@Pan) " it ([ 16 sP17© Pac )

Osservazione 3.1.4
In some books you can find a different statement, which usually is

1f1122 < Cllafll 2|V £l L2

The problem with this formulation is that, its physical meaning is not really clear. If you
consider f as the position of a particle and f as its frequency, you cannot have a peak for
both of them because, if this were the case, you would have both of the inf = 0. Let us
remember then having a peak means that we know with certainty the quantity rapresented
by those functions.

Proof of Heisenberg. Let us see it for d = 1.

1£12 = / £ Fou(e — y)dz = — / 0u(f ) (& — ) = — / (oF + F 1) — y)da

By cauchy schwartz

i <2/ Ifxlzdxf (/ rmeQd:c)% ~(+)
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e visto che
1 a 1
([ 15 a0yt = ([ arie1fRae)?
allora

() = dr( / EPIF(©)2de)b( / P — )t

e ci posso anche mettere un inf,. By remembering that fe=27** = f (€ — 2) allora si puo
rifare lo stesso giochetto come prima per il primo pezzo con f cosi da avere fz
Exercise to generalize to every d. O

3.1.2 Distributions

Today we introduce distributions and then we will prove the Sobolev inequality.
Notation: C§° = { smooth function with compact support}. We have Cg° C S C C*.
These three spaces of test functions will generate three dual spaces:

(S) = &’ = {tempered distributions}
(C5°)' = D' = {distributions}
(C®) = &' = {distribution with compact support}

Taking the dual reverses the inclusions, hence &’ C &’ € D’. We recall what the convergence
in these spaces is:

o fi > FifVa,B pas(fi—f) =0,

COO
o f — fif Ya we have [|0%(fx, — f)|lL — O where suppfr C B forall k with B
compact.

° fk,go fif Va, VN > 0 we have sup [0%fr — f| = 0.

f sta in un duale qualsiasi se T'(fx) — T'(f) quando fr — f nello spazio di cui considero
il duale.

Example 3.1.14. For any ¢ € C§° with d = 1 we consider ¢} = %go(x — k). We

oo S
can see that ¢y, “% 0 whereas wr 7 0. The first one follows because ¢ € a supporto
compatto, quindi esiste k tale che ¢ = 0 essnedo fuori dal supporto e quindi ok.
Vediamo perche non vale l'altra: assume that is converges to 0, then we have

£1,0 = Sup
z€eR

:Ugo(:vk— k) 0)

Claim is that p1 Fageo 0, if we consider x = k then we have ¢(0) which can be
whatever we want, so absurd. Quindi & quite strong come convergenza.

A linear functional T" acting on S, so T': S — C, is a tempered distribution if and
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only if there exists m, k such that

(T f)l < > paplf) VFES
e

Proof. Omessa.

Example 3.1.16 (Dirac mass at zero). We denote the dirac mass at the pointa with
dq. We define ¢, as the operator such that

(0a; 0) = p(a) V€ C=.
We have §y € &', indeed if we have @, o ¢ then

(60, x) — (b0, )

Because & ¢ &’ C D/, it is true that 6g € S and &g € D'.

Idea per analisi armonica pill importante S’, per pde D’. J

Example 3.1.17. if f € LP with 1 < p < 400 then if we consider
(Ty, ) / fedx

we have Ty € D',
(Tr, o) < llell o 1 £ Il o

. S Lp
so if ¢ = ¢ then @ = ¢ and

{Ts, 05 — )| < llpj — @llpor | £l e

Example 3.1.18. If we have |g| < (1 + |2|)* for some k, where g is a measurable

function
/ gedz| = Ty(0)] < / (1 + [2])¥] ()| dz
R4 R4

= /(1 +[2)™ (1 + [2) " |e(2)|dz

*

X sup (L+[al) ()] [ (1+]a)F"do
z€RY

dove * segue perche ¢ e schwartz. Se k —m < d the function integrable. So we take

m such that m > k — d and we have that Ty(y) is controlled by a finite number of

seminorms, so it is a tempered distribution.
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We see now differentiation of distributions and the fourier transform of tempered

distribution.
Differentiation of distribution

We define® per ¢ € C§°
(0°T, ) = (=1)*T, 0%)

1 (—1)"’“ is for rispettare the integration by parts.

Fourier Transform and Antitransform of tempered distribution

p € S allora®

~

<T, (10> = <T7 ¢>
(well defined because is f € S then f € §). We also have
(T, ) = (T, )

“anche qui rispetti il caso in cui T is a function

—
|

Idea Let us compute 9%dy so we can prendere confidenza.

