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Notation

e N =1{0;1;2;...} is the set of the natural numbers;
o N*={1;2;... }
e R is the set of the real numbers;

Z is the one-dimensional Lebesgue measure in [0, 1];

L?* stands for L*((0,1))

0,1)), unless otherwise specified;
0,1)

Y
I

L' stands for L'((0,1)), unless otherwise specified;

WhL stands for W1((0,1)), unless otherwise specified;

CY stands for C°([0, 1]), unless otherwise specified;

C((0,1)) is the set of the smooth function supported in a compact subset in
(0,1);

e card is the cardinality of a set.
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Introduction and motivations

The Mumford-Shah functional is the prototype of free discontinuity problem. It was
introduced by David Mumford and Jayant Shah in 1989 to face up to the problem of
the image segmentation. However, the one-dimensional version of the Mumford-Shah
functional models the problem of the signal segmentation. Let h be a signal; we are
looking for a signal u which is a "regular approximation" of hA.

Original signal =~ ——

Segmented signal ——

=
Pl o

Figure 1: Example of the original signal and the segmented signal

We can identify signals with real-valued functions in [0, 1]. Let A : [0,1] — R be a
function; we can introduce the Mumford-Shah functional

Eu) = /01<u—h>2 dx+/01(u)2 vt Y

z€8S(u

L,
)

where @ is the derivative of u (opportunely defined) and S (u) is the set of the disconti-

nuities of u.
1
. / (h — u)? dx is the fidelity term: the less it is, the closer to h it is the approxi-
0

mation.

1
. / (2)? dx is the volume term: the less is it, the more regular it is the approxima-
0

tion.
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Chapter 0. Introduction and motivations

Z 1 counts the jumps of the function u.
€8 (u)

Obviously, each term has minimum 0. However, we are interested in minimizing their
sum; in other words, we are looking for the best compromise among the three terms,
namely a function u that is quite "close" to h, enough "regular" and with a reasonable
quantity of discontinuity points.

This thesis deals with a more general problem. Let ¢, be nonnegative functions in
R. Similarly, we define the generalized Mumford-Shah functional

E (1) = /Ol(u — h)? dx +/ ) dx + Z (0.1)

z€S(u

where Au (x) is the height of the jump of v in z. What makes this functional more
general is that the function ¢ gives each jump a weight depending on its height. We
suppose that ¢ is convex, even, lower semicontinuous and ¢(0) = 0; we assume that
is even, lower semicontinuous, globally subadditive and ¢ (0) = 0. We also assume that

OR—

o] e ey T T

hm 1nf

The first part of this thesis is dedicated to well define the functional &, and show
that it admits minimum. We point out in which sense u is "regular" and it is a "suitable
approximation" of h. Formally, we introduce the space of the Special Functions of
Bounded Variation (SBV) as a subset of L?. Although this definition is exquisitely
one-dimensional, a function v in SBY can be decomposed in © = w + v, where w is in
WHL (it is the absolutely continuous part of u) and v is such that

ZAU

zeS(u)

(it is the jump part). We assume that the S (u) is a set in (0, 1) at most countable and
it is formed by pairwise disjoint points. We also assume that the series that defines w is
totally convergent. So, if h is a function in L?, we can well define &, as in (0.1).

The existence of the minimum for the generalized Mumford-Shah functional can be
obtained as a consequence of the direct method. So, we need compactness and lower
semicontinuity theorems for &,.,. Since the generalized Mumford-Shah functional is not
convex, these results do not follow immediately from the classical calculus of variations.

In the second part of the thesis we show how to approximate the minimum of &,..
We introduce a discrete approximation of &, in the sense of the I'-convergence and
we conclude that the minimum of &, can be obtained as limit of the sequence of
the minimizers of the approximating problems. Since &, is defined in an infinite-
dimensional space and the approximating problems are defined in R" (n is growing),
the simplification is absolutely relevant.

The third part of the thesis is dedicated to the regularity of the principal part of the
generalized Mumford-Shah functional. We define MS.,.;, : SBY — [0, +00] such that

MS (1) = / W det Yy

z€S(u)
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We introduce the descending metric slope of a functional: in some sense, it is very
similar to the norm of the gradient for a differentiable function defined in R™. If (X;d)
is a metric space, F' : X — [0, +0¢] is a functional and zg is a point in X such that
F(z) is a real number, the descending metric slope of F' in 2y measures how much it is
possible to decrease the value of the functional with respect to the distance from xzg.
We want to compute the descending metric slope of the functional MS,,.,. We consider
a function uy in SBY such that the slope of MS..;, in ug is finite. We find out that
the set of the discontinuities of wug is finite, ug is quite regular and there are Neumann
boundary conditions that force the values of the height of the jump to be in a very
special set. We also give a lower bound for the slope.

Surprisingly enough, these conditions turn out to be sufficient. If u, is a function in
SBYV with all the properties described, then the slope of MS,,.,, in ug is finite. We give
an upper bound for the slope that coincides with the lower bound in most cases.






Chapter 1

A preparatory problem

We define the generalized Dirichlet functional. So, we introduce the definition of convex
conjugate and we make a step toward the definition of the Orlicz spaces. These notions
turn out to be very useful to show that the generalized Dirichlet functional is lower
semicontinuous and there are some properties of compactness.

1.1 Convex conjugate

Definition 1.1.1 (Young function).
Let ¢ : R — R be a superlinear function, i. e.
lim inf M = +00
|z| =400 |£L‘|
Let us assume that ¢ is even, convex and such that ¢(0) = 0. We say that ¢ is a Young
function.

Definition 1.1.2 (Convex conjugate).
Let ¢ be a Young function as in definition 1.1.1. For all real numbers m, ¢ we denote
Tmyq the straight line of equation y = ma — ¢. If m is any real number, we define

dyp(m) ={qgeR | Vr e Rry (x) < p(x)}

We also define ¢*(m) = inf o7,(m). The function ¢* is also known as the convex
conjugate of .

Remark 1.1.3. Thanks to the growth properties of ¢, if m is any real number, then
2/,(m) is non-empty. Hence, the function ¢* is well defined.

Remark 1.1.4. We remark that the definitions of Young function and convex conjugate
can be given in a more general context (see [7]). However, definitions 1.1.1 and 1.1.2
are sufficient for our purpose.

Lemma 1.1.5. Let ¢ be a Young function as in definition 1.1.1; let m be a real number.

If we define p*(m) as in 1.1.2, then ¢*(m) is in <f,(m); in particular, for all x,m in
R the following inequality hold true:

p(x) +¢*(m) = maz. (1.1)

1



Chapter 1. A preparatory problem

Proof. 1t’s easy to see that
(¢"(m), +00) € ,(m) C [p*(m), +00).

Let us assume that there exists # in R such that ¢(x) < 7y,,0+(m); then, there exists a
positive real number € such that

oz)+e< rm;w(m)(x).

In other words, we have that

P(T) < Ty (my4e(T).-

So, ¢*(m) + ¢ does not belong to 4Z,(m). In particular, we obtain that 7,(m) is
completely contained in [p*(m) + €, +00), that is absurd because ¢*(m) is the infimum
of o7,(m). O

Theorem 1.1.6. Let ¢ be a Young function as in 1.1.1. Let p* be the convexr conjugate
as in 1.1.2. Then ¢* is a Young function.

Proof. Since ¢ is even, it’s easy to see that ¢* is even and ¢*(0) = 0.
We claim that ¢* is a convex function. Let mq, my be real numbers; let ¢ be in [0, 1].
Thanks to lemma 1.1.5, for all z in R the following inequalities hold true:

tmyx — tp*(my) < to(z),

(1= t)maz — (1 = )" (mg) < (1 = t)p(x).

Joining the inequalities, we have that
zltmy + (1 — t)ma] — [t@"(m1) + (1 = t)¢"(m2)] < @(z).

By definition 1.1.2, tp*(mq) + (1 — t)p*(my) is in o7, (tmy + (1 — t)ms); in particular,
we have that
te™(ma) + (1 = t)p*(ma) = ¢*(tmy + (1 — t)ma).
We claim that ¢* is a superlinear function. Let x be a positive real number; thanks
o (1.1), if m is a positive real number, we have that

In particular, for all z in (0, +00) we have that

lim inf e (m) > — limsupM =z
m—+oo M m—+oco TN
As ¢* is even, we have that
lim inf " (m) = +00

|m|—+o00 |m|



1.1. Convex conjugate

Figure 1.1: The Young function ¢(x) = %xz and the straight line y = %x —1

Ezample 1.1.7. Let p be a real number in (1, 400); let us consider the Young function

_ =

pp(T) : D

Let g be the conjugate index of p, i. e. ¢ is in (1,4+00) and such that

1
L
q p
We claim that ¢} is equal to ¢,. We can assume z, m are positive real number. If we
ask the straight line of equation y = mx — ¢;(m) to be tangent to ¢(z), we have to
solve the following system:
mr — @, (m) = —;
paP~

p

Hence, if m is a positive real number, we obtain that

* mq
%(m) = 7

We have shown that ¢} = ¢,. If we rewrite (1.1), we notice that for all z,m in R it
holds that

which is the classical Young’s inequality.

Remark 1.1.8. The example 1.1.7 explains why we refer to (1.1) as generalized Young’s
inequality.



Chapter 1. A preparatory problem

1.2 Luxemburg norm

Definition 1.2.1 (Luxemburg norm).
Let ¢ be a Young function as in 1.1.1. Let M be a positive real number. For all
measurable function f : [0,1] — R we define

1fllope = inf{b >0 ' /Olgo (@) de < M},

assuming that inf {()} is equal to +oo.

Ezample 1.2.2. Let p be a real number in (1, +00); let us fix M = 1. We show that
the Young function ¢, introduced in (1.1.7) defines the L” norm. For all measurable
function f : [0,1] — R the following identities hold true:

1 L 1 f())
p? ||f||<pp;1=ppmf{b>0‘ /0 E'T d:c§1}

. I
:ppinf{b>0‘—/ |f(x)|pdx§bp}
D Jo

(/1|f(x)\pdx)p if feLr,
= 0

p% inf {0} = 400 if f & LP.

Remark 1.2.3. It’s easy to see that if f, g : [0, 1] — R are measurable functions coinciding
almost everywhere, then || f[| .\, = llgll, o In particular, it is well defined [|[f]] .5
where [f] is a class of functions coinciding almost everywhere. It can be shown that
[[[l s, is @ norm on the set of the measurable functions with the relation that identifies
functions coinciding almost everywhere. In particular, [|-[| .\, is homogeneous and
triangular inequality holds. Indeed, we won’t show these facts: the interested reader
can see [7].

Lemma 1.2.4. Let ¢ be a Young function as in 1.1.1; let M be a positive real number.
Let f :]0,1] = R be a measurable function. Then ||f||%M =0 if and only if f(z) =0
for almost every x in [0, 1].

Proof. Let us assume that f(z) = 0 for almost every « in [0, 1]. If b is any positive real

number, we have that
1
/ gp(@)dm’:OSM.
0

By definition 1.2.1, it holds that || f[| ., < b; so we can conclude that || f|[ ., = 0.
By definition 1.2.1, it holds that [|f]| .., = 0 if and only if for all positive real
number a it holds that

/0 o (af(@)) dz < M.

For all positive integer n, we define the measurable set

e (-t



1.2. Luxemburg norm

If we show that for all » in N it holds that .Z (%,) = 0, then the conclusion is
immediate. By contradiction, let us assume that there exists a natural number ng
such that % (%,,) > 0. Under the growth hypothesis of ¢, there exists a positive real
number ag such that for all a greater than aq it holds that

*() >zt

Hence, if a is greater than ag, then

/Olw(&f(x))dx > /0190 (ngo) Ly, (2) dv = L(Buy)p <n_0) - M.

So, the absurd follows immediately. m

Lemma 1.2.5. Let ¢ be a Young function as in 1.1.1; let M be a positive real number.
Let f:[0,1] = R be a measurable function such that || f|| ..o, is in (0,+00). Then, the
mfimum in the definition 1.2.1 is actually a minimum.

Proof. Obviously, it is enough to show that

(@)
| <HfHW> tr=M

Let {b,}nen be a sequence of positive real number with the following properties:

1
e if n is any natural number, then / % (@) dr < M;
0

n

e the sequence is monotonically decreasing and the infimum is || f ||@. M-

We notice that {gp (bi)} is a sequence of measurable nonnegative functions that
" neN
converges toward ¢ (W) pointwise for almost every x in [0, 1]. Under our assumption
©®;

on {b, }nen, we notice that for almost every x in [0, 1] for all n in N it holds that

P() =)

Thanks to Beppo Levi’s theorem, we have that

— |dz =1 —\d )
/ﬁ"(uwaM) o= i [ (5 ) do < a

]

Let ¢ be a Young function as in 1.1.1; let ¢* be the convex conjugate as in 1.1.2.
We have shown in 1.1.6 that ¢* is a Young function. Hence, for all positive real number
M, we can consider [|-[| ., and [|-[| -, the next statement ties them up.

5



Chapter 1. A preparatory problem

Proposition 1.2.6 (Generalized Holder’s inequality).

Let ¢ be a Young function as in 1.1.1; let * be the convex conjugate as in 1.1.2; let
M be a positive real number. Let f,g :[0,1] — R be measurable functions such that
[ £l prg @nd [[gl] e pq are real numbers. The following inequality holds true:

1
A!ﬂ@ﬂ@ﬁm§2WWﬂbmHg

M -

Proof. 16|l = 0 or |l
lemma 1.2.4.

Let us assume that both [/ f]| .\, and ||g
1.1, for almost every z in [0, 1] it holds that

F@ @l _ (@1, [ e@)]
\muMw¢m4—@QmuM>+w(m¢m)'
We integrate and we have that
@) lgo) Lo 1) L e
d d dx.
o|muMm@m1x§A¢<me>x+A“9QmwM>x

Thanks to lemma 1.2.5, the right hand side is lower that 2M and the proposition is
completely proved. O

o+.m = 0 the conclusion is an immediate consequence of

o0 Are positive real numbers. Thanks to

1.3 Generalized Dirichlet functional in W1l

Definition 1.3.1 (Generalized Dirichlet functional in Wh1).
Let ¢ be a Young function as in 1.1.1. We define D,, : L? — [0, +-o0] such that

1
o(u) de  if ue Whi;
pw = | [ 0
+00 if ue L*\ Wht,

We refer to D, as the generalized Dirichlet functional in Wht,

Proposition 1.3.2. Let ¢ be a Young function as in 1.1.1. Let us define D, as in
1.3.1. Let a, B be real numbers. Let us denote

Xayp = {u e W5 | u(0) =, u(l) =3}.

Then, the straight line that joins (0; ), (1; ) is a minimum point for D, in X,.5. We
say that it minimizes the functional with Dirichlet boundary conditions.

Proof. Let u be any function in X, 3. We denote as ug the straight line that joins
(0; ), (1; B). Let us denote v := u — ug. We notice that ug(x) = f — « for all z in [0, 1].
Since ¢ is a convex function and g is constant, there exists a real number p such that
for almost every x in [0, 1] it holds that

p(uo(r) + 0(x)) = po(x) + ¢(uo(x)).

6



1.3. Generalized Dirichlet functional in W1l

If we integrate, we obtain that

D) = [ plinte) + i) 2 [ i) de+ [ ptinte) d

Since v is in W' and v(0) = v(1) = 0, it’s easy to see that

So, we have that

1.3.1 Compactness of the generalized Dirichlet functional

We state a compactness theorem for the generalized Dirichlet functional. The proof is a
consequence of the theory developed in the previous section and the Dunford-Pettis
theorem.

Lemma 1.3.3. Let ¢ be a Young function as in 1.1.1; let M be any positive real
number. For all € in (0,+00) there exists a positive real number § with the following
property: if C is a measurable set in [0, 1] such that £ (C) <4, then |[Lc|| . < e

Proof. Let € be a positive real number. It’s easy to see that there exists a real number
k greater that 1 such that ¢ (f) is greater than 0. If we define

M
v (2)

we claim that ¢ satisfies all the requests. Let C' be a measurable set in [0, 1] such that

Z (C) < 6. If Z(C) is equal to 0 the conclusion is trivial; hence, we can assume that
Z (C)isin (0,9). By definition of ¢, k, C', we notice that

*”(E> = < fﬂfm'

By definition 1.2.1, we have that
e
b>0 /g%:?ﬂ)ﬁgﬂ%
0

e (3) 20 < mj

()= Z@}

0=

L]l 0 = int

I
E.
—

I
=5
—
—
S
V
[a]

SH
\Y
(@)

AS)

T ™
INA
™



Chapter 1. A preparatory problem

Theorem 1.3.4. Let ¢ be a Young function as in 1.1.1. Let us define D, as in 1.5.1.
Let M, e be positive real numbers. There exists a positive real number § with the
following property: if x,y are in [0,1] and |z —y| < 9§, if w is a real-valued function that
belongs to Wt such that D,(w) < M, if we consider the continuous representative, it

holds that |w(x) —w(y)| < e.

Proof. Let M, e be positive real numbers. Let us define the convex conjugate p* as in
1.1.2. We recall that ¢* is a Young function (see 1.1.6). Thanks to lemma 1.3.3, there
exists a positive real number § such that if x,y are in [0, 1] and |z — y| < §, then it

holds that .

