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Hyperplane arrangements

Definition (Hyperplane arrangement)
Let V be a finite-dimensional vector space over a fieldK. A hyper-
plane arrangement A is a (finite) collection of affine hyperplanes
of V . The same definition can be given for a projective hyperplane
arrangement in a projective space.
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Basic definitions

I The complement of an arrangement A is the set

M(A) := V r
⋃
H∈A

H.

I An arrangement A is central if⋂
H∈A

H 6= ∅.

I The defining polynomial of an arrangement A is

QA =
∏
H∈A

αH

where αH is a linear form defining H.
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Intersection poset

Definition (Intersection poset)
The intersection poset L(A) of an arrangement A is the set of all
non-empty intersections of hyperplanes of A, partially ordered by
reverse inclusion. It includes V as the intersection of zero hyper-
planes.
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A, B, C,D are the singular points of A. For a singular point P, its
multiplicitym(P) is the number of lines passing through it.
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Combinatorial properties

Definition (Combinatorial property)
We say that a property of an arrangement A is combinatorial if it
depends only on the intersection poset L(A).

I The cohomology ring H∗(M(A);C) is combinatorial (Orlik-
Solomon algebra).

I The fundamental group π1(M(A)) is not combinatorial (Ryb-
nikov counterexample).
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Our setting

From now we will suppose that A is an arrangement of n+ 1
projective lines in P2(R). The defining polynomialQA belongs to
R[X, Y, Z] and it is homogeneous of degree n+ 1.

Since the topology ofM(A) in P2(R) is easy to describe, we will
consider the complexified arrangement AC, which is the
arrangement in P2(C) defined byQA, and study the complement
M(AC) Ď C2.
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The Milnor fibre

Definition (Milnor fibre and geometric monodromy)
Let A be an arrangement of n+1 projective lines. ConsiderQ = QA
as a mapQ : C3 → C; it defines a fibration

Q
Q−1(C∗)

: Q−1(C∗)→ C∗.

The fibre F := Q−1(1) is the Milnor fibre of the arrangement. The
map

h : F→ F

x 7→ λx

where λ := e2πi/(n+1) is called geometric monodromy of the
Milnor fibre.
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The Milnor fibre

The geometric monodromy induces a map

h∗ : H∗(F;C)→ H∗(F;C);

we will focus on the first homology group.

Proposition
There is a C[T±1]-module isomorphism

H1(F;C) ' H1(M(AC);C[T±1])
where the action of T on the left is given by the monodromy action,
i.e. T · [a] = h1([a]) for [a] ∈ H1(F;C).

H1(M(AC);C[T±1]) is an example of local coefficients homology
(we’ll come back on this later).
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A-monodromicity

Since C[T±1] is a PID, and the monodromy action has order n+ 1,
we have a decomposition

H1(M(AC);C[T±1]) '
⊕

C[T±1]
/
(ϕd)

where ϕd is the d-th cyclotomic polynomial, and d | n+ 1.

Definition (A-monodromic arrangement)
An arrangement A of lines in P2(R) is a-monodromic if

H1(M(AC);C[T±1]) ' Cn
[
'
(
C[T±1]

/
(T − 1)

)n]
.

This corresponds to the fact that the only eigenvalue of h1 is 1, i.e.
h1 is trivial.
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A conjecture

No general formula for the Milnor fibre homology is known (not even
for the first Betti number!), nor it is known to what extent all this is
combinatorial—there are some conjectures, though.

Let A be a line arrangement in P2(R). The double point graph Γ(A)
is the graph defined as follows:

I its vertex set is {H | H ∈ A};
I there is an edge {H1, H2} iff H1 ∩H2 is a double point.

Conjecture (Salvetti-Serventi ’15/’17)
If Γ(A) is connected, then A is a-monodromic.

Salvetti and Serventi proved this only assuming extra hypotheses on
the graph Γ(A).
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Local systems

Definition (Local system)
Let A be an arrangement of n + 1 lines in P2(R),M := M(AC),
and let R be a commutative ring with unity. A rank-1 abelian local
system is a structure of π1(M)-module on R.

When R = C, the action π1(M)→ Aut(C) ' C∗ factors through
H1(M;Z), which is free abelian of rank n+ 1 generated by
β1, . . . , βn+1, where βi is a loop around a complex line of AC. In
this case, the local system is defined by a choice of a non-zero
complex number ti for each βi.
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Local coefficient (co)homology

We will denote by Ct the local system defined by
t := (t1, . . . , tn+1) ∈ (C∗)n+1, and with H∗(M;Ct) and
H∗(M;Ct) respectively the homology and cohomology ofM with
coefficients in Ct.

Remark
1. We have

H(M;Ct) ' H(M;C[T±11 , . . . , T±1n+1])

where the action of βi on the right is given by multiplication
by Ti.