It holds o
0%y = (2mix)®.

Proof. We want to see that

(8280, ) = / (2miz)*pda
Idea Distributions act on functions. So you consider the integral.

(0%60, @)

(—1)'*(do, 0°¢)

(1)l (8, (~2miz) )
(do, (

(

—

2miz)*p)

In particular c% =1 O

Idea There are distributions whose fourier transform is a function. So the next definition

should not impress ourselves: 3

So we can consider the homogeneous sobolev space

H ={pecS pelLl.st. / 1€1%|@|2d€ < +oo}.
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FEsercizio 3.1.1
Prove that

_ e—27ria-z

>
S
|

3.1.3 Sobolev Inequality

We are set on R. We consider, given ¢ € S, the operator D such that

o —

[Dl*p = (2mil¢])*@

Osservazione 3.1.5
remember that 0., = 2mif;p and Ay = —472|€2 then

D2 =-A

{ Theorem 3.1.22 — Sobolev Inequality }
For 1 < p < 400 and f € S such that |D|°f € LP then

[fllza < DI fllze

1
where = =
p

Osservazione 3.1.6

The noble example, the one really common to use, is for p = 2: || f|lze < ||| D|f]| 2 with

s =1. So we have ¢ = d%d2 (we need d > 3). So we have

171 s, < NIDIS )22

By plancherel we have that
DI fllzz = IV fllz2

infatti abbiamo . -
IIDIfII72 = IV £l 12

/m%ﬂwz/mwmﬁz/wﬁ

In general for any p, where we dont have plancherel, we have an estimate with the
hilbert /riesz transform which gives

che esplicitato e

I[Dfulle < [IVul| e

let us see that the exponents have to be those by a scaling argument: if you define
fr=f(5) so0
d
[ fxllee = Ae[| f] e

we also have that .
DIy = 2IDIF(5)
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SO
st s
DI fallze = A% 1D fll 2

so we need to have

d d
= —S —|— —
q p

Proof of Sobolev’s theorem. We recall that?

[fllze = sup [(f,9)]

gl =1
geS

Ma allora possiamo usare plancherel

= sup [(f,)l= sup [((2n[¢])°F, (2ml€|°9)
llgll, pr=1 llgll, pr =1
ges geSs

Chiaramente (27/¢])*f & una distribuzione temperata (diminuisce pitt di polinomi). Ho
quindi bisogno che (27|¢|™%¢ € S, ma per questo serve che g = 0 in un intorno dell’origine.

Idea Domanda: le funzioni con questa proprieta sono dense nella classe di Schwartz? Se
si allora il sup puo passare a quelle. J

if this were the case we would have

sup [(|D|°f,|D|™*g)|
geF

1 <1

where F' = {g € S, § = 0in a neigherbood of the origin}. Let us consider p(t) = {O ] > 2
>

(€)= 9(6) [1 — (’f‘)]

Clearly g. € F. So we just have to prove there is convergence in L?: we have

g0 = <§90 (’“)) = g+ (e )(w)

. -4 d(1—1 .
lg — gell oo = €%lg * @(e) (@)l e < ¥llgllpre 7 lgre = €™ lg|l L1 || Bl| o

So, by remembering \5|5\f = (27)¢])* f we have

1fllze = sup (DIf1DI7%g) < sup [[IDPfllze D19l Lo

g€ ol o,
lall, v geF

and

So*

(we applied holder). We use now HLS to see

D19l o < Mgl pr =1

P ’
3¢i possiamo ridurre a S perché & denso in LP .

d
‘remember ||f(ex)|Lr =& 7 ||f||zr



3.1. SCHWARTZ CLASS AND DISTRIBUTIONS

How do we apply HLS? we can see that if 0 < s < d

_ 1
|D|%g = CW *4g
and we want to see )
HW * 9l o < M9l Lo
Remembering
1
”W * 9|l < M9l Lo
where
1yl
Y o q d
. 1_1
with our o we have 5=371 %.

Osservazione 3.1.7
curiosita: Lieb ha trovato la costante migliore per

HW *ul| e < Cllull e

Da questa possiamo ottenere per dualita

~ s
Jull 2. < CUIDPu] 2

43
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3.2 The Hilbert and Riesz transform

Let us understand the reason why we start to care about the Riesz transform. Thanks to
the Sobolev inequality, when s = 1, we have that

lull o < [[[Dle]] -

If p = 2 we see that |||D]u|| = ||Vu||, indeed since @ = 2mi&;u we have
|Dlu = 27 ¢la.

