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Chapter 1

Notation

Let us fix some useful notation.

Definition 1.0.1. Let f : Rd → R be any function, let h be any vector in Rd. We
define τhf : Rd → R as follows:

τhf(x) := f(x− h).

Definition 1.0.2. Let f : Rd → R be any function, let δ be any positive real number.
We define σδf : Rd → R as follows:

σδ(x)f :=
1

δd
f
(x
δ

)
.
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Chapter 2

Measure and integration

2.1 Introduction to measure theory

2.1.1 Definition and main properties

Definition 2.1.1 (algebra of sets).
Let E be a set. Let A any collection in P (E) with the following properties:

• ∅ is in E ;

• A is in E if and only if Ac is in E ;

• if A1, A2 are sets in A , then A1 ∪ A2 is in A .

We say that A is finite-additive algebra of sets over E.

Definition 2.1.2 (finite-additive measure).
Let E be a set with a finite-additive algebra A . Let m : A → [0; +∞] be any function
with the following properties:

• m(∅) = 0;

• if A1, A2 are disjoint sets in A , then m(A1 ∪ A2) = m(A1) +m(A2).

We say that m is a finite-additive measure.

Definition 2.1.3 (σ-algebra).
Let E be a set. Let E any collection in P (E) with the following properties:

• ∅ is in E ;

• A is in E if and only if Ac is in E ;

• let {An}n∈N be a sequence of sets in E . If we define

A :=
⋃
n∈N

An,

then A is in E .

We say that E is a σ-algebra (or a countable-additive algebra) over E and (E; E ;µ) is
called measurable space.

2



2.1. Introduction to measure theory

Remark 2.1.4. By definition 2.1.3 it immediately follows that if E is a σ-algebra in E,
then E is in E and it is closed under countable intersection.

Definition 2.1.5 (generated σ-algebra).
Let E be a set; let G be any collection of sets in P (E). We denote as σ(G ) the
intersection of the σ-algebras in E that contain G .

Remark 2.1.6. In the setting of definition 2.1.5, it’s immediate to see that σ(G ) is a
σ-algebra and it is the smallest one that contains G .

Definition 2.1.7 (σ-additive measure).
Let E be a set with a σ-algebra E . Let µ : E → [0; +∞] be any function with the
following properties:

• µ(∅) = 0;

• if {An} is a sequence in E of pairwise disjoint set, then

µ

(⋃
n∈N

An

)
=
∑
n∈N

µ(An).

We say that µ is a σ-additive measure.

Definition 2.1.8. Let (E; E ;µ) be a measurable space with a measure µ. We say that
a property P holds true for almost every x in E if the set for which the property is not
valid is completely contained in a measurable set D and µ(D) = 0.

Proposition 2.1.9. Let (E; E ;µ) be a measurable space with a measure µ. The following
conclusions hold true:

• if E,F are measurable sets such that E contains F , then µ(E) ≥ µ(F ).

• If {En}n∈N is an increasing sequence of measurable sets, i. e. for all n in N it
holds that En is contained in En+1, then

µ

(⋃
n∈N

En

)
= sup

n∈N
µ(En).

We say that the measure is continuous from below.

• If {En}n∈N is a decreasing sequence of measurable sets, i. e. for all n in N it
holds that En contains En+1, and µ(E0) is finite then

µ

(⋂
n∈N

En

)
= inf

n∈N
µ(En).

We say that the measure is continuous from above.

Proof. As for the first statement, it is enough to consider the decomposition E =
F ∪ (E \ F ) and the fact that the measure is additive.
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Chapter 2. Measure and integration

As for the second statement, for all n in N∗ we define Fn := En \ En−1; we denote
F0 := E0. If we denote

X :=
⋃
n∈N

En,

it’s easy to see that {Fn}n∈N is a pairwise disjoint sequence of sets such that

X =
⋃
n∈N

Fn.

If we recall that µ is σ-additive, we obtain that

µ(X) =
∑
n∈N

µ(Fn) = sup
n∈N

(
n∑
i=0

µ(Fi)

)
= sup

n∈N
{µ(En)}.

As for the third statement, if we define

X :=
⋂
n∈N

En,

we notice that

µ(E0 \X) = µ

(
E0 \

⋂
n∈N

En

)
= µ

(⋃
n∈N

(E0 \ En)

)
= sup

n∈N
{µ(E0 \ En)} .

Since µ(E0) is finite, we can take the complementary and the following identities hold
true:

µ(E0)− µ(X) = µ(E0 \X) = sup
n∈N
{µ(E0 \ En)} = µ(E0)− inf

n∈N
{µ(En)} .

2.1.2 Carathéodory’s extension theorem

Let (E; A ;m) be a set with a finite-additive algebra A and a finite-additive measure
m. The aim of this subsection is to show that there exists a σ-algebra E such that A is
completely contained in E and a σ-additive measure µ : E → [0; +∞] that extends m.