2. The homology of the Milnor fibre is isomorphic to the ho-
mology ofM with coefficients in the local system defined by
βi 7→ t for all i = 1, . . . , n+ 1.
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Characteristic varieties

Definition (Characteristic variety)
Let A be an arrangement as before. The (first) characteristic variety
is

V(A) := {t ∈ (C∗)n+1 | dimH1(M(AC);Ct) > 1}.

Theorem (Arapura ’97)
V(A) is a union of (eventually translated) subtori of (C∗)n+1.

Is V(A) combinatorial?
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Resonance varieties

Let A be the Orlik-Solomon algebra associated with A. Fix a ∈ A1.
Left-multiplication by a gives A• the structure of a cochain complex.

Definition (Resonance variety)
The (first) resonance variety is

R(A) := {a ∈ A1 | dimH1((A•, a · );C) > 1}.

R(A) is a union of linear subspaces of A1 ' Cn+1

Tangent Cone Theorem (Cohen-Suciu ’99)
R(A) is the tangent cone of V(A) at (1, . . . , 1) ∈ (C∗)n+1.

The “homogeneous part” of V(A) is combinatorial!
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Local and non-local components

Denote the lines of A with [n+ 1] := {1, . . . , n+ 1} and a singular
point with the subset of [n+ 1] indicating the lines passing through
it. Let S Ď P([n+ 1]) be the set of the singular points.

For each P ∈ S with #(P) > 3, there is a local component of R(A)
given by

C(P) :=

z

∣∣∣∣∣∣
n+1∑
j=1

zj = 0

 ∩ ⋂
j/∈P

{z | zj = 0}

The non-local components admit a description in terms of
neighbourly partitions.
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Neighbourly partitions

Definition (Neighbourly partition)
A partition π = (p1 | · · · | pr) of [n + 1] is neighbourly if for all
i = 1, . . . , r and for all P ∈ S

#(pi ∩ P) > #(P) − 1 ⇒ P Ď pi.

If π is a neighbourly partition, define C(π) Ď Cn+1 as

C(π) :=

z

∣∣∣∣∣∣
n+1∑
j=1

zj = 0

 ∩ ⋂
P∈P

z

∣∣∣∣∣∣
∑
j∈P

zj = 0


where P := {P ∈ S | @ p ∈ π s.t. P Ď p}.
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Neighbourly partitions

Proposition
If dim(C(π)) > 2, then C(π) is a non-local component of R(A).

If π is a partition of a subset B Ď [n+ 1], define support of π,
supp(π), the set B.

Proposition
Let B Ď A be a subarrangement and let π be a neighbourly parti-
tion for B such that dim(C(π)) > 2. Then

C(π) ∩
⋂

j/∈supp(π)

{zj = 0}

is a non-local component of R(A). All non-local components of
R(A) arise from subarrangements of A this way.

16/27Oscar Papini Milnor Fibre and Characteristic Variety of Line Arrangements



Neighbourly partitions

Proposition
If dim(C(π)) > 2, then C(π) is a non-local component of R(A).

If π is a partition of a subset B Ď [n+ 1], define support of π,
supp(π), the set B.

Proposition
Let B Ď A be a subarrangement and let π be a neighbourly parti-
tion for B such that dim(C(π)) > 2. Then

C(π) ∩
⋂

j/∈supp(π)

{zj = 0}

is a non-local component of R(A). All non-local components of
R(A) arise from subarrangements of A this way.

16/27Oscar Papini Milnor Fibre and Characteristic Variety of Line Arrangements



Combinatorics of the characteristic variety

For the homogeneous part of the characteristic variety V(A), we
define ideals of C[T±11 , . . . , T±1n+1] such that their varieties are the
components of V(A).

I If P ∈ S with #(P) > 3, define

I(P) :=

n+1∏
j=1

Tj − 1

+
(
Tj − 1

∣∣ j /∈ P);
this corresponds to a local component of V(A).

I If π is a neighbourly partition, define

I(π) :=

n+1∏
j=1

Tj − 1

+

∏
j∈P

Tj − 1

∣∣∣∣∣∣ P ∈ P


where P := {P ∈ S | @ p ∈ π s.t. P Ď p}.
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Combinatorics of the characteristic variety

Proposition
Let B Ď A be a subarrangement and let π be a neighbourly parti-
tion for B such that dim(I(π)) > 2. Then the component passing
through (1, . . . , 1) of the variety in (C∗)n+1 defined by the ideal

I(π) + (Tj − 1 | j /∈ supp(π))
is a non-local component of V(A). All non-local components of
V(A) passing through (1, . . . , 1) arise from subarrangements of A
this way.
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Example: A3

Note: in all examples, we actually compute the characteristic vari-
ety of the affine arrangement aA of n lines in R2.

V(A) = {(t, tn+1) ∈ (C∗)n+1 | t ∈ V(aA), t1 · · · tn+1 = 1}

1
2

3

4

5 ∞
1 4 | 2 5 | 3∞

I 4 local components
I 1 non-local component, given by I(1 4 | 2 5 | 3∞)
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Example: B3

∞ 1 2
3

4

5

6
7

8
1 2 | 3 7 | 4 5...
3∞ | 4 8 | 5 6

3 7∞ | 1 | 2 | 4 | 5
1 5 6 | 2 | 4 | 7 |∞
2 4 8 | 1 | 5 | 7 |∞
1 5 6 | 2 4 8 | 3 7∞

11 part.