Unfortunately this is not the case for any p, but we will see that for 1 < p < 400 we have:
I[Dfulle < [IVull -
In order to arrive to such an inequality we first try to write® |D|u in terms of Vu.

Idea Remembering how the Fourier transform behaves for differentiation we see that:

d d .
27| 2mE?2 ) —i&;
or|e| = €17 _ > = (2mig;) (22 ).
q T & €l
If we can define an operator T} such that
— & < &\
Tio=—t=p=>Tp=|—i==p
’ i ! €]

then it will be clear that

o Vv
T)(0ny0) = (—ngzmw) — 0,,(Typ).

So we have that the operations do operations do commute and we have a multiplier for the
operator 7. J

Since the multipliers coincide seen through Fourier we have that
d
Dl =3 _Ti(0:,%).
j=1
This means that the LP norm can be estimated® as follows:

d
IDleller = ||> T5(0z,0)
Jj=1 Lr

d
<Y T3 00;0) 0
j=1

3.3 d

< Z ”8zj(PHLP-
j=1

Thus we have an equivalent norm to ||Vl ze-

"We have that |D| is a global operator, whereas V it’s local. One can talk about pseudodifferential
operator.
5The Calderén-Zygmund theorem (3.3) has a central role.
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Idea The right operator T will be the Riesz transform R; acting on Schwartz’s functions.

Since y y
g ) < .§j>
R = | —g 2L — ;)
i ( Ter” Tel) ¥

We will need to give a sense, with the language of tempered distributions, to
)
€]

Another reason why the Riesz transform is so importa2nt is given by the study of PDEs.
When we consider the problem —Au = f we have that % have the same regularity as f.
Can we say something about the mixed partials? We will have that

J

62
al'i 895]- -

Ri(R;(A))

hence the regularity of the homogeneous derivatives gives the regularity of the mixed ones
if the operator R; is continuous, i.e.:

1R (Au)||Lr < [|Aullze.

This will be a consequence of the Schauder’s estimates.

3.2.1 Hilbert Transform

Let us start from the case d = 1. This means that 7|2£|J = —isign(§).

Hilbert transform
Given ¢ € § we define the Hilbert transform as the tempered distribution such that

p—

Hyp = —isign(§)¢.

Idea Remembering the good properties of the Fourier transform related to the convolution
operator we want to find a kernel — such that

J
Principal value
We consider wg € S’ such that
1 1 1
(wo, ) = — lim G / ) gy = L lim/ o),
T o0 Jelglelst T T Jps1 @ Tes0Jjpze @

This is also called the principal value of %
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Osservazione 3.2.1
With the previous definition it in not clear why wy € §’. We can rewrite (wo, ¢) as follows:

1
PV <) £ ) = lim L
X e—0 |z|>e X
This second form gives more an idea of why wg € S'.

Proof.

Idea We will start to use a very simple, but poweful trick: if we have an odd function f

on a even interval I then
/f(:z:)da: =0.
I

Dealing with computations where integral appear we can add the quantity we need to
proceed, for example to use Lagrange theorem, without any problem. J

We have that wy € S’ if (wo, ¢) is controlled by a finite number of seminorms. This

follows because
lim fdx —/ SO(x)dac—i—/ %dm
=0 Jiz)>e T lel<|lz|<1 T lz|>1 &

_/ w(x)—w(O)Jr/ 8 o
le|<|z[<1 x |z[>1 &

< 2@l + llwel oo

Truncated Hilbert Transform

We consider the truncated Hilbert transform as

e 1 flea—y) 1 f)
o= /Iyze W= / w

m v T Jfomylze T =Y

Osservazione 3.2.2
It is clear that we can rewrite the Hilbert’s transform as

1
Hy = lim Hp = lim — @) 4,
e—0

e—0 T |x*y‘25 r—1Y
This form is handier because it is in terms of a singular integral.

Idea Achtung! In this case the denominator is elevated to the power of 1 which is also the
dimension in which we are working. This works because we do not have modules. Having
an odd function we are able to prove a (p,p)-estimate. In the case of higher dimension
we will have modules, hence the denominator will be of a different power, which will be
estimate thanks to (HLS). 4
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The multiplier wqg is such that
Wy = —isigné.