]

We claim that & satisfies all the request. Let w be a function in W' such that
D,(w) < M. Let z,y be in [0, 1] such that |z — y| < d. It is not restrictive to assume
that < y; we also denote as w the continuous representative. Since D, (w) is lower
than M, by definition 1.2.1 it immediately follows that

[ o pg < 1. (1.3)

If we join 1.2.6, (1.2) and (1.3), we obtain that

() - |</|w ldt = /|w () dt

< 2M ]| g || L[] g < &

]

Corollary 1.3.5. Let ¢ be a Young function as in 1.1.1; let us define the generalized
Dirichlet functional as in 1.3.1. Let M be a positive real number; let {w,}nen be a
sequence of functions in Wt N C° such that D,(w,) < M for all n in N. Then,
{wy nen s a equi-uniformly continuous sequence of functions. Moreover, let us assume
that there exists a positive real number R such that for all n in N there exists x, in
[0, 1] such that |wy,(z,)| < R; then {wy, }nen is a equi-bounded sequence of functions. In
particular, there exists we, in C° and a subsequence {w,, }ren that converges uniformly
toward ws.

Proof. The first statement is an immediate consequence of theorem 1.3.4.

Let {z,}nen be a sequence in [0, 1]. Let R, M be positive real numbers as in the
hypothesis; let € be equal to 1. Let 6 > 0 be given by the theorem 1.3.4, with ¢, M as
declared. There exists a finite sequence

O=y <y < - <yYp<yYpp1=1

such that for all integer 7 in {0;...;p} we have that |y; — y;+1| < 0. Let n be a natural
number: there exists i,, in {0;...;p} such that z, is in [y;,, ¥i,+1]. Let 2 be any point in
[0, 1]: there exists i, in {0;...;p} such that = is in [y;,, ¥i,+1]. Without loss of generality,
we can assume that 7, < 1,; thanks to triangular inequality, we have that

[wa ()] < wn () — wn(20)] + [wn ()| |
< )|+ w0a(z) = i)+ 3 benla) = w0

< M+p+2.



1.3. Generalized Dirichlet functional in W1l

As for the last statement, it is an immediate consequence of the Ascoli-Arzela’s
theorem. O

Definition 1.3.6 (Uniformly integration).

Let .Z be a set in L'. We say that .# is uniformly integrable if to € in (0, +00) there
corresponds a positive real number ¢ with the following property: if C' is any measurable
set in [0, 1] such that .Z (C) < ¢, for all f in .Z it holds that

/C|f(:c)]dx§5.

Theorem 1.3.7 (Dunford-Pettis theorem in (0,1)).
Let {w, }nen be a sequence of functions in L'. Let us denote F = {w, | n € N}. Those
facts are equivalent:

e 7 is uniformly integrable as in 1.5.6;

e there exists a subsequence {wy, },oy and a function we such that {wy, }, con-
verges L'-weakly toward we.

Proof. As for the proof, see [2]. O

Proposition 1.3.8. Let ¢ be a Young function as in 1.1.1. Let us define Dy, as in 1.5.1.
Let M be a positive real number; let us consider a sequence of functions {w, tnen in Wt
such that for all n in N it holds that Dy(w,) < M. If we define F = {w, | n € N},
then % is uniformly integrable as in 1.5.6.

Proof. Thanks to the growth hypothesis on ¢, there exists a positive real number B
such that for all z in R it holds that ¢(z) > |z| — B. Then, for all n in N for almost
every z in [0, 1] it holds that

|ion ()] < |p(wn(x))| + B. (1.4)

Let ¢ be a positive real number. Thanks to lemma 1.3.3, there exists ¢ in (0, +00)
with the following property: if C'is measurable set in [0, 1] such that . (C) < d, then

it holds that c

||1C oM < m (15)
We immediately notice that it is not restrictive to assume that 6 < 5%. By definition

1.2.1, for all n in N we have that

If we join the generalized Holder’s inequality (see 1.2.6), (1.4), (1.5) and (1.6), for all n
in N the following inequalities hold true:

/C i ()] iz < /C (p(ivn(z)) + B da
:/Cga(wn(a:)) dr+ B.Z(C)

< / (i (@) Le(z) do +

2
. g
S 2M Hwano,M H]IC p*;M + 5
< 9 i 19
—+ - ==
-2 2



Chapter 1. A preparatory problem

Theorem 1.3.9 (Compactness theorem for the generalized Dirichlet functional).

Let ¢ be a Young function as in 1.1.1; let us define D, as in 1.5.1. Let M be a positive
real number. Let us consider a sequence of functions {wy }nen in WEE N CO([0,1]) such
that for all n in N it holds that Dy(w,) < M. Let us assume that there exists a real
number R and a sequence {x,}nen in [0, 1] such that |w,(z,)] < R for alln in N. Then,
there exists a subsequence {wn, }, .y and a function ws with the following properties:

o {wn, }ren converges uniformly toward weo;
o Weo is in W and {wn, },oy converges L'-weakly toward w.

Proof. Thanks to the Dunford-Pettis theorem (see 1.3.7), there exists a subsequence
{wn, } ey and a function ve in L' such that {wn, ren converges L'-weakly toward v
Thanks to corollary 1.3.4, up to further subsequences, not relabelled, we can assume
that there exists a function w., such that {wy, }, . converges uniformly in [0, 1] toward
Weo. We claim that ws is in WH! and we is equal to vs. By definition of weak
derivative, for all £ in N for all p in C'2°((0, 1)), it holds that

/Olwnk(x)sd(x) dr = — /01 i (2)p(x) da.

Thanks to the uniform convergence, we have that
1

lim Wy, ()¢ (x) do = /0 Weoo (1) () du.

k—+o00 0

By definition of L!'-weak convergence, we have that
1

lim Wy, (z)p(z) do = /0 Voo (7)) () dz.

k—+o0 0

This is enough to state that we, is in WHL((0,1)) N C° and W = Vee- O

1.3.2 Lower semicontinuity of the generalized Dirichlet func-
tional

We state a lower semicontinuity theorem for the generalized Dirichlet functional. The
proof is a consequence of the Hahn-Banach separation theorem.

Theorem 1.3.10. Let V be a normed vector space. Let T : V — [0, +00] be a conver,
lower semicontinuous map. Let wy be in V; let {wy,}nen be a sequence in V that
converges weakly in V toward ws,. Then, it holds that

liminf Y(w,) > T (ws)-

n—-4o0o

Proof. As for the proof, it is a consequence of the Hahn-Banach separation theorem
(see [2]). O

Theorem 1.3.11. Let ¢ be a Young function as in 1.1.1. Let us define the generalized
Dirichlet functional Dy, as in 1.3.1. Then, D, is lower semicontinuous.

10



1.3. Generalized Dirichlet functional in W1l

Proof. Let us define Y : L' — [0, +00] such that

V)= [ ol do

Since ¢ is a convex function, it’s immediate to see that T is a convex functional. We
claim that it is lower semicontinuous. Let ws, be a function in L'; let {w, },en be a
sequence in L' that converges toward w., with respect to L' norm. Up to subsequences,
not relabelled, we can assume that {w, },en converges pointwise toward we, for almost
every x in (0,1). Since ¢ is a continuous nonnegative function, the following inequality
is a consequence of the Fatou’s lemma:

1 1
lim inf/ o(wy,) dr > / o(wy) du.
0 0

n—+0o

Thanks to theorem 1.3.10, if wy, is a function in W and {w, }.en is a sequence in
WHL such that {w, }neny converges L'-weakly toward s, it holds that

1

1
liminf [ ¢(w,) dx > / P(Ws) dx.
0

n—-+o0o 0

In conclusion, let us consider a function wy, in L? and a sequence {w, }nen in L? that
converges toward ws, with respect to L? norm. We claim that

lim inf D, (wy,) > Dy(weo).

n—-+0o0o

If the left hand side is +o00, the conclusion is trivial. Let us assume that there exists a
real number M such that the left hand side is equal to M; up to subsequences, not
relabelled, we can assume that

e the inferior limit is actually a limit;
e D,(w,) < M+1 for all nin N;
e the sequence {wy, },en converges pointwise toward we, for almost every x in (0, 1).

Thanks to the compactness theorem for the generalized Dirichlet functional (see 1.3.9),
there exists another subsequence, not relabelled, such that {w,} converges L'-weakly
toward w.,. Therefore, we can conclude that

D, (wso) < liminf D, (wy,).

n—-+o0o

11



Chapter 2

An example of free discontinuity
problem

2.1 Generalized Mumford-Shah functional in P77

We introduce the space of the Pure Jump Functions (PJ); we define the generalized
Mumford-Shah functional in P.J; we state and prove a lower semicontinuity theorem
and some compactness result.

2.1.1 The space of functions PJ

Definition 2.1.1 (Limit in measure theory).

Let .7 be a class of functions in L? coinciding almost everywhere; let o be any point in
[0,1). Let g be any representative of .#. Let us assume that there exists a real number
[ with the following property: to a positive real number e there corresponds a positive
real number ¢ such that (xq,zo + d) is contained in [0, 1] and it holds that

Z ({z € (vo,20+9) | |g(x) =l <e}) = 4.

We say that [ is the right limit for .# as x approaches x¢; it is denoted as Z (xo)™.
Similarly, if xq is in (0, 1], we define the left limit for .# as = approaches xy; it is
denoted as % (zg)~.

Remark 2.1.2. Tt’s easy to see that definition 2.1.1 does not depend on the specific
representative of .# chosen. Hence, it is well posed.

Remark 2.1.3. By definition 2.1.1, it immediately follows that the algebraic properties
and the uniqueness of measure theory right limit and left limit still hold true.

Definition 2.1.4 (Jump in measure theory).

Let .7 be a class of functions in L? coinciding almost everywhere. Let xy be any point
in (0,1). Let us assume that the right limit .7 (x¢)* and the left limit % (zo)~ are well
defined as in 2.1.1. We define the jump of .# in x as

AF (.Io) = y(l’o)+ — y(l’g)_.

Definition 2.1.5 (Essential discontinuity).
Let . be a class of functions in L? coinciding almost everywhere such that A% ()
is well defined for all z in (0,1) as in 2.1.4. Let x¢ be a point in (0,1). We say that

12



2.1. Generalized Mumford-Shah functional in P.J

Z is continuous in zg if and only if A% (zy) = 0. We define the set of the essential
discontinuities as

S(F)={re€(0,1)| AZ (x) #0}.
Definition 2.1.6 (P.J).

Let .Z be a class of function in L? coinciding almost everywhere such that A% (x) is
well defined for all  in (0,1) as in 2.1.4. We define S (.%) as in 2.1.5. Let us assume
that

o S (%) is at most countable;

o Y AT ()] < oo

z€S(F)
e Z(0)" is well defined as in 2.1.1 and it is a real number.

Hence, we can well define f : [0, 1] — R as follows:

f= + Y AZ(y) 1y

yES(F)

We say that .% is in PJ (Pure Jump Functions) if and only if f belongs to .. We
refer to f as the canonical representative of .%.

Remark 2.1.7. By definition 2.1.6, it’s immediate to see that PJ is a vector space. Let
.9 be in PJ. We denote as f, g the canonical representatives respectively of .% and
4 asin 2.1.6, i. e.

f= Z AJ ]l[y,1]>

yES(F)
£ Y M0
yeS(Y)

Obviously, f + g is in . +%. We also notice that
S(F+9)CS(F)US(¥9)

and the inclusion can be strict. We also notice that .% is completely determined by the
continuous representative f. In fact, if f and g coincides for almost every z in [0, 1],
then .# and ¢ coincide in L?; if we assume that .# = ¢ in L?, by definition 2.1.6, we
have that f(z) = g(z) for all z in [0, 1]. Having said that, we can identify .# with its
canonical representative f; we denote .Z (x¢)* as f(xg)", J(xo)_ as f(xo)”, AF (x0)
as Af (zo) and S (F) as S (f).

We introduce the following decomposition, that will be very useful later.

Definition 2.1.8 (i-jump set and band).
Let f be in PJ as specified in 2.1.7; let x be in S (f). For all positive integer i we
define the i-jump set as follows:

st ={eesu [ar@ie (3.24] )

13




Chapter 2. An example of free discontinuity problem

assuming that % = 4+00. We also define the i-band of f as follows:

=)0 Af (@) 1y,

zeS(f)!

assuming that f* = 0 if S (f)" = . In particular, it holds that

f=r0)+ (Z fi> : (2.1)

i>1

Remark 2.1.9. Let f be in PJ. By definition 2.1.6, the series that defines f converges
totally; hence, for all i in N* we have that S (f)" is a finite set.

2.1.2 Weak formulation in PJ

Definition 2.1.10 (Incremental ratio in 0).
Let ¢ : R — R be an even function; let 6 be a positive real number. We define

Fw(@) = %

Definition 2.1.11 (Weight function).
Let ¢ : R — [0, 4+00) be an even, lower semicontinuous function with the following
properties:

e (f) = 0 if and only if § = 0;

e liminf 'y (#) = +oo;

0—0+t

e it is globally subadditive, namely if a, b are real numbers then
Yla+b) <(a) +1(b);

e liminf(0) > 0.

6—+o00

We say that 1 is a weight function.

Definition 2.1.12. Let 1 be a weight function as in definition 2.1.11; let a be a positive
real number. We define

Ty(a) = inf {¢(z) | = € [a, +00)} .

Remark 2.1.13. If ¢ is weight function as in definition 2.1.11 and a is a positive real
number, then Z,(a) is greater than 0. By contradiction, let us assume that there exists
a positive real number ay such that Z,(ag) = 0; by definition of infimum, there exists a
sequence {x, }nen in [ag, +00) such that

lim ¢(x,) = Zy(ap) = 0.

n—-4o00

14



2.1. Generalized Mumford-Shah functional in P.J

Up to subsequences, not relabelled, we can assume that there exists xq in [ag, +00] such
that {x, }nen converges toward xg. Let us assume that z is a real number; since v is
lower semicontinuous, we have that

< lim1 =
(o) < liminfy(z,) =0,
that is against the fact that ¢(¢) = 0 if and only if ¢ = 0. If x¢ is equal to +o00, we have
that
liminf 4 (t) =0,

t—+00

that contradicts the definition of .

Figure 2.1: The weight function ¥ (z) = /||

Definition 2.1.14 (Generalized Mumford-Shah functional in P.J).
Let ¢ be a weight function as in 2.1.11. We define the generalized Mumford-Shah
functional in PJ MS, : L* — [0, +oc] such that

> (A% (x) it % €PT,
MSEy (%) = { wes()
+00 if % e L2\ PJ.

If the right hand side series does not converge, we put MSy (%) = +o00, obviously.

Lemma 2.1.15. Let % be in PJ; let u be its canonical representative as in definition
2.1.6, 1. e.

wi= | Y A% (y) Ly | +2(0)".
yeS(%)
Let . be a set at most countable; let {x'}icr be a sequence in [0,1]; let {h'}icr be a
sequence in [0, +00) such that
Z ‘h" < +o0.
€S

15



Chapter 2. An example of free discontinuity problem

Then, we can well define the function
W = Z hi]].[wi71].
ics

Let us assume that w(x) = u(z) for almost every x in (0,1). In particular, w is a
representative of u. Let ¢ be a weight function as in 2.1.11; we define MSy, as in
2.1.14. We claim that

MSy(u) < 3 ().

€S
In other words, the canonical representative is the minimal one with respect to the

generalized Mumford-Shah functional among all the other representatives of U .

Proof. Step 1: For all 4, j in ., we say that i is equivalent to j if and only z° = a7
and we write ¢ ~ j. Since ~ is an equivalence relation, it provides a set ¢ at most
countable and a partition of . into disjoint equivalence classes, namely

{77 1je 7}

For all j in _#, we define

V= Z ',

i€ gI

if 7 is any element in .#, we can also well define 3/ = z*. It’s immediate to see that for
all z in (0,1) it holds that

w(z) = Z Py ().

JjESL

We notice that it’s not restrictive to make the following assumption:
e 7 is contained in N;
o /A0 forall jin ¢;
o y/#£1lforall jin #.
Step 2: Let z be any point in [0,1). We claim that

w(zg) = lim w(x).
I‘)xg
Let € be any positive real number. For all n in N we define ¢#, = # N (n,+00). Since
Z ‘lj} < 400, we can well define
et

> Pl <e

JE Ing

Je=min{ ng € ¢

There exists a positive real number § such that (zg, ¢ + 0) is completely contained in
0,1] and if j is an integer in _# N{1;...;.}, then y/ does not belong to (zg, zg + 9).

16



2.1. Generalized Mumford-Shah functional in P.J

Hence, if = is in (xg, z¢ + §), the following inequalities hold true:

jw(w) —w(zo)| = [[ Y Pl | = | D Plysy(o)
Jj€S =
= | >V (L (@) = Ty 1y(20))
JjESL
= le]l(zmx](yj) < Z ‘l” <e.
JjeS JEFje

Step 3: Let x be any point in (0, 1] such that g # ¢’ for all j in _#. We claim
that

w(zo) = lim w(z).
Z—>IO

Let € be a positive real number. As defined in the previous step, we set j. and J.
Similarly, if = is in (2o — 0, x¢), we have that

w(o) = w(@)] = | Pl ey (v)
jies
- le]l(m,zo)(yj) S Z |lj‘ SE'
]Ef jefjs

Step 4: Let ¢ be in _#. We claim that

w(y) —1"'= lim w(x).