Definition 2.1.10 (Outer measure).
Let E be any set and ϕ : P (E)→ [0; +∞] any function with the following properties:

• ϕ(∅) = 0;

• if A,B are in P (E) such that B contains A, then ϕ(A) ≤ ϕ(B);

• if {An}n∈N is any sequence of sets (pairwise disjoint or not) in P (E), then it holds
that

ϕ

(⋃
n∈N

An

)
≤
∑
n∈N

ϕ(An).

We say that ϕ is an outer measure over E .

4



2.1. Introduction to measure theory

Proposition 2.1.11. Let E be any set; let A be a finite-additive algebra of sets; let
m : A → [0; +∞] be any finite-additive measure on E. For all A in P (E) we define

m∗(A) := inf

{∑
n∈N

m(An)

∣∣∣∣ A ⊆ ⋃
n∈N

An, {An}n∈N ⊆ A

}
.

If we assume that the inf{∅} = +∞, the function m∗ is well-defined and it is an outer
measure over E.

Definition 2.1.12 (pre-measure).
Let E be any set; let A be a finite-additive algebra of sets; let m : A → [0; +∞] be
any finite-additive measure on E. Let us assume that if {An}n∈N is any sequence of
pairwise disjoint set in A such that

A =
⋃
n∈N

An

is in A , then it holds that

∑
n∈N

m(An) = m

(⋃
n∈N

An

)
.

We say that m is a pre-measure.

Definition 2.1.13 (Carathéodory’s criterion).
Let E be any set; let ϕ be an outer measure over E. Let A be any subset of E. We say
that A satisfies the Carathéodory’s criterion if the following property holds for all C in
P (E):

ϕ(A) = ϕ(A ∩ C) + ϕ(A ∩ Cc).

Theorem 2.1.14 (Carathéodory’s extension theorem).
Let E be a set; let A be a finite-additive algebra of sets in P (E); let m : A → [0; +∞]
be a finite-additive measure. Let us assume that m is also a pre-measure. Let us define
the outer measure m∗ as in 2.1.11; let us denote with E the collection of the sets that
satisfy the Carathéodory’s criterion. Then, the following conclusions hold true:

• E is a σ-algebra that contains A ;

• the restriction of the outer measure m∗ to E defines a σ-additive measure µ that
extends m. In other words, we define µ : E → [0; +∞] such that if A is in E ,
then µ(A) = m∗(A); moreover, if A is in A , it holds that µ(A) = m(A).

Lebesgue measure in Rn

The aim of this subsection is to show how the construction of the Lebesgue measure
in R follows from the Carathéodory’s extension theorem. We will introduce the main
definitions and we will state the most important results.

Definition 2.1.15 (Borel σ-algebra).
We define Bn as the smallest σ-algebra (with respect to the inclusion) that contains the
open sets in Rn.

5



Chapter 2. Measure and integration

Definition 2.1.16. We define A d the collection of the boxes in Rd.

Remark 2.1.17. It’s easy to see that A d is a finite-additive algebra of sets.

Definition 2.1.18 (Lebesgue measure in Rn).
Let I be a box in Rn, namely

I = I1 × · · · × In,

where Ii is a interval in R. For all interval J in R we define

P1 := sup J − inf J,

assuming that the sum is well defined in R. We define

P(I)n :=
n∏
i=1

P1(Ii),

with the assumption that 0 · (+∞) equals 0.

Proposition 2.1.19. The function Pn : A n → [0; +∞] is well define and it is a finite-
additive measure; moreover, it is a pre-measure. It is called Peano-Jordan measure in
Rn.

Corollary 2.1.20. We define the outer measure Pn∗ associated to the pre-measure
Pn as in 2.1.11. Let us denote with M n the collection of the sets that satisfy the
Carathéodory’s criterion. Then, the following conclusions hols true:

• M n is a σ-algebra that contains Bn, also know as the collection of the Lebesgue
measurable sets;

• the restriction of the outer measure Pn∗ to M n defines a σ-additive measure L n

that extends Pn; it is called Lebesgue measure in Rn.

Proof. It is an immediate consequence of theorem 2.1.14.

Remark 2.1.21. Unless otherwise specified, we will always consider Rn equipped with
the σ-algebra M n and the σ-additive measure L n.

The following approximation result can be proved.

Proposition 2.1.22. Let M be a measurable set in Rn; let ε be a positive real number.
There exist an open set A and a closed set C such that

C ⊆M ⊆ A, L n(A \ C) ≤ ε.

Remark 2.1.23. Let E be a measurable subset in Rd such that L d(E) = 0. We claim
that if A is completely contained in E, then A is a measurable subset and L d(A) = 0.
Thanks to 2.1.22, we have to show that for all positive real number ε there exists an
open set Aε such that A is completely contained in Aε and L d(Aε) < ε. As a matter of
fact, there exists an open set Aε such that L d(Aε) < ε and E is completely contained
in Aε. So A is measurable; having said that, it holds that L d(A) = 0 obviously. We
say that the Lebesgue Measure is complete.