This clearly gives us Hy = wy.

Proof.

1 / o(x)
= lim — —
0T Jlg>e €
1 1 ,
= lim / / z)e 2T . dg
e—=0 T |€|>e f R 90( )
.1 L orita
=lim — | ¢(x) e dédx
=0T JRr |€1>e

= lim_z/ap(x)/ 781n27r5xdfdx
e—=0 T R |f‘28 €

= / o(—isign(x))dx
R
— (g, —isign(z))

Where we used the following identity:

/ Sm;bx) dx = wsign(b).

This follows because:

1. we have that

/ LG

oo X

Indeed if we consider I(a) = [;7*° Smx(m)e_‘wdx, this is equal to prove 1(0) = 7.
+00 L3 “+o0o
I'(a) = / Me_ax(fx) = / sin(z)e” “dx
0 x 0

This gives the following ODE:

1 1 1
1+ ) =—= = -1 =
(+a2) a
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which solution is
I(a) = —arctan(a) + C.

We see that sending a — 400 we have I(a) — 0 and arctan(a) — 5, hence C' = 7.

2. We just need the following change of variables: bx = 2/, indeed:

/ o Sinm(f”/) %dm’ - [ / o Sinx(x) d:c] sign(b)

—oo b —00
= 7wsign(b).
O

We now show a really useful lemma for any operator T which, will have a nice
consequence for the Hilbert transform.

If* sup,,~q [|Swl|lLr—rr < +00 we have

1S fllce < coll flze-

As a direct consequence we have that

180 (f) — fllze “Z5° 0.

“By ||S.|| we consider the operator norm of S, : LP — LP, whichis sup | Suf]lz».
feLp
fllLp=1

Proof of Lemma. We consider
A={feLl'nrr: f has compact support }

We have that A is dense in LP, indeed
(non immediato, ci deve ripensare) and that for any function in A we have S, (f) = f
for w >> 1.
B={feLf: lim S,(f)=fin LP}
w—r+00

is closed in LP. (same spirit of the maximal operator proof)
We want to prove that f, € Be f, — f in LP allora f € B. Let ||f, — f|| <e. We want
to prove Ve:

limsup |5, () - fl < e

Aggiungo e tolgo

15w (f) = FII = [1S6(f) = Swlfn) + Sw(fn) = fu + fr = [l
< NS0 (F) = Sw(fall + 150 (fn) = full + [1fn = [l
= [156(f = fu)l + 15 (fn) = fall + 1fn = ]
<C|f = fallLr +0+¢
< (14 C)e.
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Vedremo che
IH flle < || fllze

for 1 < p < co. Da questo segue
Take S (f) = (X[—wu] (©)f)Y. Is it true that S, =% f in LP?

Proof of corollary. For p = 2 it is trivial thanks to Placherel inequality, for any p it’s not
so immediate. it is true for 1 < p < co. We write

_ £ 2mi€x
5u(f) L _ flgemu

Let us see that sup ||Sy||rr—rr < 400 then we conclude thanks to the previous lemma.
We introduce the Riesz Projector

P: P — L
fo— s[f+iHf]
We see . 1
P} =3 |f +sign(©)f] = X012 f-

Idea Voglio vedere X[o 1o0] = X[-w,+00) — X[w,+00) SO We'll have x_, . caratteristica 0
infinito come caratteristica (- omega, infito ) - caratteristica (omega , infinito) cosi avremo
caratteristica dell’intervallo. chiaramente la caratteristica O , infinito ¢ p-p continua ,
dobbiamo vedere che lo € anche la traslazione in trasformata. J

Claim: | | | |
Sw(f) — 6—27rzwa:P(627mwxf) o e27rzwxP(6—27rzwxf)

¢ vero, mostralo per esercizio. (questo ¢ l'idea di traslazione per avere solo intervallo -
omega, omega).
We see that

1S ()llze < 1P f)|pe + [P )| o < Clle™ Lo + Clle™ ™% f]| o

e l'esponenziale sparisce da norma. (per controllare norma P in ultimo passaggio hai usato
stima p-p per trasformata hilbert) O

(parentesi: se si fa con cubo allora il risultato resta vero grazie a trasformata di riesz.
se invece si usa la caratteristica con disco il risultato crolla perche non si ha una p — p
stima e questo & 'argomento di un seminario)

3.2.2 Riesz Transform

Riesz trasform

We define con ¢ € S (con il pedice j indichiamo la j—esima direzione)

T Y

(wj, ) = lim / o(y)dy
! 7'(% =0 Jy|>e |y|d+1




50 CHAPTER 3. THE HILBERT AND RIESZ TRANSFORM

and the Riesz trasform

T(HL) Yj
Rjp = —35~ lim ﬁilw(y)dy

72 20 |z—y|>e |z —

It holds

Proof.