=Y

Let € be a positive real number. As defined in the second step, we set j. and d. Similarly,
if z is in (' — d,9%), we have that

w(y') = 1" —w(@)| = |[ D Pl | -1
j€s

_ zi+szn(z,yi)(yﬂ‘) —
i€z

S Fl)| < 3 ] <=

jes VISEAR

Step 5: Since w is a representative of %, for all 2y in (0, 1) we have that

0 ifVje 7 : xo#y;

A (x) = lim w(z) - lim w(z) = {p’ if3je 7 ap=y

+ —
J?—>$O $—)x0

17



Chapter 2. An example of free discontinuity problem

Similarly, we have that

% (0)* = lim w(z) =

z—0t

0 ifVje 7: 0%y
Poif3je 7 0=y

We recall that ¢ is globally subadditive; hence, the following inequalities hold true:

PRLGEDS (Z W’))

ies je s \iesi

-2 ((2))

= ()
j€s
> MS,(%).

]

Remark 2.1.16. Similarly, we can easily show that MS,, is a subadditive functional: if
U, U, are in PJ, then

MS (7)) + MSy(U) > MS, (% + Us).
If we denote S =S (%) US (%), as shown in 2.1.7, it holds that
S(%+ ) CS.

Since 1(0) = 0, the following inequality hold true:

MS () + MS (%) =Y V(A% (x)) + V(A% (x)) (2.2)
€S
> (A% (2) + A% (x))
TES

= 3 WA + %) (2))

€S

> MS (% + ).
In (2.2) we used the fact that 1(0) is globally subadditive.

2.1.3 Compactness and lower semicontinuity in P.J

From now on, with a slight abuse of notation, we identify % in P.J with the corre-
sponding canonical representative.

Lemma 2.1.17. Let ¢ be a weight function as in 2.1.11; let us define MSy, as in
2.1.14. Let M, e be positive real numbers. There exists ng in N with the following
property: if n 1s a natural number greater than or equal to ny and v s a function in

PJ such that MSy(v) < M, then

— (v(O) + Z vi>

<Y A (@) ] <

i>n \zeS(vn)®

18



2.1. Generalized Mumford-Shah functional in P.J

Proof. Let M, e be positive real numbers; let 6 be a positive real number. We define

Fw(@) = %

as in 2.1.10. By definition of weight function (see 2.1.11), it holds that

lim T'y(6) = +oo.

0—0t

Hence, there exists a natural number ng such that if 6 is in (O —} then

As declared in 2.1.8, if n is greater that ng and x is S (v)", then

In particular, we can conclude that

(A (2)])
Av@) >

3

If we denote

S = U S(v)

1>ng

the following inequalities hold true:

— (U(O) + Zv’)

=2 <ZHUH

i>n i>n
<> . < > A ()]
i>ng i>ng zeS(v )
=> |Av(z |<—Z¢|Afu
€S TES
<e.

O

Proposition 2.1.18. Let ¢ be a weight function as in 2.1.11; let us define MS,, as
in 2.1.14. Let {v,}, oy e a sequence in PJ. Let M be a positive real number. Let us
assume that for all n in N it holds that

e [0n(0)| < M;
o if x isin S (vy), then |Av, (z)] < M;
o MSw('Un) < M.

There exists a subsequence {vy, };oy with the following properties:
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Chapter 2. An example of free discontinuity problem

o there exists a sequence of nonnegative integers {S'}ien such that if n is a natural

number greater than or equal to i, then card S (v,)" = B%; in particular for all i in
N for all n > 1 we denote

with the assumption that
80 i1 He 580 +1
0:=a0 < 2Bl < ... < 2B < B,
We also denote

. /BZ .
U; = E A;{tﬂ {xiﬁt,l] .
t=1

e Leti be a positive integer; if t is any integer in {1;...; 5'}, there exist % in [0, 1]
and AL whose absolute value is in [, 2=] N (0, M], such that

lim 28t = gt
n—-+o0o n oo’

: it o5t
lim AV = AZ.

n—-+00
e For all positive integer i we define
ﬁi
AN ist ) .
vl =D ALl i)
t=1

then {vi}, y converges toward v, with respect to L* norm and pointwise for
almost every x in [0, 1]; moreover, if we define

B ={te{l;...;8'} | 2% =0},
then

v’ (0) = Z A%

teBt

o {Z v } is a Cauchy sequence with respect to L* norm; if we define
1€N
b= Ytk
iEN*
then {v,, },oy converges toward vs, with respect to L? norm.
In particular, vs, 1s in PJ and it holds that

lim inf MSy (vn,) > MSuy(vs0). (2.3)

i——+00
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2.1. Generalized Mumford-Shah functional in P.J

Proof. Step 1: Let i be a positive integer. Let A’ be an infinite subset in N. We define

7, G) - inf{z/z(x) ve Bjtoo)}

as in 2.1.12 and we recall that it is a positive real number (see 2.1.13). Hence, if n is
any integer in A’, it holds that

M > MS,(0)) = Z Y(Av, (z)) > card S (v),) - (1> .

, 1
IES(’Un)Z

In particular, if n is any integer in A’ it holds that

card S (v,)" >

M
— 1 .
Zy (7)
Therefore, we can find another infinite subset A completely contained in A’ and a
positive integer 3° such that if k is an integer in A**!, then

B = card S (v,)" .

In other words, up to subsequence we can assume that the number of jumps whose

height is in (%, Z_LJ is equi-finite.

If we put A! := N, by a diagonal procedure, we can find an infinite subset of natural
numbers

and a sequence of natural numbers {3'};cny with the following property: if 4, m are
positive integers such that m > ¢, then

card S (vy,,) = A"

We can also assume that the sequence {\;};en is monotonically increasing. Therefore,
up to subsequences, not relabelled, we can assume that A is equal to N.

Step 2: Let i be a positive integer. Let ©F be an infinite subset completely contained
in NN [i,4+00). For all n in ©, we denote

S (v,)" = {wf{l; . ,x;’B} :
with the assumption that
0=a <2l <... < xifz < x%ﬁi“ =1
We also denote

67,
U;L = Z Agt]l[xi{t,l]'
t=1

Then, we can identify the sequence {v’}
follows:

. . 2[82
ncoi With a sequence of vectors in R*” as
i Gl L BB AGL. L ABBYY i
vy, ~ (a:n s x AN LAY ) =,
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Chapter 2. An example of free discontinuity problem

neoi 18 a sequence in [0, 17" x [-M, M]?". Since the
closed balls are compact subsets in R?*, we can find another infinite subset ©'*!
completely contained in ©¢ and two finite subsets

Thanks to our hypothesis, {v/}

{xf;j <. Sa:fjfi} C [0,1],

{Al < < AP} C M M)
with the property the follows: if we define

(ool

i . (1. BB AGL. . AEB
v .—<:L‘ ...,xOO,AOO,...,AOO),

then {1/}, gi+1 converges toward v’ as vectors in R*". Let us denote

B’L
Uéo = Z Aé’é]l[xg,l]
t=1

We claim that the sequence {v}}, _gir1 converges toward v’ with respect to L? norm.
Since the finite sum is continuous with respect to L? norm, it is enough to show that if
t is an integer in {1;...; 3"}, then the sequence

it )
{A” 1 [mﬁt’l] }ne@i-‘rl

converges toward Agf)]l[xég’l] with respect to the L? norm. Without loss of generality,

we can assume that z%' < 2% for all n in ©'1. Therefore, the following inequalities
hold true:

2 2

1
_ it o1 — At it
L2_/0 (An]l[xig‘,l] Aoo]l[%,o’l]) dx

it

T 1
- / (A)? do + / C(AE A (24)

iy = ATy

it [H

n Too

< M? |3:th — :E;f| + (Aff — Ag)2.

In (2.4) we used the upper bound of the height of the jumps, as stated in hypothesis. So,
we can take the limit as n in ©*! approaches +oo. It’s easy to see that the convergence
is also pointwise for almost every z in [0, 1]. Moreover, if we define

B ={te{l;...;8} |28 =0},

then
v (0) =) A%,
teBi
as immediately follows by definition of v’_.

If we put ©! := N, by a diagonal procedure, we can find an infinite subset © and a
sequence {v.,};cn- with the following property: if 7 is in N*, then {v}}, o converges
toward v’ with respect to L? norm as n approaches +o0o in ©.

Moreover, we recall that {v,(0)}, ¢ is a sequence in [-M; M]. So, up to subse-
quences, not relabelled, we can assume that there exists a real number d in [—M; M|
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2.1. Generalized Mumford-Shah functional in P.J

such that {v,(0)}, .o converges toward d. Since © is infinite, up to subsequences, not
relabelled, we can assume that it is equal to N.

Step 3: Let us define

Voo = d + (Zv&) =d+> ZA”]l (1]

i>1 i>1 \ t=1

We have to show that v, is well defined in P7, that is

5i
ZZ ‘Ag’ < 0.

i>1 t=1

It is equivalent to require that the sequence of the partial sums is a Cauchy sequence.
Let n be any integer. We define

|1)n |+Z Z |Avn |]l[$1]

i>1 zeS(v )

Let 7 be a positive integer; we can define

w'h = Z |Avy, ()] Lz

xGS(Un)i

More explicitly, thanks to the previous step, if n is greater than or equal to ¢, we have
that

ﬁi
w; )= Z ‘A;’t’ ]l[z;t’l]

t=1

We also define
ﬁz .
t=1

If we slightly modify the procedure described in the previous step, we show that for all
positive integer ¢ the sequence {w?},  converges toward w’, with respect to L* norm.
Since 1 is even, we notice that for all n in N it holds that

MS¢(wn) == MS¢<U,1) S ./\/l

Let € be a positive real number. We can apply lemma 2.1.17 with € and M. Let ng be
an integer with the property declared in lemma 2.1.17. Let us consider k,j positive

23



Chapter 2. An example of free discontinuity problem

integer such that k > j > ng. So, the following inequalities hold true:

k B’ ' J e 4 k B’ '
2% =2 At = 2 | Do laK]
i=1 \ t=1 i=1 \ t=1 i=j+1 \ t=1
k Bt
= lim AGt
nﬁ+ooi:j+1 ;‘ n‘
= lim Z Z |Av, ()]
n%+ooi2n0 zes(vn)i
= | (lvn I+Zw)

<e.

So we can conclude that v, is well defined and it is in P, as shown in further

[e.9]

details

in the proof of lemma 2.1.16. As a matter of facts, we are not assuming that v, is the

canonical representative of a class of functions in P.J.

Step 4: We have to show that {v,},en converges toward vy, with respect to L?
norm (in deed, this holds for a specific subsequence). Let ¢ be a positive real number.

We can apply lemma 2.1.17 with M and

7. Let ng be an integer with the property

declared in lemma 2.1.17. By definition of v.,, we can make the following assumptions:

g-
47

e if n is an integer greater than or equal to ng, then

(&)-(E+)

e if n is an integer greater than or equal to ng, then

[0n(0) =

L2

£
S_.
4’
2

L

d|l <

1o

Hence, if n is an integer such that n > ng, the following inequalities hold true:

v — Vool 2 < [|Ua(0) — dll 2 + <Z vi) - (Z v&)
i>1 i>1 12
no
< [a(0) = d|] ;2 + (sz) — (Zv;)
i>1 i=1 2

3

0

_|_
L2

)

) (=

() ()

E.

i=1

4.

€
<4.Z
- 4
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2.1. Generalized Mumford-Shah functional in P.J

Step 5: In conclusion, we have to show that

lim inf MSy(v,) > MSy(veo).

n—-+o0o

As a matter of fact, this holds for a specific subsequence subsequence. Let n be a
natural number. If 4, j are positive integers and 7 # j, we notice that S (v,)" and S (v, )’
are disjoint. Hence, it holds that

MSy() = Y W(Av, (@) =) > (A, (2) =) MSy(0},

z€S(vn) i>1 zeS(v ) 1>1
We have that
I%I_I}igof MS,(v,) = 1711I_1>1i£10f Z./\/ISw (2.5)

> (%zli{.af M3l >)

i>1
=> lim inf U(Avy, (2)) (2.6)
i1 zeS(vn)®
IB'L
— L W5t
=Y |liminf} (A7) (2.7)
i>1 t=1
8 |
> (D w(Ay) (2.8)
t=1

i>1

Z MS¢(UOO).

In (2.5) we used the Fatou’s lemma; in (2.6) we used the fact that if i, n are positive
integers such that n > 7, then

S (vh) = {aits. 0l )

in (2.7) we used the lower semicontinuity of 1 and the definition of A%; in (2.8) we

used the minimality of the canonical representative (see 2.1.15). ]

Proposition 2.1.19. Let {v,}nen be a sequence in PJ. Let M be a natural number
such that for all n in N it holds that

e card S (v,) < M;
e flvnll. < M.
There exists a subsequence, not relabelled, with the following properties:

o there exists a natural number 8 such that card S (v,) = B for all n in N. Hence,

we can denote
S(vp) = {ah;...;2h},

with the assumption that

0:=a <zl <. <2l <afth =1
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Chapter 2. An example of free discontinuity problem

We also denote

B
Uy, == UH(O) -+ Z Az]l[:c;,l]-
t=1

e For all integer i in {0;...; B3 + 1} there exists x_ in [0, 1] such that

%

. i
lim z;, = x_.

n—+oo
o Let r,t be integers in {0;...; 6+ 1}. We declare that r,t are equivalent if and
only if xt, = x%_ . This induces a partition on {0;...; 3+ 1} into disjoint sets. In
other words, there exist a natural number o and a collection of pairwise disjoint
classes of equivalence

{T°%..; T}
that covers {0;...; 8+ 1}. For all integer s in {0;...;a + 1}, we can well define
ys, =L, where r is an index in J*. For all s in {1;...;a} there exists a real

number O, such that

lim E Al =©° -
n—-+o0o n 007
teJs

there exists a real number ©% such that

lim v,(0) + AL =00 .
n—-+o0o
teJo

o [f we define
Voo = Z@éo]l[yéovl]’
i=0

{Vn}nen converges pointwise for almost every x in (0,1) toward vy. In particular,
we have that card S (vs) < a.

e If we define MS,, as in 2.1.14, it holds that
< Tim
MSEy(vso) < %r_rggj MSy(vy).

Proof. Step 1: It’s immediate to see that there exists a natural number 3 such that
card S (vy,) = S for all n in N. Hence, we can denote

S (vp) = {x}l, o ,xﬁ} ,
with the assumption that
0:=a <t <. <2l <2t =1
We also denote

B
Uy, = Un(O) + Z A;]l[mﬁl,l]-
t=1

Since [0, 1]° is a compact set in R”, there exist a subsequence, not relabelled, and real
numbers {xéo, . ,xfo} such that for all ¢ in {1;...; 5} it holds that

' = lim af.
n—+00
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2.1. Generalized Mumford-Shah functional in P.J

In particular, we have that

Ozzxgog.xiog---gxfogxfjl = 1.

Let 4,7 be in {0;...; 3+ 1}; we say that 4, j are equivalent if and only if ' = x/_. This
induces a partition on {0;...; 5 4 1} into disjoint sets. In other words, there exist a
natural number o and a collection of pairwise disjoint classes of equivalence

{T%..; 7%

that covers {0;...;8 + 1}. For all integer s in {0;...;a + 1}, we can well define
Y5, = xl,, where r is an index in J°. For all n in N, we also denote

A?L — Un(()),

AP =0, (1).
Having said that, for all n in N we have that

p+1 a+1
Uy = ZAZ]I[%J] = Z <Z A;]l[z%,l]> .
t=0

s=0 \teJs

Step 2: Let s be an integer in {0;...;a + 1}; for all n in N we define

0 = Z Al

teJs

We claim that for all s in {0;...;a} the sequence {©;}, . is bounded. By contradiction,
let us assume that we can well define

S0 = min{s e {0;...;a} | EI{@f%}keN : kginoo|®f”“| = +oo}.

Let us assume that sq is a positive integer. Hence, there exists a positive real number
M, such that |©2] < M, for all sin {0;...;s9 — 1} for all n in N. By definition, for
all ¢ in J°° it holds that
li E— g0,
n oo T Yoo
Let t be in J**!: we remark that it is fundamental to assume that sy < a + 1. By
definition, for all ¢ in J*°*! we have that

so+1

. t
lim z, =y

n—-+00

and y2 <yt We denote

so+1 _ ,,50 S0 __ ,,50—1
o max J YR R v )
4 4

There exists a natural number ng such that for all n greater than or equal to ng it holds
that

e if s is an integer in {0;...;s9 — 1} and ¢ is an integer in J*, then

t S0 .
L, < Yso — €05
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Chapter 2. An example of free discontinuity problem

e if 5 is an integer in {sp+ 1;...;a+ 1} and ¢ is an integer in J°*, then
zt >y + ep;

e if ¢ is an integer in J%°, then

€0
<x;<y§g+§.

€0

2

50
Yoo

Having said that, if n is any integer greater than or equal to ng, the following inequalities
hold true:

1 /a+l 2
M? 2 gl :/ (Z (Z Aiﬂ[z;,u(i))) dx
0

s=0 \teJs

yod+eo [ S0
foy 152
yd+2

s=0 \teJ*

so—1
€0
) | <Z AQ) + )AL

2
dx

A%

By definition of sy and My, for all n in N for all s in {0;...;s9 — 1} it holds that

so—1

26

s=0

SSO'ML

So, the absurd follows taking the superior limit.

If sg is equal to 0, the procedure that we have just described in many details can
be easily adapted. To be precise, we remark that the sequence {@g“}neN can be
unbounded.