I 7 local components
I 11 non-local components given by A3 subarrangements
I 1 non-local component given by I(1 5 6 | 2 4 8 | 3 7∞)

The three partitions of the form x x x | x | x | x | x give rise to a
zero-dimensional ideal, so they don’t contribute to V(A).
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Example: B3 deleted

∞ 1 2

3

4

5
6

7 1 4 | 2 3 | 6∞
1 5 | 2 6 | 3∞
1 6 | 2 7 | 4∞
1∞ | 3 7 | 4 6

2∞ | 3 6 | 4 5

1 4 5 | 2 | 3 | 6 |∞
2 3 7 | 1 | 4 | 6 |∞

I 7 local components
I 5 non-local components given by A3 subarrangements
I 1 translated component with equations (in V(aA))

t6 + 1, t2 − t3, t1 − t4, t5t7 − 1, t4t7 + t3,
t3t5 + t4, t24 − t5, t3t4 + 1, t23 − t7
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The R(10) arrangement

2

3

4

5

6

7

9

1
8 ∞

1 5 | 2 7 | 3∞
...

3 7 | 4 6 | 9∞
1 6 | 2 7 | 3 8 | 4 5 | 9∞ (?)

10 part.

I 11 local components
I 10 non-local components given by A3 subarrangements
I 4 translated components with equations (in V(aA))

t7 − t8, t6 − t8, t5 − t8, t4 − t9, t3 − t9, t2 − t9,
t1 − t9, t8t9 + t

2
9 + t8 + t9 + 1, t28 − t9, t39 − t8
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The R(10) arrangement

2

3

4

5

6

7

9

1
8 ∞

1 5 | 2 7 | 3∞
...

3 7 | 4 6 | 9∞
1 6 | 2 7 | 3 8 | 4 5 | 9∞ (?)

10 part.

The ideal I(?) associated with the partition (?) is zero-dimensional,
so it doesn’t contribute to the variety. But its primary decomposition
has 7 ideals, among which there is the ideal that defines the
translated components!
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B3 deleted – Part II

∞ 1 2

3

4

5
6

7 1 4 | 2 3 | 6∞
1 5 | 2 6 | 3∞
1 6 | 2 7 | 4∞
1∞ | 3 7 | 4 6

2∞ | 3 6 | 4 5

1 4 5 | 2 | 3 | 6 |∞
2 3 7 | 1 | 4 | 6 |∞

If we try to compute the primary decompositions of the two ideals
given by the x x x | x | x | x | x partitions, we obtain nothing of interest.
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Sum of partitions

Definition (Sum of partitions)
Let π1 and π2 be partitions with a priori different supports
supp(π1) and supp(π2). Define the sum of π1 and π2 as the parti-
tion π1 + π2 such that
1. supp(π1 + π2) = supp(π1) ∪ supp(π2);
2. it is the finest partition such that each block of π1 and π2 is
contained in a block of π1 + π2.

π1 = 1 4 5 | 2 | 3 | 6 |∞
π2 = 2 3 7 | 1 | 4 | 6 |∞

π1 + π2 = 1 4 5 | 2 3 7 | 6 |∞
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B3 deleted – Part III

∞ 1 2

3

4

5
6

7 1 4 | 2 3 | 6∞
1 5 | 2 6 | 3∞
1 6 | 2 7 | 4∞
1∞ | 3 7 | 4 6

2∞ | 3 6 | 4 5

1 4 5 | 2 | 3 | 6 |∞
2 3 7 | 1 | 4 | 6 |∞

The primary decomposition of I(1 4 5 | 2 3 7 | 6 |∞) is I1 ∩ I2, where

I1 =

(
t6 + 1, t2 − t3, t1 − t4, t5t7 − 1, t4t7 + t3,

t3t5 + t4, t24 − t5, t3t4 + 1, t23 − t7

)
I2 =

(
t6 − 1, t2 − t3, t1 − t4, t5t7 − 1, t4t7 − t3,

t3t5 − t4, t24 − t5, t3t4 − 1, t23 − t7

)
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Final remarks

I I have other examples of translated components appearing
in primary decompositions of ideals associated with iterated
sum of partitions. Unfortunately I don’t have a criterion to se-
lect which ideals actually belong to the characteristic variety.
But I am working on it!

I I used a chain complex introduced by Gaiffi and Salvetti in
order to compute the characteristic varieties. The algorithm
requires some time (it took more than two weeks for R(10))
and becomes unfeasible for arrangements with > 10 lines.

I Notice that the monodromy of the Milnor fibre can be re-
trieved from the characteristic variety (just put all ti’s equal
to t).
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Thank you!

Thank you for your attention.
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