<wjv ‘P) <w]’ >

d+1 ;
—2mTixTt-
p(x)e
7rd;1 a—>0/5|>8/|£‘ /Rd

( hm/ / 5] —27rzx§
e=0 JRd 1>lgl>e |§’

T
=L
]

l\J‘—‘r

\+

Ricordando che € = 70 con r > 0 e # € S*! vediamo che vale I'uguaglianza segnata:

—2mirf-x
. _ rfje _
lim §J 2miz hm/ / B — =10 do
20 s g>e ‘§| si-1J1lspse T

. —27rzr9 T
lim / / jidrda
Sd-1 é>r>s r

0 sin(27r6 -
— —ilim/ / Mdrda
Sd-1 i>r>z—: r

=7 6;sign(f - z)do
2 Joi

_im (D)
9 ma+1

dove I'ultimo uguale lo vediamo la prossima volta O
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3.3 Calderén-Zygmund’s theory

Calderén-Zygmund kernel
We define the Calderdn-Zygmund kernel as the function K : R®\ {0} — C such that:

1. |K(2)| < Blz|~? per ogni z # 0.

2. Hérmander’s condition: there exists B such that Vy #£ 0
[ K@) - K- y)lis < B
|z|>2]y|

3. Zero-Average on shells: We have VR, S > O:

/ K(z)dz = 0.
R<|z|<S

Osservazione 3.8.1
These three condition will not always be used. We will specify when this is the case or not.

Singular integrals

Given a Calderén-Zygmund kernel, we define an operator by means of its principal
value. The singular integral operator with kernel K is defined as follows:

Tf:=lim K(z —y)f(y)dy.

e20 Jjz—y|>e

Osservazione 3.3.2
If K is such that |[VK| < |1"++1 for all x # 0, then the Hérmander’s condition holds.

Proof. DA SCRIVERE O

[ Theorem 3.3.3 — Calderén-Zygmund's Theorem \

We have
ITflle < IIfllze-

Idea The proof of this theorem will follow the next steps:
1. We prove the L? — L? strong continuity.
2. We prove the L' — L' weak continuity.
3. By using the Marcinkiewicz theorem we have LP — LP strong continuity for 1 < p < 2.

4. By duality we get LP — LP strong continuity for 2 < p < +o0.
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For any r, s € RT we can consider the truncation kernel K, s defined as:
KT,S(x) = K($)Xr<|:c|<s(x)'

This truncation will be useful in order to avoid singulary at 0 and at infinity.

Strong L? — L? continuity
Given a Calderéon-Zygmund kernel K it holds that

| Krs * fllrz < || fllz2 uniformly in 7, s.

Remembering that K * f = lin% K, s * f, then we have:
8:}_-‘1)‘00

K flle < Cllfll e

Proof. In this proof we suppose f € S. If we consider
Koxf=[ K@=y
e<lyl<i
the L? — L? estimate will follow from the uniform convergence and the fact that {K. * f}

is a Cauchy sequence in L?.
{K. * f} is a Cauchy sequence: given g9 < &1 we want to study

1Koy f— Koy % fllgz = / K@) f(z - y)de — / K@W)f(x —y)da| .
€2<\y|<% 51<|y\<$ 1o

We now compute the two integrals separately. We first note that:
1
2

STy / K (2) 2
£1<|y|<£2 i<‘y|<%

€1

1 \2
</
1
T‘d_l 2
= | Wag-1 W ~E7.
By Young’s interpolation theorem we have

/ K(y)f(z —y)dx < HKX1<|y<1
<<z 1o o °2

€1

=ola

1f1 s
L2

< [ fl-

For the second integral we use the third condition in the definition” of the Calderén-

Zygmund kernel, i.e.
the trick is the following: having and integral equal to 0 we can add the quantity we need in order to

proceed in the computation without changing it.
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/ K(y)f(x - y)de = / K@) (f(x —y) — f(x))da.
e2<]yl<er

e2<]y|<e1

Having f € § we can write f(x —y) — f(z) = f01<Vf(x — ty),y)dt and, by Minkowski’s
theorem, it follows that:

1
/ K(y) / Vf(x —ty) - ydtdy
e2<]yl<er 0

1
<[] K@ - )l
0 Jea<lyl<er

1
1
LIV @) / / L
0 Jea<|yl<er |y

1 €1 T‘d_l
= |V fllwa, / / d—1
0 ) r
1

%3

1_1 and the fact that the norm is

where we used the first condition, i.e |y||K(y)| < T

translation invariant.