Step 3: Because of the compactness of closed balls in R**!, there exist a subsequence,
not relabelled, and real numbers {©Y :...; 0%} such that for all s in {0;...;a} it holds
that

lim ©; =06.
n—-+00

We define
Voo = Z @Zo]l[ygo,l}'
s=0

Obviously, v, is in PJ. We claim that {v, },en converges pointwise for almost every z
in (0,1) toward ve. For all n in N we have that

Up = Z <Z A;]l[x%,l]> .

s=0 \teJs

Hence, it is enough to show that
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2.1. Generalized Mumford-Shah functional in P.J

{ Z Al 1]} converges pointwise for all = in (0, 1)\ {53} toward ©5 Lpys 1
tegs eN
for all s in {0;...;a};

° { Z Afzﬂ[x% ,1]} converges pointwise toward 0.
neN

tegotl

As for the first statement, let s be an integer in {0;...;a}; let and x be in [0, y2,).
There exists ng in N such that =, > x for all integer n > ng for all ¢ in J*. So, if n is
an integer greater than or equal to ng, then

D AL () =0 = 05 1 ().

teJs

If z is in (y2,, 1], there exists ng in N such that x > 2!, for all integer n > ng for all ¢ in
J?. So, if n is an integer greater than or equal to ng, then

Jim D Al a(@) = lm 3 A= lim 6] =6, =01y, ()
teJgs teJgs

As for the second statement, it can be similarly proved.
Step 4: In conclusion, the following inequalities hold true:

lim inf MSy (v, ) = liminf Z ¥ (AL)

k—+o0 k—+o0

> lim inf )3 (Z W (A;k)) (2.9)

teJs

ElzfﬁingD(ZA )

teJs

k—+o00

= lim inf Z v (65,) (2.10)
=1

S o) (2.11)
= MSy(v).

In (2.9) we used the fact that ¢ is subadditive; in (2.10) we used the fact that v is lower
semicontinuous; in (2.11) we used the characterization of the essential discontinuities of
Uso and the fact that ¢(0) = 0. O

Theorem 2.1.20 (Compactness and lower semicontinuity of the generalized Mum-
ford-Shah functional in PJ).

Let 1) be a weight function as in 2.1.11; let us define MSy, as in 2.1.14. Let {v, }nen
be a sequence in PJ. We assume that there exists a real number M such that for all n

in N 4t holds that
o MSw(Un) < M,'

29



Chapter 2. An example of free discontinuity problem

o [[vnll . < M.

Then, there exist a subsequence, not relabelled, and a function vs in PJ such that
{Un }nen converges pointwise for almost every x in (0,1) toward vy, and

lim inf MSy(v,) > MSy(veo)-

n—-+o0o

In particular, MS,; is a lower semicontinuous functional.

Proof. Step 1: Let {v,}n,en be a sequence in PJ as in the hypothesis. As declared in
2.1.8, for all n in N we have that

Uy = (Z U;) + v, (0).
i>1
For all n in N we define

Uy = E v,

1>2

We immediately notice that for all n in N the following properties hold true:
e if x is any point in S (v,), then |Ay, (z)| = |Av, (z)| < 1;
e 1,(0) =0;
o MS,(v,) < MSy(v,) < M+ 1.

Thanks to proposition 2.1.18, up to subsequences, not relabelled, there exists v, in
PJ such that {v,},eny converges toward v, with respect to L? norm and

lim inf MSw(Vn) Z MSw(Voo)-

n—-+00

Up to further subsequences, not relabelled, we can assume that the convergence is
pointwise for almost every x in (0, 1).

Thanks to the triangular inequality, there exists a positive real number M; such
that [lv} + v, (0) ;2 < M, for all n in N. Moreover, for all n in N we have that

e MSy(v)) < M+1;
o |Avl (z)] >1for all z in S (v}).

If we define Z,(1) as in 2.1.12 and we recall that is a positive real number (see 2.1.13),
for all n in N the following inequalities hold true:

M+1>MS,(v) = Z Y(Av,), () > card S (vy,) - Ty(1);

zeS(v})

in other words, we have that




2.2. Generalized Mumford-Shah functional in SBY

Thanks to proposition 2.1.19, there exist another subsequence, not relabelled, and a
function v}, in PJ such that {v} + v,(0)},en converges pointwise for almost every z
in (0,1) toward v} and

liminf MSy (v}, + v,(0)) > MS, (VL.

n——+00

. 1
To resume, if we define v = v, + v, we have that

lim +inf/\/lS¢(vn) = lim inf M, (vp + va(0) + 1) (2.12)
= hrginf [(MSy (v, + va(0)) + MSy (1))
. . 1
> lrllr_r}lgjf MSy(v,) + l}glﬁg)f MSy (v,) (2.13)
> MSy(Voo) + MSy (VL) (2.14)
Z MSw(UOO).

In (2.12) we used 2.1.8 and the definition of MSy; (2.13) have already been discussed;
in (2.14) we used the fact that MS,, is subadditive (see 2.1.16).
Step 2: As for the lower semicontinuity, let v, be a function in L?; let {v, },en be
a sequence in L? that converges toward v., with respect to L? norm. We have to show
that
lim inf MSw(Un) Z MSw(UOO>.

n—-+oo

If the left hand side is 400, the conclusion is trivial. Hence, up to subsequences, not
relabelled, we can assume that there exists a real number M such that MSy(v,) < M+1
for all n in N, the inferior limit is actually a limit, i. e.

lim MSw(Un) = M,

n—-+o0o

and {v, }n,en converges pointwise for almost every z in (0, 1) toward v.,. As shown in
the previous step, we can conclude that

lim inf MSy(v,) = M > MSy(ve0).

n—-+o0o

2.2 Generalized Mumford-Shah functional in SBY

We introduce the space of the Special Functions of Bounded Variations (SBV); we
define the generalized Mumford-Shah functional in SBYV; we state and prove a lower
semicontinuity theorem and some compactness result.

2.2.1 The space of functions SBV

Definition 2.2.1 (SBV).
Let % be a class of functions in L? coinciding almost everywhere. Let us assume that
A7 (x) is well defined for all z in (0,1) (see 2.1.4). Let us define S (%) as in 2.1.5. Let

us assume that

e S (%) is at most countable;
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Chapter 2. An example of free discontinuity problem

o Z A% ()| < +o0;
zeS(%)

e 7 (0)* is well defined and it is a real number.

Hence, we can well define the function v : [0,1] — R such that

v=2 0"+ Y A% (y) 1.
)

yeS(%

We denote as 7 the class of the functions that coincide with v for almost every z in
[0,1]. We refer to v as the jump part of . We define # .= % — ¥. We say that
7 is in SBY if and only if # is in W, We denote as w : [0,1] — R the continuous
representative of #; we refer to w as the absolutely continuous part of 7. We can also
define w : [0, 1] — R such that u := w + v. We refer to u as the canonical representative
of % . We denote u := w and we say that it is the weak derivative of % .

Remark 2.2.2. In the setting of definition 2.2.1, we notice that u belongs to % . Obviously,
any class in SBY is completely determined by its canonical representative. Let %, %
be classes in SBV; let us denote as u; = wy + v and uy := wy + vy respectively the
canonical representatives of 24 and % as declared in definition 2.2.1. If u;(z) = ua(x)
for all = in [0, 1], then % = % in SBY. If we assume that % = %, by definition
2.2.1 it holds that vy (z) = va(z) for all z in [0, 1]; so, w; and wy are the continuous
representatives of the same class of functions in Wt; therefore, wy(z) = wy(x) for all
x in [0, 1]. Having said that, we can identify %/ with its canonical representative. If we
recall definition 2.1.8, it holds that

u:u(0)+w+Zvi.

i>1
We also introduce the following notation, that will be very useful later.

Definition 2.2.3 (SBV). )
Let u be in SBY as declared in 2.2.2. We say that u is in SBY if card S (u) < +o0.
From now on, unless otherwise specified, we represent u as

k
U= w + U,(O) + Z Ai]l[miJ},
=1

with the following assumption:
e w is the absolutely continuous part of u, i. e. w is in W%, and w(0) = 0;
o S(u)={z";..;2F} and 0 =20 < 2! <.+ <aF <2t =1,
e for all integer i in {1;...;k}, we denote A" := Au (z%);
e v is the jump part of u, i. e. v is in PJ, and v(0) = 0; more precisely, it holds

that
k

V= Z Aiﬂ[xi7]_].

i=1
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2.2. Generalized Mumford-Shah functional in SBY

Figure 2.2: Example of a function u in SBY

2.2.2 Weak formulation in SBY

Definition 2.2.4 (Generalized Mumford-Shah functional in SBYV).

Let ¢ be a Young function as in 1.1.1; let ¢/ be a weight function as in 2.1.11. Let us
define D, as in 1.3.1 and MS,, as in 2.1.14. We define the generalized Mumford-Shah
functional in SBY MS,.,, : L* — [0, 400] as follows:

e if uisin SBY and u = w + v is the canonical decomposition as in 2.2.2, then

MS sulu) = Do) + MSu(0) = [ plifa) do+ Y-

0 z€S(u

(A (2));
)

o if uisin L?\ SBY, then
MS@;w(u) = +00.

2.2.3 Compactness and lower semicontinuity in SBY

Theorem 2.2.5 (Compactness and lower semicontinuity of the generalized Mum-
ford-Shah functional in SBY).

Let ¢ be a Young function as in 1.1.1; let ¢ be a weight function as in 2.1.11; let us
define M8y as in 2.2.4. Let {u,}nen be a sequence in L*. We assume that there
exists a real number M such that for all n in N it holds that:

o MSpy(un) < M;
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Chapter 2. An example of free discontinuity problem

o [[unll > < M.
There exist a subsequence, not relabelled, and a function us, with the following properties:
o Uy, is 1n SBY;

o if we consider the usual decomposition w, = w, + v,, we have that {w, }nen
converges uniformly in [0,1] toward ws and {v,}nen converges pointwise for
almost every x in (0,1) toward vy. In other words, the sequence of the jump parts
and the sequence of the absolutely continuous parts converge separately toward the
Jump part of us and the absolutely continuous part of u~,, respectively.

o liminf MS,.p(uy) > MSy(Uuso)-

n—-+o0o

In particular, MS . is a lower semicontinuous functional.

Proof. Step 1: Under our hypothesis, {u, },en is a sequence in SBY. Let u,, = w, + v,
be the canonical decomposition as declared in 2.2.1. By definition of MS,.,, we
immediately notice that D,(w,) < M and MS,(v,) < M for all n in N. Moreover,
wy,(0) is equal to O for all n in N. Thanks to theorem 1.3.9, there exists a subsequence,
not relabelled, and a function w. in Wt such that {wy, fnen converges toward we
uniformly in [0, 1], {w,, }nen converges L'-weakly toward w,, and

lérilig D, (wy) > Dy(we)-
In particular, {w, },en converges toward we, with respect to L? norm and ws,(0) = 0.
Thanks to the triangular inequality, there exists M in R such that ||v,||;. < M,
for all n in N. Thanks to theorem 2.1.20, there exist a function v, in PJ and a
subsequence, not relabelled, such that {v, },en converges pointwise for almost every x
in (0,1) toward v, and

lim inf MSy(v,) > MSy(veo).

n—-+oo

If we define uy, = Wy + Voo, We have that
lrlLr—I}igaf MS . (un) = lrlLr—r)l—ngOf D, (wy,) + MSy(vy,)
> T o
> lér_r}igj D, (wy,) + 1&@125 MSy(v,)
> Dy(Wso) + MSy(vec)
= MSp(Ueo)-

Step 2: As for the lower semicontinuity, let us, be a function in L?; let {u, },en be
a sequence in L? that converges toward u., with respect to L? norm. We have to show
that

lim inf MS . (u,) > MS o (Uoo).

n—-+00

If the left hand side is 400, the conclusion is trivial. Hence, up to subsequences, not
relabelled, it is not restrictive to assume that there exists a real number M such that
MS.p(un) < M +1 for all nin N, the inferior limit is actually a limit, i. e.

lim MSSO;TZ}(UTL) = ./\/l,

n—-+0o00
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2.3. Generalized Mumford-Shah energy

{wy, }nen converges uniformly in [0, 1] toward wy, and {v, }nen converges pointwise for
almost every z in (0, 1) toward v,. As shown in the previous step, we can conclude
that

liminf MS . (u,) = M > MS .4 (us).

n—-+00

2.3 Generalized Mumford-Shah energy

Finally, we can define the functional &,.; as in 0.1 and show that it admits minimum.

Definition 2.3.1 (Generalized Mumford-Shah energy).

Let ¢ be a Young function as in 1.1.1; let ¥ be a weight function as in 2.1.11; let
us define M8, as in 2.2.4. Let h : [0,1] — R be a function in L?. We define the
functional &, : L? — [0, +00] such that

1
o(u) = /O (w—h)* dz+ MSyy(u) if u€ SBY;
o0 if ue L2\ SBY.

&,

Theorem 2.3.2 (Existence of the minimum via direct method).

Let h: [0,1] = R be a function in L*; let o be a Young function as in 1.1.1; let ¢ be
a weight function as in 2.1.11. We define the functional &, as in 2.5.1. Then, the
generalized Mumford-Shah energy admits minimum in SBYV.

Proof. Let {u, }nen be a sequence in L? such that

lim &y (uy) — inf &, | = 0.
L2

n——+oo

We define 7 == ||h]| ;2; since &,.4(0) is equal to 72, it is not restrictive to assume that
Epp(un) < ~% for all n in N. In particular, {u, }nen is a sequence in SBY such that for
all n in N it holds that:

o MS(un) <%

o luall 2 < ltw = Bl 2 + ll 2 < v/Epron) + 1l 2 < 2.

Thanks to theorem 2.2.5, there exist a subsequence, not relabelled, and a function ., is
SBY such that {u, },en converges pointwise for almost every z in (0, 1) toward us, and

liminf MS . (1) > MS 4 (teo)- (2.15)

n—-+o00

Thanks to the Fatou’s lemma, we have that

1 1
liminf/ (h — u,)? dr > / (h — un)? dz. (2.16)
0 0

n—-+o0o

If we join (2.15) and (2.16), we obtain that

lim inf &, (1) > Epyp(Uso)-

n—-4o00
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Chapter 2. An example of free discontinuity problem

In conclusion, we have that
i£12f Eprp < Eprp(Uoo)

< liminf &, (uy,)

n——+oo

n—-+0o0o

— hm (é"wﬁ(un) — 1£12f (gzp;w) —|— 1?2f éa@;w

= 1?2f £¢;¢-

S0, us is a function that minimizes the Mumford-Shah energy.
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Chapter 3

A discrete approximation

We introduce the notion of I'-convergence. We define a family of problems that
approximate &, is the sense of the I'-convergence; this allows to obtain the minimum
and the minimizers of &, as limit of the sequences of the minima and minimizers of
the approximating problems. The simplification turn out to be very relevant, because
the approximating problems are set in finite-dimensional spaces.

3.1 [I'-convergence

Definition 3.1.1 (I'-convergence).

Let (X;d) be a metric space; let {F), },en and F' be functionals from X to [0, +o0]. We
say that F,, ['-converges toward F' as n approaches +o0o with respect to the distance d
if the following inequalities hold:

e (liminf inequality) if u is in X and {u, }nen is any sequence in X that converges
toward u, then we have that

F(u) < liminf F,,(u,); (3.1)

n—-+oo

e (limsup inequality) if u is in X, there exists a sequence {uy, }nen in X that converges
toward u such that
F(u) > limsup F,(uy,). (3.2)

n—-+oo
{tn }nen is called recovery sequence of w.
Proposition 3.1.2 (Stability under continuous perturbations).
Let (X;d) be a metric space; let {F,}neny and F be functionals from X to [0, +o0].
Let us assume that {F, }nen ['-converges toward F with respect to the distance d. Let

G : X — [0,400) be a continuous functional. Then, {F,, + G}nen I'-converges toward
F + G with respect to the distance d.

Proof. We have to show that (3.1) and (3.2) hold for {F,, + G},en and F + G.

e As for (3.1), let w be in X let {u, }nen be a sequence in X that converges toward
u. Then, we have that

liminf F,,(u,) + G(u,,) > liminf F,,(u,,) + liminf G(u,) > F(u) + G(u).

n—-+oo n—-+oo n—-+oo
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Chapter 3. A discrete approximation

e As for (3.2), let u be in X; let {u, },en be a recovery sequence of u for F. We
claim that it works for F'+ G. We have that

lim sup F,(u,,) + G(u,) < limsup F,(u,) + limsup G(u,) < F(u) + G(u).

n—-+4o0o n—-4o0o n—-+4o0o

O

Definition 3.1.3 (Dense in energy).
Let (X;d) be a metric space; let F': X — [0, +00] be a functional. Let D a subset in X
with the following property: for all u in X there exists a sequence {uy, }nen in D such
that

lim d(u;u,) =0,

n—-+0o0o

lim F(u,) = F(u).

n—-+o00

We say that D is dense in energy for F'.

Lemma 3.1.4. Let (X;d) be a metric space; let {F,,}nen and F be functionals between
X and [0,4+o0]. Let D be a subset dense in energy for Fy, as in 3.1.53. Let us suppose
that for all b in D there exists a recovery sequence sequence {b,}nen for F in D (see
3.1.1), i. e.

lim d(b,;b) =0,

n—-+o00

limsup F,(b,) < F(b).

n—-+00

Then, for all x in X there exists a recovery sequence for F in .