Uniform estimate: For this part of the proof we will specialize ourself to the case of r = %
and s = ¢, so the kernel will be

Ke = KX1pp)<e

One can see that, if K is a Calderén-Zygmund kernel, then also K. is one. If we want an
uniform estimate on K., thanks to Plancherel, we can check it on K.

K. = K.e 2™ gy
Rd
— / Kse—Qﬂifxdx +/ Kee—Qﬂifaﬁdw
l21<| g 21> 1
=1+11

We now estimate the two integrals separately. We can rewrite®:
1| = / K (2)(e2™€% — 1)da
é<|z|<|?l‘

1

< / K () [2[€] 2] d
= <lel<pg

= 2r[¢] K (2)[|z|dz
%<|x|<%

1
ero1
§27T|f\ﬁ [T

1
~ 27T|f‘m ~ 1.

8We use the trick on shell and the Lagrange estimate with F(z) = e~ 7@,
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Idea The estimate of I starts with a computation that, apparently is nonsense, but that
it will be handy since it allows us to use the Hormander condition, which we still have not
used. We can write

II = / K (z)e e
%S\mks

—273 £
:_/ K(@e ™ (=+78) 4y
<l|z|<e

— _/ 672m’§-xK (1) . f2>
ﬁ<\x7ﬁ|<s 2|£’

B

So we have an equality like 1T = —B. We can also write 2/1 = I] — B. The key passege
will be to add and substract the right quantity A so that we can use Hérmander and have

2IT = (I1 — A) + (—B + A).

One can see that the right A is:

3 ) omit.
A= / (1: e~ 2mET o
|5‘<\r|<s 2|£|2

We can estimate the first term:

_ — _ _ i —2mi€-x
|11 — A /|5<06|<E <K(x) K(x 2|§|2)) e dz

1

where we use the Héormander condition? on |x| > Ghe 2|y|.

For the other term we can see instead that:

£ > —omie. /
A—B:/ K <:c— e 2mET J
w<|x\ : 2(¢|? L <

. K. <:U — 2‘32> e~ 2T gy
Tel x‘w‘

If we explicit the inequality in the domain of the integral we have!©

£ 1
T s
2/¢| 2l¢] €1~ 21El
9The change of Variables is: 5 5‘2 =y. This gives |y| = %
Ysince i < |z| then — 2‘£| > —%.
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3 > —orie. / § \ _omic.
Kloz— -2 )e 2mrqy| < K(x — e 2mET gy
/5 <IEl<lal<s < 2/¢[? T st <o O ) |

2[¢[2

which does not depend on £.
Conclusion: Using Plancherel we can see that

1Kz # fllz = Ko fllze < sup [Kel| fll2 < sup |Ke|l fllz2 < [1f]|.2
e>0 e>0
Remembering that, in the sense of the principal valute, we have
7f = [ Ko~ ) sy
then we have the L? — L? estimate:
ITfllz: < 1fllzz VfES.

By a density argument this follows also Vf € LP. O

Osservazione 3.3.3
For the Hilbert and the Riesz transform this estimate is obvious. It follows directly from
the Plancherel formula.

Weak L! — L' continuity
Given the kernel K and the estimate || Tf|;2 < ||f|lz2 we have that:

pllK £ > 2y < 1008

Osservazione 3.3.4

This lemma actually holds if we know that ||Tf||;2 < || f||z2 and if have a kernel M which
satisfies the Hormander condition. In our case the L? — L? estimate is guaranteed thanks
to the Calderén-Zygmund kernel.

In order to prove this lemma first we need to see the following:

Calderén-Zygmund Decomposition Lemma

If we have f € LY(R?%) and A > 0 we can write® f = g 4 b, with this two properties:

lgl <A
b=>ocqxof
where @ is a family of disjoint cubes, with the property:

1
)\g/ | fldz < 29,
19l Jo
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Furthermore,

ol < Ll
Q

%g denotes good function and b bad function.

Proof. For all ¢ € Z we define D¢ a family of dyadic cubes:
d
Dt = H [2£mi, 2E(mi) + 1)) Mi,...,mMqg €7
i=1
If the cube Q € D! and Q' € DY there are two possibilities:
1.9NQ =10

2. QCc QorQ cCO.
Fix A then for f € L' we have that there exists ¢o,VQ € D% guch that!!

1
— dr < \.
|ngﬂx_

For any cube in D% we take the'? 7children” Q' i.e. @ € D%~ With the children it

may happen that
1 / 1
— flde <X or / fldx > .
07 Jo ! 27 Jo !

If the first condition happens, we say Q' is a good set and iterate the construction, otherwise
Q' is a bad set. We define B as the family of bad sets. We now ask ourselves: if Q@ € B do
we have an upper bound for the integral?

1
Q]

2d
A< |f|d:c:/ | fldz < 29,
o 19| Jo

Idea If we take a point which ¢ B, it means that each cube Q which surrounds it, has
integral < A. The thesis will follow thanks to Lebesgue theorem. a

What about the measure of the bad family?
1 1
U <> 19> 5 [ Iflde < <lflle
QeB QeB Q

Let us take zg € Rd\ UQeB Q. It means that there exists Q; such that |Q;| — 0,
xo € Q; and

1
[ [flde <A
|Qil Qi
Then for lebesgue theorem we have |f(zg)| < A\ a.e. We can define the good function
9= f—> o Xg/ and have the thesis. O

"Having f € L' and that |Q| = 2%° we can determine £y such that % < 2%,
121t is a cube with half the side length of the previous one.
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Proof of Weak L' — L' continuity. Let us define

f RN Uges @ by 0 RN\ Uges Q

fi= fé\fodx otherwise f—ﬁfgfdx QekB

We have that f = f1 + f2, where

L |[fillee < 29X, indeed if 2 € RN\ UgepQ we have that |f| < A, otherwise
ITi)\ fQ fdx < 29X,

2. 1 fillr < |Ifllzr, indeed

dy < / flda

|Q|/fdx

3. I fellzr < 2| flz1, it is similar to the previous one.

In order to prove the (1 — 1)-weak condition we can write:

A A
i 11> ) < w{1K il > 5 L+ e ol > 5 )

T

11

Knowing [ |f1]|?dz < 29)||f1|| 1, thanks to the (2 — 2)-continuity and to the chebychev
inequality we have:

1Al _ 1Al
A2 TN

Idea In order to estimate I1 it will be cunning to consider bigger cubes Q* in order to
separate points but having still control. J

I1<C

Given Q € B which side is of length ¢, we consider Q* such that its size is £* = 2v/d/.
We can write

A
meu| U ra{rive w3

QeB

<3 ul +M{Rd\UQ* IK*f2\>A}

QeB

= 2Vd)'u(Q) + {Rd\ U Q" K. * fo] > ;}

A
< HfﬂLl —i—p,{Rd\U Q" |Ke * fo| > 2}.

We have the thesis if we prove that

{Rd\UQ* Ko fo > 5 } ”fl”

c
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If we consider fo = (f — fQ | fldz)x o, by Chebychev we have

1 1
C</ |K5*f2]d1‘42/ |K: x fol|dx
)\ Rd\UQ* Q /\ ]R’i\Q*

We can find yg such that each of its neighbourhood is contained in Q. Then we have'3:
Kenfo= [ Kelw oty
= /Q[Ke(x —y) = Ke(z — yo)lfa(y)dy.

We have proved that

1
<< /

We conclude thanks to the Hormander condition and Fubini:

1
OS5 fo g 18tz =) = Kl vl

<iZ/QfQ\dw

QeB

1
< S ller

/Q[Ks<f —y) — Ke(z — yo)| foly)dy| d.

O

Proof of Theorem. For the previous lemmas we get the L? — L? strong continuity and the
L' — L' weak continuity. By applying the Marcinkiewitz theorem we have the LP? — L?
strong continuity for 1 < p < 2. We show now the LP — LP strong continuity for 2 < p < oo
by a duality argument: given T', let us consider the adjoint operator T*:

(Tf,g9)=(f.T"9g).