Proof. Let x be in X. By hypothesis, there exists a sequence {b, },en in D such that

lim d(b,;x) =0,

n——+00
nl_lgloo F(b,) = F(x).

k

n}keN in D such that

For all n in N there exists a sequence {b

lim d(bf;b,) =0,

k—+o0

limsup F}, (b)) < F(by,).

k—+o00

Let n be a natural number. There exists a positive integer k, such that for all integer @
greater than or equal to k, it holds that

d (b;bn) <

S

Fo (1) < Pb) +

Without loss of generality, we can assume that the sequence {k;, }nen is strictly mono-
tonically increasing. For all integer 7 in {0;...;k; — 1} we define z; := b}; let n be an
integer greater than 1 for all integer i in {k,;...;k,11 — 1} we define z; := bi,. We claim
that {z;};en is a recovery sequence for F, in D. Let i be an integer greater than ky;
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3.2. A family of approximating problems

there corresponds a natural number n such that ¢ is in {k,;...;k,+1 — 1}; so, we have
that

1
d(zi;x) < d(zi;b,) + d(by;x) < " + d(x;by,),

Fy(x:) = Fi (b,) < F(ba) + %

Let € be a positive real number. By definition, there exists a positive integer ngy such
that for all integer n greater than ng it holds that
1

2) 4 — <
d(by; x) + SSe

1
F(b,)+— < F(z)+e.
n
Therefore, for all 7 greater than k,, we have that
d<xz; x) S g,

Fi(z;) < F(z) + €.
So, the thesis follows immediately. O

3.2 A family of approximating problems

The aim of this section is to introduce a discrete approximation of &, in the sense of
the I'-convergence.

Remark 3.2.1. Let ¢ be a Young function as in 1.1.1; let ¥ be a weight function as in
2.1.11; let h be a function in L?. We define MS,.; as in 2.2.4 and &, as in 2.3.1. So,
we can consider the functional &,., — M8, : L? — [0, +00) such that

Eplt) = MS ()= [ (=) .

Obviously, it is continuous with respect to L? norm. Let {F,},en be a family of
functionals between L? and [0, +00] that I-converges toward MS.,., with respect to L?
norm. Thanks to proposition 3.1.2, the sequence {F,, + &,y — MS,.p tnen [-converges
toward &,., with respect to L? norm. So, it is enough to approximate MS,.,; in the
sense of the I'-convergence.

Definition 3.2.2 (Sublinear weight function).

Let 1 be a weight function as in 2.1.11. Let us assume that there exist positive real
numbers A, B such that ¢(z) < Az + B for all x in [0, +00). We say that ¢ is a
sublinear weight function.

Definition 3.2.3. Let ¢ be a sublinear weight function as in 3.2.2. For all natural
number n, we define the function ¢, : R — [0, 400) such that

x
Let ¢ be a Young function as in 1.1.1. We also define
Eni={a € (0,+00) | Vo > a :p(x) = Pu()},

& =inf=,.
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Chapter 3. A discrete approximation

Remark 3.2.4. Since ¢ is a superlinear function and v is a sublinear function, for all
natural number n the set =, is not empty; so, the sequence {&, }nen is well defined.

Lemma 3.2.5. Let ¢ be a Young function as in 1.1.1; let 1 be a sublinear weight
function as in 3.2.2. Let us define the sequences {=Z, tnen and {&, tnen as in 3.2.53. The
following conclusions hold true:

o &, belongs to =, for alln in N, i. e. 2, = [§,,+0);

e lim &, = 4o0;

Proof. Step 1: Let n be any natural number. Let {x)}ren be a sequence in =, that
converges toward &,. Since ¢ is continuous and 1, is lower semicontinuous, we have
that

@(571) = lim @(xk) > llir_r}_&gof ¢n(xk) > %(&z)

k——+o00

Having said that, it immediately follows that =, = [&,, +00).
Step 2: Let x be a positive real number. By hypothesis on v, we have that

on

= +400.

x

lim 2" (—) = lim =z
n——+o0 n n—+oo

By contradiction, let us assume that there exist a positive real number M and a

subsequence {&,, },cy such that &,, < M for all £ in N. Then, for all z in [M + 1, +-00)
for all £ in N it holds that

o) = 2% (5]

The absurd follows taking the limit as k& approaches 4o0.
Step 3: We claim that { g—ﬁ}neN is a bounded sequence. By definition of infimum, for
all natural number n there exists x,, in (&, —1,&,) N (0, +00) such that ¥, (x,) > ¢(x,),

N v (920_:) > @(In>.

z =
2_3 Tn

So, we can conclude that {x,},en converges toward +oo. Since ¢ is a superlinear
function, we have that

lim ~

n—+o00 2—;‘

By contradiction, if there exists a subsequence {g&} that converges toward +oo,
keN

27k
then

lim sup ¥(z)

T—+00 x

:+OO

This is absurd because 1 is a sublinear growth function.
Step 4: We claim that



3.2. A family of approximating problems

By contradiction, let us assume that there exists a positive real number ¢y and a
subsequence, not relabelled, such that g—n > ¢o for all n in N. By definition of infimum,
for all n in N there exists x,, in (£92",&,) such that ¢(z,) < ¥,(x,), i. e.

Mw(&),

2n 2n

Since ¢ is monotonically increasing in [0, +00), for all n in N it holds that

6090(502”) < (%) ‘

802” 2_n

We have shown that there exists a positive real number M such that for all n in N it
holds that

Tn

€n
— -— | C .
on S |:€07 on | = [607'/\/”
Since 1 is sublinear, we know that

sup {¢(z)} < +o0.
[e0,M]

So, for all n in N we have that

2 PE2 < (22 < sup {w(a)).

€2 2n [0, M]
Since ¢ is superlinear, the absurd follows taking the limit as n approaches +oo. O

Definition 3.2.6 (Truncated potential).
Let ¢ be a Young function as in 1.1.1; let ¢ be a sublinear weight function as in 3.2.2.
Let {1, }nen be as in 3.2.3. For all n in N we define

fn = min{gp; wn}

o &

Figure 3.1: Example of truncated potentials fo and f2, where p(z) = 527, ¢(2) = /||
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Chapter 3. A discrete approximation

Remark 3.2.7. By definitions 3.2.6 and 3.2.3, if |z| > &,, then ¢(z) > ¢, (x) and
fa(@) = Yn(z).

Definition 3.2.8 (PC,,).
Let n be a natural number. We define

PC, = {UGPJ‘S(U)Q {2%;...;2"2;1}}.

Definition 3.2.9 (Piecewise affine interpolation).
Let n be in N; let v be a function in PC,,. We define p, as the piecewise affine function

that joins the points
i i . i+1 [fi+1
ST o U\ T

for all ¢ in {0;...;2" — 1}.

Figure 3.2: Example of a function v in PC,, and its piecewise affine interpolation p,

Remark 3.2.10. In the setting of definition 3.2.9, to v in PC,, there corresponds a finite
set {A%...; A%"71} in R such that

V= Z Ai]l[zin,l]‘
=0

So, for all integer ¢ in {0;...;2" — 2} we have that

and




3.3. T'-convergence of the approximating problems

Definition 3.2.11 (Approximating functionals).
Let ¢ be a Young function as in 1.1.1; let ¢ be a sublinear weight function as in 3.2.2.
For all n in N we define f, as in 3.2.6. We define F,, : L? — [0, +00] such that

2m—1 2" —1
Folu) — ;Q—an(z A" 1fu_§A]1[;n’1]EPCn'
+00 if u e L*\ PC,

3.3 I'-convergence of the approximating problems

Let ¢ be a Young function as in 1.1.1; let ¢ be a sublinear weight function as in 3.2.2.
We define the sequence {F, },en as in 3.2.11 and MS,., as in 2.2.4. We claim that
{F. }nen T-converges toward MS.,,., with respect to L? norm. By definition 3.1.1, we
have to show limsup inequality and liminf inequality. So, in this section we consider ¢,
Y, {Fn}nen and MS.,.;, as we have just declared.

3.3.1 Limsup inequality
Lemma 3.3.1. SBY is dense in energy in L? for MS,.p asin 3.1.5.

Proof. Let u be in L2 If MS,.,(u) is equal to +00, we can consider any sequence
{tp }nen in C*°((0,1)) that converges toward u with respect to L? norm. Thanks to the
lower semicontinuity theorem of the generalized Mumford-Shah functional (see 2.2.5),
we have that

lim inf MS . (u,,) > MSp(u) = +00.

n—-+00
So, we can assume that MS,.,(u) is a real number. We have that u belongs to SBV;
we consider the canonical representation as in 2.2.1, namely

u:w—i-v:u(())—l—w%—Zvi,
i>1
where w is the absolutely continuous part and v is the jump part that can be decomposed
as described 2.1.8. For all positive integer n, we define

Uy, = u(0) +w + Zvi.
i=1

By definition 2.2.1, it immediately follows that the sequence {u, }nen+ converges toward
u with respect to L? norm. Let us define Z,, as in 2.1.12; as shown in 2.1.13, if a is a
positive real number, then Z,(a) is greater than 0. So, for all n in N* the following
inequalities hold true:

MS(w) > [ o) a3 | 2 w(dula))

=1 \ zeS(u)!

= 1
SN BEAE
=1 \ zeS(u)!

> (i cardS(u)i> Ty (%) :

=1
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Chapter 3. A discrete approximation

In particular, we have that

< MSgp(u)
card S (uy,) card S (u)' < —F—=— < .
Z Iy (3)

So, {un }nen is a sequence in SBY. To conclude, we just remark that

n

MS (1) = /0 p(i) de+ lim Y | > w(Au(z) | = lm MS,(u,).

n—-+0o ) n—-+0oo
=1 \zeS(u)'

Theorem 3.3.2 (Limsup inequality).
Let w be in L*. There exists a recovery sequence {un }nen for M8y, i. e.

S, = e =0,

lim sup F, (u,) < MSy.p(u).
n——+0o00
Proof. Step 1: Let u be in L?. If we join lemmas 3.1.4 and 3.3.1, we can assume that
u belongs to SBY. Let us consider the canonical representative of u as declared in 2.2.3,
1. e.
k
w = u(0) + w + Z A"l i gy
i=1
There exists a positive integer ng with the following property: for all integer n greater
than or equal to ng for all integer ¢ in {1;...;k} there exists an integer j(n;?) in
{1;...;2™ — 1} such that, if we set

_Jgnsd) j(nsd) +1
Lits) = | =50 = 5n :

it holds that
[ lf il 7£ ig, then Ij(m“) N Ij(n,lg) = @,
® .I'i isin Ij(n,z)

j(n;i)+1
277,

Moreover, the sequence { } is monotonically decreasing and it converges
n>ng

toward x%; the sequence {J(;—Z)} is monotonically increasing and it converges toward z°.

n

Let n be an integer greater than or equal to ng; for all integer ¢ in {0;...;2" — 1},
we define
Vo Al +u () i Fie{l. k) t=j(ni);
" u(%) itVie{l;...;k}: t#j(n;i).
We also define

2" —1

an [t S5

44



3.3. T'-convergence of the approximating problems

Step 2: Let x¢ be any point in (0,1) \ S(u); we claim that {u,(x)}n>n, converges
toward u(zg). There exists a positive real number n such that (xg — 1,0 +7) is
completely contained in (0, 1) and it is disjoint by S (u). Let € be a positive real number.
Since w is uniformly continuous, there exists a positive real number § that corresponds
to € in the definition of uniform continuity. There exists an integer n; greater than ny
such that

e for all integer n greater than or equal to n; for all integer 7 in {1;...;k} it holds
that Ij(n;i) N (330 —1n,To + 77) = @;

1
* o < min{n;0}.

For all integer n > n; there exists 4, in {0;...;2" — 1} \ {j(n;1);...75(n; N)} such that

o is in [£&, ). For all integer n > ny, it holds that

in
To— —

1
on| S g < min{n;d};

so, we can state that

|un (o) — u(zo)| =

u (;%) — ulao)| =

So, the sequence {u,},>n, converges pointwise toward u for almost every z in (0, 1).
Moreover, for all integer n greater than or equal to ng it holds

t t
lunlloe < | max G| <l + e, |A'| < +oo.

Thanks to the dominated convergence theorem, the sequence {u, }nen converges toward
u with respect to L? norm.

Step 3: For all integer n greater than or equal to ng, we define

O, ={0;...;2" = 1} \ {ji(n; 1);...ji(n; N) }.
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Chapter 3. A discrete approximation

So, for all integer n greater than or equal to ng the following inequalities hold true:

M8t = [ o) o+ 3 w(a)

/ ) dz + Z Y <2mt) (3.3)

w) dx + Z Qinf" (2" A

> | 1
>y (/Qn o) dx) +22nfn (2"AY) (3.4)
teOy,
1
> 5
teO,

(e (o (5) () St o5
B C () ) S o
o (e (5 ()

In (3.3) we used the definition of truncated potential (see 3.2.6); in (3.4) we used the
fact that the straight line that joins the points (a;b) and (¢; d) minimizes the functional
D,, with Dirichlet boundary conditions (see 1.3.2); in (3.5) we used the definition of
O,; in (3.6) we used the definition of u,, and the definition of the truncated potential;
in (3.7) we used the definition of F,, (see (3.2.11)). So, the thesis follows taking the
superior limit. O

[\>|H

= ]:n(un)

3.3.2 Liminf inequality

Lemma 3.3.3 (Replacing technique).
Let u be in L?. Let {un}nen a sequence such that u, belongs to PC, for all n in N.
There exists a sequence {ty tnen in SBY with the following properties:

o Folun) = MS,.(ty,) for all n in N;

e nl_lff [t — unll g2 = 0.

We say that {t, }nen is the replaced sequence.

Proof. Since u,, belongs to PC,, for all n in N, we denote

on_1
=2 Al
i=0
For all n in N we define

Ay = {ie{l;...;Qn—l} ‘ p(A) > 2" (gg)}
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3.3. T'-convergence of the approximating problems

We also define

. A0 %
Uy, = An -+ Z An]l[zin,l]’

i€A,
T
¢ An o

We say that v, is the "jump part" of u, and w, is the "absolutely continuous part" of
u,. For all n in N we define p,,, as the piecewise affine function that joins the points

(o ()~ (22 (5)

for all i in {0;...;2" — 1}, as declared in 3.2.9. We also define @, = v, + py,. By
definition of F,, (see 3.2.11) and 4, for all n in N it holds that

Fulun) = 32 oo (M80) + 37 g (20)

i¢An i€An
=3 e @A) + S w(a))

¢ An 1€A,

i;;]{l

= (/ so(p{un)dx> + v (A))

igh, \7 27 i€y,

1
= / @ (pu,)dr+ Y (AL)
0 1€A,

= MS, (Pun + Vn) = MS%;TZJ(ﬁn)-

We claim that

ngrf @ — unll g2 = 0.

We have that 4, — u, = py, — w, for all n in N. Let us deﬁne {& }nen as in 3.2.3.
We notice that if i does not belong to A,,, then |A?| < . Hence, for all n in N the
following inequalities hold true:

it An
i;;Ll
< Z/ (A;)2dx
¢ An an
1,
i Ap

Thanks to lemma 3.2.5, we can conclude that

ngrfoo 1P, — wnll 2 = 0.
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Chapter 3. A discrete approximation

Theorem 3.3.4 (Liminf inequality).
Let u be in L%, Let {uy}nen be a sequence in L* that converges toward u with respect to
L? norm. Then, the following inequality holds true:

. < T
MSLP#/J(U) — lérgjgof Fn(un)
Proof. If the right hand side is equal to 400, the conclusion is trivial. Therefore, up to

subsequences, not relabelled, we can assume that the inferior limit is actually a limit
and it is real, i. e. there exists a real number M such that

lim F,(u,) =M
n—-+o0o
and that F,(u,) < M+ 1 for all n in N. In particular, u,, belongs to PC,, for all n in
N. Let {@, }nen be the replaced sequence given by lemma 3.3.3. It’s easy to see that
{1y }nen converges toward u with respect to L? norm. So, the conclusion is an immediate
consequence of the lower semicontinuity theorem of the generalized Mumford-Shah
functional (see 2.2.5). In fact, the following inequalities hold true:
lim inf 7, (u,,) = iminf MS,. (1) > MS,.(w).

n—-+oo n—-+00

3.4 Approximation of minima and minimizers

Finally, we show how to approximate the minimum and the minimizers of the functional
éacp;w'
In this section, we assume that

e ¢ is a Young function as in 1.1.1;

¥ is a sublinear weight function as in 3.2.2;

MS,. is defined as in 2.2.4;

e 1:[0,1] — R is a function in L?;

Eup 1s defined as in 2.3.1;
e the sequence {F,} ey is defined as in 3.2.11.

Definition 3.4.1 (Approximating functionals of the generalized Mumford-Shah energy).
For all n in N we define G,, : L? — [0, +-00] such that
1
uw—h)?dr + F,(u) ifuePCy;
P KT (w)
+00 if u e L?\ PC,.

Remark 3.4.2. As explained in 3.2.1, the sequence {G, },en I'-converges toward &,
with respect to L? norm.
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Definition 3.4.3 (Quasi-minima sequence).

Let {G,}nen be defined as in 3.4.1. Let {u,}nen be a sequence in L? such that
lim = 0.

n—-+o0o

We say that {u,}nen 1S a quasi-minima sequence.

Theorem 3.4.4. Let us define {G, }nen as in 3.4.1. Let {u,}nen be a quasi-minima
sequence as in 3.4.3. There exists a subsequence, not relabelled, and a function u in SBY

such that {un }nen converges pointwise for almost every x in (0,1) toward u. Moreover,
it holds that
lim inf G, (u,) > Epp(u).

n—-+0o0o

and w is a function that minimizes &,y .