So T™* is defined as
79— [ K@ - y)aly)dy

where

By definition of the || - ||z» we have

ITfllr = sup [(Tf,g)l= sup [(f,T"g)|
llgll, pr=1 lgll, =1

So we have
(T ) < [ flee 1T gl o < N llzellgll o

and
ITflle < NI fllze-

13 f5 has zero average for definition
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3.4 Littlewood-Paley theory

We now present the last result seen in this course, which was proved at the beginning
of the 1960s and is nowadays one of the most common tool in harmonic analysis.

J Lemma 3.4.1 — Paley-Littlewood decomposition l

J 3\

There exists 1) € C*°(R?) with compact support in R9\{0} such that

[e.9]

> @) =1 Vo £0

j=—00

For every = # 0 at max two of the terms overlaps. We can also take 1 radially
symmetric. (¢ una funzione che si concentra quello che ti interessa)

Osservazione 8.4.1
This function 9 can be seen as a locator, i.e. when we consider 1 f we are localizing the
function to a specific frequency. Indedd we can see that

00 +00
f=>ve7a)f= > J
j==—00 j=—00
) 1 |z[ <1
Proof. Let us consider x(z) = 0 |e]>2 such that x € C®. We define 9(z) =
x| =

x(z) — x(2x). This function is such that!'*:

N

> ) =y@Na) + @V a) 4+ (27 Va)

j=—N
= x(2 Va) - x(2"" )

Passing to the limit N — 400 we have the thesis since x(0) — x(c0) = 1. O

The following result has a proof which is a prototype use of the locator we just defined.

[ Theorem 3.4.2 — Mikhlin- Hérmander |

L J

Let m : R?\{0} — C such that V|y| < d + 2 it holds

|07m ()| < |€[7.

Then for all 1 < p < oo

|(m0r7)"

< I fllze-
Lp

Idea We proved that having a Calderén-Zygmund kernel K gives us the estimate |7 f||z» <
| fllz». In this statement it is as if we were considering m such that K = m, hence we are
unloading the requests on the kernel as decay conditions on the multiplier. a

14We have a telescopic sum.
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Proof. If we consider v = 0 then it clear that m € L* and so, for Plancherel:

= lm(&)fllz2 < 1fllz2 = I £ll2-

L2

|(m017)"

This gives as a (2, 2)-estimate. As we saw in Observation (3.3.4) we just need to prove
that the Hérmander condition holds. Let us write!®:

Ne2Z

= > Yn(©m(E)

Ne2?
=y mn(8).

Neg2Z

Observation (3.3.2) guarantees us that, if |[VK| < mﬁ, then the Hérmander condition
holds. But we remember that K = 1, hence:

IVE|< Y [V(mn)l.
Ne2Z

Let us estimate ||#*Viy||ge. Remembering that ||f||ze < ||f]|z: and that 9*f =
((—2miz)|z|*f), we have that

|2V |[ee < |0%Emn L1
It holds!S:

0°%(Emn)| = [0 (En (EOmEDI < Y 10" EmE)IO™ (Un(€))]

a1tas=a
:ZW%WWN@‘
-

o1 tas=«
7

1
_ = nlaz
<Y o

o1 tas=a

)

T
N
<
~

< Z ¢ [t leal = lel

al1toas=«

Idea The advantage of using my is that the function is now localized, i.e. [pqs = f| N

'5This is a standard abbreviation to write the dyadic numbers

5\we remember that [9°1m| < \5\%1
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Proceeding in the computation we get:

”mavaHLm < Z /Rd |§’1*|a1|N7\a2|’aa2¢ <]§[> de

a1 tas=a

1—lat| pr—lasl oz, (£
> /|M\f| N-leslfp ¢(N)d5

a1 tas=a

N
.S / pllelpd—1 gy el
0

a1 tas=a

< Z N~ lez2| prd+1—|az]

a1 tas=a

IN

— Nd+1—|a|

Let us now consider two cases: o« =0 and o« = d + 2:

a=0 = |Viy| <N

1
a=d+2 = |z Vmny| < N2 = N
. 1 1

Thus:

1 1
y : d+1
|V | < min <N ’N]a:\d‘*‘?)'

In conclusion!”:

IVE[< Y [Vian) = Y V)| + Y V(i)

Ne2Z Nzﬁ Ngﬁ
1 1
- - d+1
<Y ypmmt LN
N>-L N<A
E]] T
- 1
N ‘$|d+1'

O

Another classical use of this locator is in the PDEs theory, where it ensures the validity
of a chain rule for fractional derivatives.

"For dyadic sums it is true that Ynsng N = N%] and oy, N = 2No.
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