Proof. Step 1: Let us define v := ||h]| ;.. Since G,(0) is equal to 7* for all n in N, we
can assume that G, (u,) <2 for all n in N. In particular, u,, belongs to PC,, for all n
in N. So, we can consider the replaced sequence {@, }nen in SBY as in 3.3.3. For all n
in N we have that

MS i () = Fr(tn) < Gp(un) < 72

As shown in lemma 3.3.3, the sequence {||u, — | ;2 }, .y 18 infinitesimal. Thanks to
the triangular inequality, for all n in N we have that

[nll e < llun = tnll g2 + 7 = wnll 2 + 2] 2

< lun — anHL2 + v Gn(un) +

<l = @t 2 + 27

In particular, we can conclude that there exists a real number M such that ||@,|/;. < M
for all n in N. So, we can use theorem 2.2.5 and we obtain that there exist a subsequence,
not relabelled, and a function u in SBY such that {,},en converges pointwise for
almost every z in (0,1) toward w. Since {u, — @y, }nen converges toward zero function
with respect to L? norm, up to further subsequences, not relabelled, we can assume that
the convergence is pointwise for almost every x in (0, 1). By difference, we can conclude
that {u, }nen converges pointwise almost everywhere toward w. If we join theorem 2.2.5
and lemma 3.3.3, we obtain that
MS,p(u) < liminf MS,.,(4,) = iminf F, (u,).

n—-+00 n—-+00
Thanks to the Fatou’s lemma, we can state that
1 1
/ (u — h)? do < lim inf/ (h — uy,)?* dx.
0 n—-+00 0

So, we have that

Spsli) = [ (= )? da+ MS ()

1
<liminf [ (h—u,)? dz + liminf F,,(u,)

n—+oo Jq n—+o0o
< liminf G, (u,).
n—+oo
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Chapter 3. A discrete approximation

Step 2: Thanks to theorem 2.3.2, there exists a function y that minimizes &,.,,. Thanks
to 3.4.2, there exists a recovery sequence (see 3.1) for y. So, the following inequalities
hold true:

Ir]ii2n Epap = Epp(y) > limsup Gy, (uy,)

n—+400

> lim inf (inf Qn>
n—+oo L2

= lim inf (i%f Gn — Gn(uy,) + gn(“n))

n—-+00

= liminf G, (u,)

n—-+oo
> G (u)

> miné,.,.
2 min &y

So, we conclude that u is a function that minimizes &,.. O
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Chapter 4

Descending metric slope

We introduce the notion of descending metric slope; it describes how regular is the
functional in a neighborhood of a fixed point. We want to compute the descending
metric slope of the generalized Mumford-Shah functional.

4.1 Definition and main properties

Definition 4.1.1 (Descending metric slope).
Let (X;d) be a metric space; let ' : X — [0, +00] be any function; let o be any point in
X such that F(xg) is a real number. The descending metric slope of F' in zg is defined

as |VF‘(950) — limsup F(zo) —inf {f(z) | d(z;z9) < 7"}'

r—0+ r

If F(zo) = 400 we define

Remark 4.1.2. In the setting of definition 4.1.1, the descending metric slope of F' in x
measures how much it is possible to decrease the value of the functional with respect to
the distance from xy. We notice that |VF ‘ is a nonnegative function on X.

Lemma 4.1.3. Let (X;d) be a metric space; let F : X — [0, 4+00] be a function; let x
be any point in X. Let us define the descending metric slope as in 4.1.1. If we assume
that F(zo) is a real number and xq is not an isolated point, then the following identity
holds true:

i sup X {F(x9) — F(z);0}
|VF’($0) = x—mop d(xg; x) '

Proof. Let us define

M = lim sup max {F((;(j;)o_x)F(x)’ O}.

Since xq is a cluster point for X, we notice that M is well defined.

Step 1: We show that ‘VF‘(mO) > M. If M is equal to 0, the conclusion is trivial;
therefore, we can assume M is in (0, +o0]. By definition of superior limit, there exists
a sequence {x, }nen in X\ {zo} that converges toward zy such that

i 08X {F(z9) — F(z,);0} _
n=s-+oo d(x,; o)

M.
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Chapter 4. Descending metric slope

Since M is greater than 0, the numerator must be eventually positive, hence

L Flag) - Fla,)
n—+too  d(xy,;x0)

= M.

For all natural number n we set
Tn = d(z; x0),

in =1nf {f(x) | d(z;z0) <7y} .

So, we have that i,, < F'(z,) for all n in N. Therefore, the following inequalities hold
true:

Fao) — inf {f(x) | d(w;20) <7}

|VF’<:L‘0) = lim sup

r—0t r
F — i,
> lim sup 10 ~in
n—s—+oo Tn
F — F(x,
> lim sup (z0) () = M.
n—-+o0o Tn

Step 2: We show that |VF|(zy) < M. If [VF|(z) is equal to 0, the conclusion
is trivial; therefore, we can assume that ‘VF|($0) is greater than 0. Let {r,},en be
an infinitesimal positive sequence such that, if we define i,, as in previous step, the
following identity holds true:

F —ip
[V F|(z0) = lim Flxo) —in
n—0+t Tn

Up to subsequences, not relabelled, we can assume that i, < F(xq) for all n in N. By
definition of infimum, there exists a sequence {y, }nen in X\ {xo} such that d(zo; x,) < r,
and F(y,) <4, +r2 for all n in N. So, the following inequalities hold true:

n—-+o0o Tn

> lim sup
n—400 Tn

: F(xg) —1
> lim sup m —Tn
n——+o0o Tn

[l

Remark 4.1.4. Let ¢ be a Young function as in 1.1.1; let ) be a weight function as in
2.1.11. We define the generalized Mumford-Shah functional MS..,, as in 2.2.4. Let
up be in SBY. We notice that MS,.,(ug + ¢) = MS,.4(up) for all ¢ in R. Hence, if
{¢n }nen is any infinitesimal sequence, the following identity holds true:

MS iy (ug) — MSE i (uo + cn)

=0.
[Cn]

This is enough to state that

VM ] () = i sup S 0) = M)

u—ug |uo — UHLZ

52



4.2. Slope of MS,.y

4.2 Slope of MS,.;

From now on we assume that ¢ is a Young function as in 1.1.1, ¢ is a weight function
as in 2.1.11, MS,,; is the generalized Mumford-Shah functional defined in 2.2.4 and
|VMS%¢| is the descending metric slope defined in 4.1.1.

Our aim is to compute the descending metric slope of the generalized Mumford-Shah
functional. We find as more necessary conditions as possible for the slope to be finite
and we write a lower bound for the slope. Surprisingly enough, these conditions prove
sufficient and we find an upper bound for the slope that involves the regularity of ¢
and 1.

4.2.1 Lower bound for the slope

Theorem 4.2.1 (Finiteness of the essential discontinuities).
Let u be a function in SBY such that MS.(u) and [VMS,4|(uw) are real numbers.
Then, the set of the essential discontinuities of u is finite; in other words, u belongs to

SBY (see 2.2.3).

Proof. We consider the canonical representative of u, i. e. u = w + v + u(0), where w
is the absolutely continuous part and v is the jump part (see 2.2.1). As defined in 2.1.8,
we can decompose v as follows:

U:Zvizz Z Y (Au(x))

i>1 21\ zes(u)

By definition 2.1.8, if 4 is a positive integer and = belongs to S (u)’, then |Au ()] is in

(%, Z_LJ For all positive integer n, we define

Up, = u(0) +w + Zvi.
i=1

Let 0 be a positive real number; let I';,(6) be as in 2.1.10. By definition 2.1.11, we have
that

liminf I'y(f) = lim inf @ = 400

0—0+ 6—0+

Let € be a positive real number; there exists a positive integer Ny such that if x is in

(O, NL>, then I'y(z) > 1 So, if i is a natural number greater than or equal to Ny and
0 S
x is a point in 8 (u)", then 2 < T'y(|Au (2)]); in other words, we have that

|Au ()] < eip(|Au ()]).
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Chapter 4. Descending metric slope

For all integer n greater than or equal to Ny the following inequalities hold true:

n
Ju—unp2 = U_ZUZ
=1 L2
n
o L
i= [e%¢}

A

S

i>n+1

<Y [ 3 )

izn+l \ zeS(u)?

<> | D el(du(@)

2nt+l \ zeS(u)’

=€ [MSyy(u) = MSpp(un)].

Obviously, {u, }nen converges toward u with respect to L? norm (see 2.1.8). We also
remark that MS,.,,(u) is a real number; if we assume that S (u) is not finite, then
u, # u for all positive integer n. We have just shown that if n is an integer greater
than or equal to Ny, then

1 < MSE iy (u) — MSw;dJ(un)_
g [ — wnl| 2
So, we can state that
n+oo lw = w2
As shown in lemma 4.1.3, we can conclude that ‘VMSWp‘(u) = +00. O

Theorem 4.2.2 (Regularity and Neumann boundary conditions).
Let u be in SBY represented as in 2.2.3, namely

k
u=w-+ U(O) + Z Ai]].[xi;l].
i=1
For all integer i in {0;...;k} we denote Q' == [2°, x'T]; we also denote Q = [0,1]. We
suppose that MS . (u) and |V MS,y|(u) are both real numbers. We assume that:
e ¢ is in C1((0,4+00));
e ¢ isin CY(R);

e for all p in C°°(Q) there exist a positive real number T and a function n in L'(Q)
such that for allt in (—7,7) for almost every x in § the following inequality holds
true:

|’ () + tp(x))| < n(x).
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4.2. Slope of MS,.y

Then, the following conclusions hold true:

e (regularity) ' (1) is in WY2(Q) and it holds that
VMS () 2 [ | (1)

e (Neumann boundary conditions)
1. ¢ (u(xh)) = (A?) for all integer i in {1;...;k};
2. ¢ ((0)) = 0;
3. ¢ (i(1)) = 0
Proof. Step 1: Let p be a function in C2°(€2). Since |VMS,;,|(u) is a real number,
we can state that

lim sup MSEyiy (1) — MSyy(u+ tp
t—0 ”tﬂHp(Q)

) < |V MS | (w).

In other words, the following inequalities hold true:
/ o) =P 410) i gup M) = MSpu(u+ tp)
Q I =0 |t]
< [ VMS | () 1ol 2y -

lim sup
t—0

We consider a positive real number 7 and a function 5 in L'(€2) as in the hypothesis;
thanks to the theorem of derivation under integral, the following identities holds true:

t—0t+ Jo t Q

D — ol 1
lim p(l) = p(i+ 1) dr = / o' (1)p du.
t—=0~ Jo —t Q

Hence, if p is a function in C2°(2), we have that
‘ / ¢'(w)p dx

Q
So, if we define Z(u) : C°(Q2) — R such that

2(w)] () = / o (@)p dz,

< |VMS | (u) 12020 - (4.2)

the functional Z(u) is linear and continuous. Thanks to the Riesz’s representation
theorem (see [2]), there exists a function ¢ in L?*(2) such that for all p in C2°(Q) the
following identities hold true:

[ ¢t s =) 0) = [ e

In other words, we have just shown that /(i) is in WH2(Q) and —¢ is the weak
derivative. So, for all p in C2°(Q2), we can integrate by parts (4.2) and we obtain that

' [ o o] < [TMS 0 ol - (43
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Chapter 4. Descending metric slope

Let {pn }nen be a sequence in C°(Q) that converges toward [/ ()] with respect to L?
norm. If we take the limit as n approaches +o00 in (4.3), we obtain that

[ (1Y do < [9MS | 0) 160
Then, we immediately conclude that
||[¢/(u)}/HL2(Q) = |VMS¢;1ZJ|(U)'

Step 2: Since ¢/(1) is in WH2(Q), it is continuous in [0, 1]; so, the boundary
conditions make sense. Moreover, we have that ¢/ (1) is in W12(Q?) for all 7 in {0;...; k}
and the weak derivative is the restriction of the weak derivative defined in (0,1). We
also notice that for all integer ¢ in {0;...;k} for all p in C*(£2) it holds that

(Ei+1
[ o= [ oot |t
Let us assume that 7 is in {1;...;k}. Let p be any function in C*°(Q2") such that
p(z) =1 and p (') = 0; we define p : [0,1] — R such that p(z) = p(x)1g:(x). Then,
the following inequalities hold true:

N FUECCEL PTG BT
t—0 Qi |t| |t|
— lim sup MS gy (u) — ﬁfsw;w(u +1p)
t—0

< [VMS i | () 16l 2
= |V M| (w) Il 20 -
We consider a positive real number 7 and a function n in L'(£2") as in the hypothesis.

Thanks to the theorem of derivation under integral and the regularity of v, the following
identities hold true:

lim {/Q p(u) — p(u+tp) der@b(Ai)—@Z)(Nth)} :—/iga’(u)pdx—w’(N),

t—0+ t t
tl_igl, {/QZ (1) —f§a+tﬁ) do + ¥ (A __ﬁ(Al‘Ft)} _ /QZ O (0)p de + (Az)

So, for all function p is in C*°(Q2") such that p (z') =1 and p (z**!) = 0 it holds that

[ do v (&) < [VMS | 0) -

We integrate by parts and we obtain that

$p du =o' (i (")) + ¢ (&)

Qi

< VMS | (W) ol 120y

If we use the triangular inequality, we find that

/Qifpdx

+ =9 (i (o) + 0 (A)] < [VMS | (@) ol 20y
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4.2. Slope of MS,.y

We can rearrange terms and use the Holder’s inequality; so, we have that

= i () + 7 (A1) < [T ) Uy + | 60

< (|9 MS ] () + 1€l 2y ) Noll ey -

Having said that, we can choose a sequence {p,}nen in C°°(2") with the following
properties:

e p, (") =1 and p, (z'') = 0 for all natural number n;
o {p,}nen converges toward zero function with respect to L? norm in €.

Hence, we obtain that
=" (@ (2%)) + v (A7) = 0.
Step 3: To conclude, we can easily adapt the procedure described in the previous
step, taking different sets of test functions:

e if we consider p in C°°(Q2°) such that p(0) = 1 and p(z') = 0, we obtain that

| (a(0))] = 0;
e if we consider p in C*°(QF) such that p(1) = 1 and p (2*) = 0, we obtain that

| (@(1))] = 0.
Then, the theorem is completely proved. n

Remark 4.2.3. Under the hypothesis of the theorem 4.2.2; ¢'(u) is a continuous function.
If we also assume that ¢’ : R — R is an homeomorphism, then @ is a continuous
function and w is in C*(Q).

Corollary 4.2.4 (Characterization of the global minimum).
Under the hypothesis of theorem 4.2.2, we also assume that

o if A isin (0,400), then ¢'(A) #0;
e p(x) =0 if and only if v = 0;
o O (x) =0 if and only if x = 0.

Then, VMSSO;M(U) = 0 if and only if u is a global minimum point for MS,.,. In
particular, the set of local minimum points that are not global minimum points for
MS,., is empty.

Proof. It’s easy to see that u is a global minimum for MS,,.; if and only if there exists
a constant ¢ such that u(x) = ¢ for almost every x in €.

If [VMS,4|(u) is equal to 0 we have that [¢/(4)]" is equal to 0 almost everywhere
in Q (see (4.1)). We integrate by parts and we use the Neumann boundary conditions
in 0 and 1; so, for all p in C*(2) we have that

0= /9[90’(12)]7) dv = —/ @' (W)p da.

Q
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Chapter 4. Descending metric slope

Thanks to the Du Bois-Reymond’s lemma, there exists a constant ¢ such that ¢'(4(z))
is equal to ¢ for almost every = in 2. We know that ¢'(4(1)) = ¢'(u(0)) = 0 (see 4.2.2);
so, ¢ is equal to 0. In particular, we have that @(x) = 0 for almost every z in 2. We
have shown that w coincides almost everywhere with a globally constant function. If
S (u) # 0, let x be in S (u) and Au (z) be the height of the corresponding jump; then,
V' (Au(z)) = ¢'(u(x)) = 0 that is against our assumption on ¢’. In particular, u is a
globally constant function.

If w is a local minimum, by definition of descending metric slope it immediately
follows that |VMS | (u) = 0 (see 4.1.1). In particular u is a global minimum. O

Remark 4.2.5. We remark that the necessary conditions on u and the lower bound for
the slope given by theorem 4.2.2 are consistent with those obtained in the classical case,
where ¢ is the quadratic potential and v is the function that counts jumps. However,
it was studied by Clara Antonucci in her master thesis (see [1|). She find out that the
conditions given by theorem 4.2.2 are also sufficient for the slope to be finite and 4.1 is
actually an identity. As for the generalized Mumford-Shah functional, the metric slope
is strictly related to the regularity of ¢ and ).

Theorem 4.2.6. Under the hypothesis of theorem 4.2.2, we also assume that
e ¢ isin C*(R);
e ¢ : R — R is an homeomorphism.

There exists a positive real number M such that for all integer i in {1;...;k} the
following inequality holds true:

o (A = V(A )+ o0 (&)

1
e—0 |g|§

<M.

Proof. Thanks to 4.2.3, we know that w is in C''(Q); in particular « is bounded. Let
p be a positive real number such that w(x) is in [—pu, p] for all z in Q. Let us fix 7 in
{1;...;k}; let € be a positive real numbers such that ¢ < 2* — 2=, We set

Q' (e) = (z' —¢e,2'].
Let a be in [1,400). We define p. : © — R such that
pe(x) =[x — (2" = &)]" Lot ().

We notice that if z is in Q\ {2} then p.(z) is in [—ae® !, ae?1]. Without loss of
generality, we can assume that if z is in Q \ {z'} then w(x) + p.(z) is in [—p, p]. Since
¢ is a C? function, to x in Q there corresponds &, in [w(z) — |p-(x)],w(z) + |p-(7)|]
such that

i) + () = pli(e) + o) i) + P ).

Moreover, it is not restrictive to assume that if = is in Q then ¢"(&,) is in [0, p]. In
other words, for all x in 2\ {2’} we have that

i) — (@) + po(x) = o)) ~ 2 e

> —pe()/ (i) — ()"
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4.2. Slope of MS,.y

So, we have that

|VMS%O;1Z}|(U) > lim sup MS.p(u) = MS.p(u + pe)

e—0+ HpsHL2(Q)
oy . ,u . 7 7 a
—/w’(U)ps dx—g/pi dr +¢ (AT) = (A" — &%)
> lim sup £ 8
e—0+ HPEHL2(Q)

_/. go'(u)psdx_g//é? dx+w(N)—zp(N_5a)
Q" (g) Q

= lim sup
e—0+ o ||L2(Q)

Since we can integrate by parts and use the Neumann boundary condition in z* (see
theorem 4.2.2), we obtain that

. Mmoo, 2
[ @) o de =S,
2 (o)

|VMS | (w) > limsup

e—0t HpEHL2(Q)

L)) et + o (A) —y (AT <)
Hp5“L2(Q)
[ b do =5 1ol
= lim sup =%

e—0+ |Ip€||L2(Q)

N _6a¢l (Az) —|—¢(Al> _¢(Ai_€a)
1l 20 '

If we use the Holder’s inequality, we have that

@ oy Il < [ 1 o2 o < N g -

It’s easy to see that there exist two positive real numbers ¢;(a) and cz(a) such that

& 2 ]. 1 1
2a a+3 a+i
= % dx = e 2 =cCcla)eg 2

[SIen

' 5 B CL2 o o
”pEHi2(Q) :/0 a2x2a 2 dr = . 162 1 _ CQ(&)EQ 1.
Therefore, we can rearrange terms and we obtain that
e - ey (A + (A - (AT - )
lim sup
e—0+ e L2()

< {VMSSWJJ‘(U) + H [Qol(u)]lullz(g) .
In other words, we have that

Y (AY) — ¢ (AT —e?) — e/ (AY)

1
at3

lim sup
e—0t ci(a)e

17N/ .. 02(a)52a71
< [VMSip|(u) + [ ()] HLQ(Q) - 2 ll_% c1(a)e™

[N
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Chapter 4. Descending metric slope

Since ‘VMS%M(U) is a real number and ¢'(w) is in W2(Q) (see 4.2.2), the right hand
side is finite if and only if a > % So, if a is greater than or equal to %, it holds that

V(A =y (A = o) - e (A

1
at3

pica(a)
2¢1(a)

) < |VMS | (@) + [0 (@] || o) +

lim sup
e—0+ ci(a)e

If we replace ¢* with €, we have shown that there exists a positive real number M such

that , , .
V(A) — Y (A —¢) —ey (AY)

1
gtz

<M.

lim sup
e—0t

The condition is optimal if a is equal to %; hence, the following inequality holds true:

s LAY~ (A7 — 6) — v (&)

e—0t £

<M. (4.4)

Wl |

To conclude, let us consider any positive real number € such that e < 2™t — z°. We set
Q' (e) = [2',2" + &)
Let a be in [1,400). We define p. : © — R such that
pe(a) = [ — (&' — )Ty (o (a).
If we slightly modify the procedure that we have just described, we easily obtain that

lim sup L(8) — ¥ ((N _)f) =AY g (4.5)
e—0~ —E&)3

Joining (4.4) and (4.5), the thesis follows immediately. O
Example 4.2.7. Let ¥ be a weight function with the following properties:

e ¢ is in C'((0, +00));

e if z isin [1,400), then ¥(z) = 1;

e if zisin (3,1) then ¢(z) =1— (1 — )3,

We notice that
V() —v(d+e) +Y'(L)e

lim sup I =1
e—0 |€|§

Let us define u := ]l[l 1] In particular, we have that MS,.,,(u) = (1) = 1. Let a be
27

in [1,4+00); let 0 be a positive real number. Let us fix a positive real number e such
that * is in (0, 55); we define p. : [0,1] — R such that

pel() = 0 [x - (% - e)](ll(;_a’%](:z;).

1
Y

We notice that

N|=

‘ 0 1
el 2 = 0 x* dr ) = ———=c""7;
P R
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4.2. Slope of MS,.y

Hp ||2 — /E 920121‘2(172 d.T — 62(1—2820‘*1,
ell L2 o 2a — 1 :
1/](1 - an) =1- 9%5“%‘

Hence, the following identities hold true:

MS%lb(“) - MSw;w(U + pe) _ = HpeHiZ + (1) — (1 — %)
[ l[pell 12
_02%82(1714»0%6(1%
- 0 at+i
wors il

It’s easy to see that if a is equal to %, then

lim sup MS&@;I/)(”) — MS,.y (u + pe)

et el 2

9 !
= ——0+20s.

TR
Therefore, we obtain that

9 1 8 /2
: > —= 38 = _—4/—
|VMS | (u) > rg;agc{ 49+2¢9 } oV 3

The example show that the lower bound given by 4.1 can be strict.

4.2.2 Upper bound for the slope

Definition 4.2.8 (Approximating sequence).

Let uw be in SBY such that MS,,.;,(u) is a real number. Let {u,},en be a sequence
in SBY that converges toward u with respect to L? norm. We say that it is an
approximating sequence for u if the following identity holds true:

[VMS,p|(u) = lim MS iy (1) = MSpip (un)
@5 -

n—+o0 lu = unl 2

Lemma 4.2.9. Let u be in SBY such that MS,.,(u) is a real number. Let {u,}nen be
an approximating sequence in SBY for u in the sense of definition 4.2.8. The following
conclusions hold true:

e liminf MS,.,(u,) = limsup MS . (u,) = MS,p(u).
n—+00 n——4o00

e Let us consider the canonical decomposition w, = w, + v, as in 2.2.1, where w,, is
the absolutely continuous part and v, is the jump part. Similarly, we decompose
u = w +v. Then, there exists a subsequence, not relabelled, with the following
properties:

1. {wy, }nen converges uniformly in [0, 1] toward w and {v, }nen converges toward
v with respect to L? norm and pointwise for almost every x in (0,1);

2. liminf D, (wy,) = limsup D, (w,) = D,(w);
n—-+0oo

n—-+o00

3. liminf MS(v,) = limsup MSy(v,) = MSy(v).

n—r+o0 n—++00
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Chapter 4. Descending metric slope

Proof. As for the first statement, we notice that ’VMSSD;M(U) is nonnegative; hence,
we can state that:

lim inf MS . (u) — MS . (u,) > 0.

n—-+o0o

In other words, we have

lim sup MS . (1) < MSpp(w).

n—+00
As shown in theorem 2.2.5, MS,,,; is a lower semicontinuous functional in SBYV. So,
the following inequalities are proved:

MS.p(u) < lilil_"i_nf MS.p(uy) < liszrup MSp(un) < MS,(u).
n—T00 n—-+00
We remark that MS,,.,(u) is a real number: then, up to further subsequences, not
relabelled, there exists a real number M such that MS,.;(u,) < M and ||uy,|;. < M
for all n in N. Thanks to theorem 2.2.5, up to further subsequences, {w,, },en converges
uniformly in [0, 1] toward w; by difference {v, },en converges toward v with respect to
L? norm and pointwise for almost every z in (0,1). Thanks to theorems 1.3.11 and
2.1.20, we also know that
lim inf Dy (w,,) > D, (w),

n—-+o0o

lim inf MSy(v,) > MSy(v).

n——+oo
Let us assume that there exists gy > 0 such that

lim sup D, (wy,) > Dy(w) + €¢

n—-4o0o

Up to further subsequence, not relabelled, we can assume that for all n in N it holds

that -
0
D, (w) < Dylun) - 3

Up to further subsequences, not relabelled, we can assume that if n is in N, then

MS,(v) < MSy(va) + "1—0

Hence, for all n in N the following inequalities hold true:
MSEpp(u) = Dy(w) + MSEy(v)

€ €
< Dy(wn) = 5 + MSy(vn) +
€0
4 Y
that is against the first statement. We have shown that

= MS ()

lim sup Dy, (w,,) < Dy(w).

n—-+o0o

Then, we can immediately conclude that

lim sup M8y (v,) < MSy(v).

n——+o00
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4.2. Slope of MS,.y

Definition 4.2.10 (Strictly weight function).
Let ¢ be a weight function as in 2.1.11 with the following properties:

e for all a,bin R\ {0} it holds that
Ula+b) < ¥(a) +(b);

e if {a,}nen is a sequence that converges toward +o00, {b, }nen is a sequence that
converges toward —oo and {a, + b, }neny converges toward a real number, then

liminf ¢ (a, + b,) < liminf ¢ (a,) + liminf ¢ (b,).
n—-+o0o n——+o0o

n—-+o0o

We say that v is a strictly weight function.

Lemma 4.2.11 (Regularity of the approximating sequence).
Let u be in SBY represented as in 2.2.3, namely

k
u=w+u(0)+ Y Al
i=1

For all integer i in {0;...;k} we denote Q' = [z, 2] and Q == [0,1]. Let us assume
that v is a strictly weight function as in 4.2.10. Let us assume that MS,.(u) is a
real number. Let M be any real number such that [V MS | (u) > M. There exists a
sequence {1ty }nen with the following properties:

o {1, }nen converges toward u with respect to L* norm;
o ifnisin N, then S (u,) =S (u);

o if we represent the sequence {up,tnen as in 2.2.3, namely

k
Uy = Uy (0) + Wy, + By = 1 (0) + Dy + > AL Ty,
=1

then, for all integer i in {1;...;k} it holds that {A! },en converges toward A* and
{1,(0) }nen converges toward u(0).

e limsup MSE (u) — M‘Ssonb(an)

n—-+o00 ||U - ﬁ’nHL?(Q)

> M.

Proof. Step 1: Let {u, },en be any approximating sequence for u (see 4.2.8) represented
as in 2.2.1, namely

Uy, = Up(0) + wy, + vy,
Let M be any real number such that |V MS,,|(u) > M. We set

Ay ::minﬂAi‘ |@'e{1;,..;k3}},

Onm = sup{5€ (0, +00) ‘v:ce (0,6) ¥lz) >M}.

X =
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Chapter 4. Descending metric slope

Let us fix g > 0 such that
A
soﬁmin{f;@/w}. (4.6)

Thanks to lemma 2.1.17, there exists a positive real number 7y such that for all n in N
the following inequalities hold true:

Zv; < Z Z |Av, (2)] | < eo. (4.7)

i>1g 0o i>ip \ zeS(vE,)

For all n in N we consider the following decomposition:

10
a, = u,(0) + Z vl
i=1

We notice that

S (ay) = Os(vg),
Sby) = ]S (vh).

1>10

For all n in N we have that

1
e if x is in S (b,), then |Ab, (2)] < —;
20

e b,(0)=0;
o MSy(bn) < MSy(un).
Thanks to lemma 4.2.9, we have that

lim MS,.p(un) = MS,.(u) < 400;

n—-+o0o

in particular, the sequence { MSy(bn)}, o is bounded. Therefore, the proposition 2.1.18
guarantees the existence of a subsequence, not relabelled, with the following properties:

e for all integer p > iy there exists 5? in N such that if n > p, then card S (v2) = /37,

o for all integer p > ig, for all n > p we represent v? as in 2.2.3, namely

BF
3t
/Ug - ZA,I; ]l[zl'r?t7”‘
t=1

Then, for all integer ¢ in {1;...; 87} there exists 22 in [0,1] and AZ! whose

absolute value is in B, p%l], such that

lim 2Pt = Pt
n—-+oo n o0

lim AP = AP
n—-+oo
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4.2. Slope of MS,.y

e For all integer p > 19, if we define

3P
UIO)O = Z Agg]l[x&tJ]
t=1

then {vP},en converges toward v?, with respect to L? norm and pointwise for
almost every x in [0, 1]; moreover, if we define

Bp::{tE{l;...;ﬁp}|$’£:0},

then

W (0) =) AT

teBp

p
° { Z V! } is a Cauchy sequence with respect to L? norm; if we define
P>10

oo
t=ip+1
b= Z vb
P>
then, {b, }nen converges toward b with respect to L? norm.

In particular, b is in PJ. Moreover, for all integer p > ig we have that:

lim inf MSy(vF) > MS,(v2,);

n—-+o0o

we also know that

lim inf MS(b,) > MSy(b).

n—-+00

Obviously, we can state that [|b]|_ < eo.
The sequence {ay, }nen is such that for all natural number n the following properties
hold true:

1
e if x is in S (a,), then |Aay, (2)| > —;
%o

° MSw(CLn) < M‘Swtb(un);

* ||an||L2(Q) < o + Un(0)||L2(Q) + anl|L2(Q) < lvn + Un(O)HL2(Q) + €o.

In particular, we can assume that the sequences {MS;(a,) }nen and {||an||L2(Q)}
neN

are bounded, because

lim MS.p(u,) = MS,.4(u) < 400,

n—4o0o
nLHEOO l|lvn + Un(O)HL?(Q) = [lv+ “(O)||L2(Q) < +00

as shown in lemma 4.2.9. If we define a := v + u(0) — b, it’s easy to see that {a, }nen
converges toward a with respect to L? norm. Up to further subsequences, not relabelled,
we can assume that the convergence is pointwise for almost every x in (0,1). If we
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Chapter 4. Descending metric slope

recall definition 2.1.12 and the fact that Z, <%> > 0, it’s immediate to see that the
following inequality holds for all n in N:

Ty <l> card S(a,) < MSy(an) < MSyy(un);

20

hence, there exist another subsequence, not relabelled, and a natural number j such
that card S (a,,) = j for all n in N. Thanks to proposition 2.1.19, we can state that a is
in PJ, cardS (a) < j and

lim inf MSy(a,) > MSy(a).

n—-+00

Step 2: By definition, v + u(0) = a + b; we know that the sets S (v) and S (a) are
finite; therefore, S (b) is finite too. We set A := card S (a) and B := card S (b); let a
and b be represented as in 2.2.3, namely

A
a:=a(0)+ Y a'ly.y,
i=1

B
bim b(0)+ 3 Al
i=1
We know that S (v) is contained in S (a) U S (b) and

MSy(v+u(0)) = lim MS, (v + un(0))

n—-+o0o

= lim MSw(CLn)+MS¢(bn>

n——+oo

> lim inf MSy(a,) + liminf MS(by)
n—-+0o0o

n—-+00

Z MS¢(a) + MS¢(b)
> MSy (v + u(0)).

We claim that S (b)) NS (a) = 0. Since ¢ is a strictly weight function (see 4.2.10), if
there exists  in S (b) NS (a), then

MSw(Cl) + MSw(b) > MSw(U + U(O)),

that is absurd, obviously. We claim that S (b) = (). We know that
A
16l < 20 < -
If there exists 2 in S (b), then
A
|AD ()] < 2e0 < 70

In particular, we find that xy must be in S (a), that is absurd. We also claim that
S (v) = S (a). If there exists 2o in S (a) \ S (v), then xy must be in S (b), that is absurd.
We have just shown that b(z) = b(0) for all z in 2. We claim that 5(0) = 0. First of
all, we have that
lim sup M8 (b,) = 0.

n—-+o0o
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4.2. Slope of MS,.y

By contradiction, if there exists a positive real number ¢ such that

lim sup MSy(b,,) > ¢,

n—-4o00

then, up to further subsequences, not relabelled, MS(b,,) > € for all n in N. Thanks
to theorem 2.2.5, up to further subsequences, not relabelled, MSy(a) — 5§ < MSy(an)
for all n in N. Hence, if n is in N, then

MSy(a) + g < MSy(an) + MSy(by) = MSy(an + by).

Since we have that

MSy(v+u(0)) + 5 = MSy(a) + = < Tim MSy(an +by) = MS,(v+u(0)),

2 n—-+00

that is absurd. If we recall that

b, = Zv;,

1>10

we have shown that

0= Lm MS, (Z ) = lim > MSu(o

1>1g 1>10
It immediately follows that for all integer ¢ > iy, the following identity holds true:

lim MS,(vl) = 0.

n—-+o0o

If there exists i1 > ig, € > 0 and a specific subsequence, not relabelled, such that for all
n in N it holds that MS(v%) > €, then

= lim Y MSy(v}) > limsup MSy(v}}) > e,

n—-+o0o
1>10 n—+00

that is absurd. Therefore, for all integer ¢ > iy, the following identity holds true:

0= lim MSw( ) MSQZ,(’UZ)O)

n—-+o0o

Hence, for all z in Q for all integer ¢ > iy it holds that v’ (x) = v’ (0). We claim that
v’ (0) = 0 for all integer i > ig. Let us fix i; > ig; we know that

W (0) = 3 Al

teBi

. t;il . . 1
Since |A%1] is in [1, P

} if B% is not empty we find that
_ 21 115 t 115t
0= lim MSy(v;) > lim_ > w(ant Z¢(Am)>o
tEB’l teB"1

that is absurd. By definition of b, we can easily conclude b(x) = 0 for all x in 2.
Step 3: We define 4, = w, + a,. We claim that {,},eny has the following
properties:
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e cardS (a,) = j for all n in N;

o {i,}nen converges toward u with respect to L? norm;

e limsup MSE i (u) = MSyy(tn)

n——+o00 ||U - anHL?(Q)

> M.

Since {anH LQ(Q)} . is an infinitesimal sequence, we notice that {, },en converges
ne

toward u with respect to L? norm. More precisely, the following inequalities hold true:

=l 20y < 1w = wnll gy + 100l 2y < e = tall 2oy + Y 1Ab,(
z€S(bn)
If we join (4.6), (4.7) and the definition of {@,, },en, the following inequality are proved:
MSE i (u) = MSyiy(tn) = MSEpp(u) — My (un) + Z Y(Aby (z))

2€8(bn)

= MS (1) = MSpi(un) + D w(|Ab, ()))

2€8(bn)

> M8y (u) = MS gy (un) + 1 Z |Ab, (2)]

xGS(bn)

> MS (1) = MS iy (un) + M Z |Aby, ()]

Let ny be a natural number such that for all integer n > ngy it holds that
MS (1) = My (tn) = Mllu—unl| 2

Hence, if n is any integer greater than or equal to ng, the following inequalities hold
true:

MS (1) = MS iy (wa) + MY |Ab, ()

MSw;w(U) - MSw;w@n) > z€S(bn)
lw = tnll 2y B [u = tn 2(q) + Z |Ab, (
2€8(bn)
M lu = || 2 ) + M Z |Aby, (2)]
xGS(bn) _ M
lu = tnll oy + Y Ay ()]
2€8(bn)

In other words, we have just shown that:

lim sup MSpy (U) - MSWb(un)

n—+00 lu — an”LZ(Q)

> M.

Step 4: Having said that, for all n in N we represent a,, as in 2.2.3, namely
j .
a, = w, + un(O) + Z Aiz]l[a:il,l]
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4.2. Slope of MS,.y

where 0 =z < ), <--- < xj, <2} = 1. We notice that |A}| > - for all n in N for
all ¢ in {1;...;7}. Up to further subsequence, not relabelled, we can assume that for
all i in {0;...;7 + 1} there exists z_ in [0, 1] such that

lim z! = 2’
n—4o0o n o0

Let r,t be integers in {0;...;j + 1}; we declare that r,¢ are equivalent if and only if

x! = 7. This induces a partition on {0;...;j + 1} into disjoint sets. In other words,
there exist a natural number h and a collection of pairwise disjoint sets
{A% . AP

that cover {0;...;j+ 1} (see 2.1.19). So, for all ¢ in {0;...;h + 1} we can well define
y' == a7, where r is any index in A’. We recall that r belongs to A° if and only if
2" = 0; similarly, 7 belongs to A" if and only if 27, = 1. For all i in {0;...;h + 1}
for all n in N we define

=) AL

te A?
As shown in 2.1.19, up to further subsequences, not relabelled, for all ¢ in {0;...;h}
there exists a real number © such that

lim @’ o

n—-+o0o
We set
B = {ie {1;...5h} "v’tE {0;...;k+1} yi#xt},
C:={1;...;h}\B.
As shown in proposition 2.1.19, for all i in {1;...;h} we have that © # 0 if and only ¢
belongs to C and it holds that ©F = Awv (y).

We claim that A% = A" = B = () and if 4 is in {1;...;h} then card A" = 1. We
have shown that

MSy(v+u(0)) = HETMMSw(an) > MSy(a).

If we rearrange terms, we find that

0= lim " (Z Y(AL) — (A (yi))>

i€C \te Al
+Y AN+ D v+ (Z ¢(A2)>
te A0 teAh+1 i€B \te Al
3 lim nf (g Y(A) —(Av (y")))

t t t
2 tminf oAy + D minfu(an) + ) lim o (ZMJ)

te A9 te Ah+1 i€B te A

> it (3 ota0) - vian ()

ieC te At

(Card A® + card A" 4 Z card A’) Z, ( ! ) (4.8)

i€B to
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Chapter 4. Descending metric slope

where Z,, (%) is defined as in 2.1.12 and it is positive (see 2.1.13). We also notice that
for all 7 in {1;...;h} it holds that

lim ggg V(AL) = $(Av (y)) > liminf (2; AL) — (A ()

> 1) (lggli&f @1;> —(Av (y')) =0.

In other words, each addendum of the (4.8) is nonnegative. To be valid, each addendum
of the sum must be zero. In particular, A° = A" = B = 0.

We show that if 7 is in C, then card S (A’) = 1. Obviously, S(A") # 0. By
contradiction, we assume that there exists an integer ¢ in C such that card A* > 1; in
particular, there exist two disjoint, non empty sets P and Q such that P U Q = A* and,
up to further subsequences, not relabelled, there exist p in [0, +o0] and ¢ in [—o0, 0]

such that
li =
Jim Y AL =p
tep

Jm 2 A=

teQ
So, we have that
— Tim £y _ i
0=Tliminf } w(A]) ~ (A (y))
te At
> t t i
l%r_r}ilggfzw (AY) —i—hmlnfzw (AL) —v(Av (v'))
> liminf 1) (ZAt> +hm1nf¢ (ZAt) Av( ))
n—-+00 ep n—-+00 tco
> liminf ¢ (Z A;) + lim inf ¢ (Z AZ) — lim inf v (Z Al + Z AZ)
e teP e teQ e teP teQ

> 0,

because 1 is a strictly weight function (see 4.2.10); this is absurd.
Step 5: To conclude, we show that we can assume that z?, = z* for all n in N for

all ¢ in {1;...;k}. If there exists a specific subsequence, not relabelled, such that for
all 7 in {1;...;k} for all n in N it holds that z!, = z%, the conclusion is trivial. Hence,
we can assume that there exists ig in {1;...;k} such that 2! # x% for all n in N. We

define ! = z¢ if i # iy and y!° := 2. Moreover, we define
k
Uy, = Wy, + up(0) + Z ATy o

We claim that {, }neny converges toward u with respect to L? norm and

lim sup MSEpp(u) = My (U

n—+00 [ = tnl| 120

”)ZM.
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4.2. Slope of MS,.y

We notice that MS,.;(t,) = MS,.(u,) for all n in N. If we show that for all n in N
it holds that

Ju— anHLQ(Q) < lu-— anHL?(Q) 5

then, we immediately obtain that for all n in N it holds that

MSw;w(U) - M‘Sw;w(ﬁn> < MS@;I#(U) - M‘Sw;w(ﬂn)'

[ = tn[ 120 lu = tnll 2y

This is enough to conclude that {@, },en satisfies our requests.

We know that {w, | n € N} U {w} is a family of equicontinuous functions (see
theorem 1.3.4) and { @, (z) }nen converges toward u(z) for all x in E,| where E is a subset
in [0, 1] such that .Z(F) = 1. Without loss of generality, we can assume that z% > g
for all » in N. Let us denote

|A™]
1=
10
Let 6; > 0 be corresponding to £; in the definition of uniform continuity. We can
assume that
R
o Smin{T i€ {O;...;k}}.

Let x5, be in (2%, 2% + L) N E; let ys, be in (20 — &;, 2 — %) N E. Let ng be a natural
number such that for all n > ng it holds that

o |z}, —2f| <% forallie{1;...;k};
o |u(zs,) — tn(ws,)] < 15
o [u(ys,) — Un(ys)| < e1.

Thanks to our assumption, we can state that if n > ng then 4, is a continuous function
in (xﬁf, xh + %1); moreover, for all z in (2, %) the following inequalities hold true:

[n(2) — u(z)| > Ju(z™)" —u(a™)7|
— lin () = G (5,)]
= Jin (25,) = u (25,)]
— | (zg,) — u(a)*]
= [u(z) — u(z")7|
A"
2

> A0] — 42y = 3 A0] 2

Similarly, we have 1, is a continuous function in (z% — §;, 2%). Hence, for all x in
(0, 2] we have that

(U () — u(@)] < [tn(x) — tn (y5,)]
+ |t (ys,) — u (ys,)]
+ |u (ys,) — ()|
3 |A%|

< 3= g5 |A0 = 5
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Having said that, we conclude with the following inequalities:

x;o 0 1
HU—ﬂnH%ﬂ(Q) = / (u — u,)? dl’—i—/ (u — 1,)” dx—i—/ (u— ) dx
0 x

i .
nO o)

:ribo x'0 1
:/ (U — iy, )? dx—l—/_ (u — 1y )? dx—l—/ (u — 1i,)? dx
0 T T

i .
nO i0

:vilo 1 . . |Aio| 2
s/ (1 — ) d:c+/ (= )? do + (2% — 210) (T)
0 at

20

i,

10 1 o

g/ (U — iy )* d:c+/ (u — 1, )? dw+/. (u—a,)* do
0 x0 1’110
= lu — a0y
O

Theorem 4.2.12 (Upper bound for the descending metric slope).

Let ) be a strictly weight function as in 4.2.10. Let us assume that ¢ is in C*(R) and
that there exists v > 0 such that ¢"(x) > 2 for all x in R. Let u be in SBY represented
as 1 2.2.3, namely

k
ui=w~+u(0) + Z Ai]l[xi71}.
i=1

If i is any integer in {0;...;k}, we denote Q = [x%, z1]; we also denote 2 == [0,1].
Let us assume that

o (1) is in WH(Q);
e ¢'(1(0)) = ¢'(a(1)) = 0;
e if i is any integer in {1;...;k}, then ¢ (u(x?)) = ¢/(AY);

e if i is any integer in {1;...;k}, there exist * in [0, +00) such that

msup 180 - w@;‘a : 5) + b/ (A)
§—0 3

<p
Then, the following inequality holds true:
16 o, ;5
[VMS | (w) < |0 () || 12y + 7= D (B2
L?(Q) 3 /37 —

Proof. Step 1: Let M be any real number such that ’VMS@;M(U) > M. Thanks to
lemma 4.2.11, there exists a sequence {u, },en in SBY with the following properties:

o {u,}nen converges toward u with respect to L? norm;

e if n is any natural number, then S (u,) = S (u);

e limsup MSip (1) = My (un) — lim MS iy (1) — MSy (un)
nteo e = 2l 2 nobos [ =t 12y

> M.
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4.2. Slope of MS,.y

e For all n in N we represent u,, as in 2.2.3, namely
k
Uy = Wy, + Un(O) + Z A;L]l[xi,l];
i=1

for all 4 in {1;...;k} we have that

lim AL = A
n—-4o00
If n is any natural number and ¢ is any integer in {1;...;k}, we define p,, = u,, —u

and x! = Al — A", We set

wln

2
x’L _xZ—

1
1

ie{l;...;k—l—l}}, B = (4A)3, C =

If i is any integer in {1;...;k}, we set
A= (2" 2"+ C), A= (2" =C,2"), A=A, UA".

We remark that if i # j then A*N A7 = ().

Since ¢ is a function in C*(R) and @ and 1, are in L*(Q) for all n in N, we notice
that for all natural number n for almost every z in ) there exists &, in R with the
following properties:

o (i) + pu(x) = plila)) + pul) (i) + )

o |8 —i(z)| < [pn(2)]

If we rearrange terms and use the definition of v, we obtain that the following inequality
holds for all n in N for almost every z in :
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Hence, if n is any natural number, the following inequalities hold true:

MSpy (u) — M‘Scp;w(u + pn)

||PnHL2(Q) (49)
S| [ (et = et )] + 3 (o) - wla + )]
= ol (410
k i . .
Z / pn (i) dx = || pnll 72 e } + Z X' (AY) + (A7) = (A" + x;,)]
: ol
S| [ ol de =2 il + 30 (8 4029 - w(a+ 1)
- 1oall 20
[ ol = 3 ol + 3 [ (%) + (&) = (A 4 54)
- ||pn||l: )

_ZVHPnHIﬂ(Qz) +Z X' (AY) + ¢ (AT) — ¢(Ai+szﬂ

. / Z 0
< H[SOI(“)] HLZ(Q) T 1onll 20
5 .2 N d ‘ :
- o2y + Xo0(A) + (A% — (AT + X)
< || @) || gy + D [ Irx
i=1 )

In (4.9) we used the definition of p, and x%; in (4.10) we integrate by parts and we
used the Neumann boundary conditions; in (4.11) we used the Holder’s inequality.
Let i be any integer in {1;...;k}; we claim that

. ~ Mz + X0¥ (A + 0(A) — (A + x;) ,
lim sup = (B)2.
n—+00 HPnHL2(Q) 3\/

We notice that, if we show (4.12), then the thesis follows immediately.
Step 2: Let us fix i in {1;...;k}; let us assume that

limsup YA — (A 4 XE) + X' (AY)

.4
n—+oo G|

[SI3Y

(4.12)

< B

So, there exists n; in N such that if n is any integer greater than or equal to n;, then

Y(AY) = P(AT+ xE) + XLy (AY)
s

< B
In other words, we obtain that
P(AY) = (A + x3) + X0 (A) < B x| (4.13)
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Hence, if n in any integer such that n > n;, the following inequality holds true:

Y1l T2ty + Xt (AY) +(AT) = P(A* + X,) it} 1l Z2ary + BT IXGIP

< (4.14)
||Pn||L2(Q) HanL?(Q)

Let us denote X

.2 i

4 = || pn i+ B8 X3
K = lim sup 1Pl z2as) 5 1] : (4.15)

n—r+00 [[on ||L2(Q)
if we show that 16
K (82,

e T
— 3V3y

then (4.12) follows immediately. If K* < 0, the conclusion is trivial; hence, we can
assume that K > 0. Up to further subsequences, not relabelled, we can suppose that if
n is any integer greater than or equal to n;, then

212 i[yvi |3
Y pnlleany + 6 xal?

> 0.
Pnll 220y

Having said that, we can state that for all integer n > n;, it holds that

212 iy |3 212 i3
=Y 16l T2asy + B X0l? _ =Y 16l T2asy + B Xl?
o0l 20 B [onllr2(as)

Therefore, it is enough to show that

. .4
. Y lballzonn + B DA 16
lim sup <
n—+00 ||;0n||L2(Az) 3/ 3y

Let n be an integer greater than or equal to n;. By definition 2.1.4, we have that
X, = pu(29)" — pu(2')7; thanks to the triangular inequality, we obtain that

x| < [on (@) F] + [ pala®) |- (4.16)

Thanks to the mean value theorem, there exists z’, in A” such that

Njw

(8.

, 19l 72(a:
P2 L2(AL)
o) < T < A (4.17)
Since p,, is in WH2(A"), the following inequalities hold true:
i 2 i . * .
()" = | pa(2)? —|—le11;111+ 200(t) pu(t) dt‘ (4.18)

2 :
< Allpallz2aiy + 2 1ol 2 any 160l 2y
2 :
< Allpallzeaiy + 2 lonll 2 gaiy 1onll 2 as) - (4.19)
In (4.18) we used (4.17) and the Hélder’s inequality. We also remark that (4.19) is a
very specific case of the Gagliardo-Nirenberg’ inequalities (see [5]). In particular, we

can state that

1

. 2
pullzan) (4.20)

i\ — 2
[on(a) 7] < (Alplaquy + 2 onllpzgar

5
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Similarly, we prove that

. 2
Pulaan) (421)

i 2
[on(@)*] < (AllpallEans, + 2 loall2as

If we join (4.16), (4.20) and (4.21), we find that if n is any integer greater than or equal
to n;, then the following inequality holds true:

i|2 2 .
X |™ < 4A ol L2y + 8 1onll 2aty 1on ]l 2 iy - (4.22)

We remark that f(z) == 23 is a subadditive function; so, if we elevate to the power of 2
both sides in (4.22), we obtain that

2
3

i|3 2 '
|Xn‘ 3 < <4A HanLQ(A‘) +8 ”pn”LQ(AZ) Hp”HLQ(Al))
4 2 -3
< Blpullfagany + 410l 200 100320, - (4.23)

Let 6 be any positive real number. If we use the Young’s inequality, we find that

2
4 4 [onllr2an | . 3
Xl < Bllpalljan + 4 <—9 ararr

4 2 0% . 2
< Bloalng +4 (g ol + 5 Wil ) - (420

Having said that, if n is any integer greater than or equal to n;, the following inequalities
hold true:

© 12 i\ |3
_7||pn”L2(Ai)+6 X ®
||pn||L2(Ai)
.2 i 4 2 0. 2
_ ol + 8 [B ol fay + 4 (G ol + 5 1)

”PnHLZ(Ai)

402ﬁi

)

Ionlle [_W 3 ] -

T Tl B el +

8p*
30

(4.25)

As (4.25) holds for all positive real number 0, we can choose 6 such that

4&2 %
-7+ 0 <0,
3
that is
3y
0 < -
=1/ 15
It’s easy to see that (4.25) is optimal if we choose
3y
0= -
43
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Hence, we have shown that there exists n; in N such that for all integer n greater than
or equal to n; the following inequality holds true:

. 12 S
= bl 7200y + 6" X0 |? S 16, .3
< Bpj ||pn||22(Ai) + W (5 )2 .

||Pn||L2(Ai)

If we recall the definition of K’ (see (4.15)), we have that

K' < limsup Bf' ||,0n||L2(N)+

o suy s () =5y )

Step 3: In conclusion, we have just shown that if M is any real number such that
M < |[VMS | (u) and {B%;...; 3%} are real numbers in [0, +-00) such that for all i in
{1;...;k} it holds that

ey VA0 — AT+ 0) 4 00/(A)
6—0 |5’§

<A,

then the following inequality holds true:

e 16 o~ 8

ﬁ

This is enough to state that

VM s (1) < ([ Co)) oy + % ;(ﬁi)é.

It is immediate to see that it is not restrictive to assume that for all i in {1;...;k} we
have that Al A1 8) 1 S (A
1imsup¢( ) — ¥ —t RLACY) < p.
5—0 |5‘§
Then, the theorem is completely proved. O

Corollary 4.2.13. In the hypothesis of theorem 4.2.12, if we also assume that 3° =0
for all i in {1;...k}, then

|VMS¢¢| = ||[¢ (@ )/]HL?(Q)

because of theorem 4.2.2; by
[

Proof. We notice that ‘VMS%M(u) > H[W’(U)],HLQ(Q)

theorem 4.2.12, it immediately follows that |V MS,.|(u) < ||[g0’(u)]/HL2(Q).
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