6



2.1. Introduction to measure theory

Example 2.1.24. Let us define the following sequence of subset in [0; 1]:{
C0 := [0; 1];

C+ := 1
3
Cn ∪

(
2
3

+ 1
3
Cn

)
.

For all n in N we notice that Cn is a closed set and

L 1(Cn+1) =
2

3
L 1(Cn) =

(
2

3

)n+1

.

We define the Cantor set
C :=

⋂
n∈N

Cn.

It’s immediate to see that C is a closed set; in particular, it is measurable and L 1(C ) = 0.
It is easy to see that C is in bijection with the set of the binary sequences. Hence, the
cardinality of C is c and the cardinality of P (C ) is 2c. Thanks to 2.1.23, we can state
that the cardinality M 1 is exactly 2c. It can be also shown that the cardinality of the
Borel σ-algebra is exactly c; this is enough to conclude that B1 is strictly contained in
M 1. As a matter of fact, we can similarly define a Cantor set in [0; 1]n and we obtain
that Bn is strictly contained in M n for all n in N.

Proposition 2.1.25. Let A be a measurable set in Rd. Let us assume that L d(A) is
finite. For all t in [0; L d(A)] there exists a measurable set Et in A such that L d(Et) = t.

Proof. Let us define the function ψ : R→ [0; L d(A)] such that

ψ(x) := L d(A ∩ {(x1; . . . ;xd) ∈ Rd | x1 ≤ x)}.

It’s immediate to see that ψ is a well defined increasing function. As L d is continuous
from below, we have that

lim
x→+∞

ψ(x) = L d(A).

As A is a finite measure set, L d is continuous from above and we have that

lim
x→−∞

ψ(x) = L d(∅) = 0.

If we show that ψ is a continuous function, the thesis follows immediately. Let x be
any point in R; let {yn}n∈N be a sequence that approaches toward n. We claim that

lim
n→+∞

ψ(yn) = ψ(x).

Let us assume that {yn}n∈N is monotonically increasing. As L d is continuous from
below, we have that

lim
n→+∞

ψ(yn) = lim
n→+∞

L d(A ∩ {(x1; . . . ;xd) ∈ Rd | x1 ≤ yn)})

= L d((A ∩ {(x1; . . . ;xd) ∈ Rd | x1 < x)}).

As L ((A ∩ {(x1; . . . ;xd) ∈ Rd | x1 = x)}) is equal to 0, we can easily conclude that

lim
n→+∞

ψ(yn) = L d((A ∩ {(x1; . . . ;xd) ∈ Rd | x1 < x)})

= L d((A ∩ {(x1; . . . ;xd) ∈ Rd | x1 ≤ x)})
= ψ(x).

If {xn}n∈N is monotonically decreasing, the proof is completely similar.
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Chapter 2. Measure and integration

Example 2.1.26. If we assume the choice axiom, we show that if µ is a measure invariant
by translation in R such that the measure of any non-empty interval is well-defined and
it is a positive real number, then µ cannot be defined in P (R). Let x, y be points in R.
We say that x and y are equivalent if and only if x− y is in Q. Thanks to the choice
axiom, there exists a set V completely contained in [0; 1] such that for all real number
r there exists exactly an element x in V such that x− r is in Q. We notice that if q1

and q2 are rational numbers, then it holds that

(q1 + V ) ∩ (q2 + V ) = ∅.

It’s immediate to see that

[0; 1] ⊆
⋃

q∈Q∩[−1;1]

(V + q) ⊆ [−1; 2].

Let us assume that V is a measurable set, i. e. V is in the domain of µ. Let us denote
m := µ(V ). Since µ is invariant under translation, we obtain that for all q in Q it holds
that µ(q + V ) = m. Let us assume that m is 0. By definition of measure, it holds that

µ

 ⋃
q∈Q∩[−1;1]

(V + q)

 = 0;

by monotonicity, we obtain that µ([0; 1]) = 0. If m is a positive real number, we obtain
similarly that µ([−1; 2]) = +∞. Hence, we find the absurd. V is called the Vitali set.

Remark 2.1.27. By definition 2.1.18 it’s immediate to see that the Lebesgue measure
is invariant under translation. As shown in the 2.1.26, the collection of the Lebesgue
measurable sets in R is strictly contained in P (R).

2.2 Introduction to integration theory

2.2.1 Measurable functions

Definition 2.2.1 (Measurable function).
Let (E; E ) and (F; F ) be measurable spaces. Let f : E→ F be any function such that
for all A in F it holds that f−1(A) is in E . We say that f is a measurable function.

Remark 2.2.2. In the setting of definition 2.2.1, let G be a collection of subsets in P (F)
such that F = σ(G ). Let f be a function between E and F. It’s easy to see that f is
measurable if and only if for all A in G, then f−1(A) is in E .

Example 2.2.3. Let (E1; E1), (E2; E2), (E3; E3) be measurable spaces; let f : E1 → E2

and g : E2 → E3 be measurable functions. Then g ◦ f : E1 → E3 is a measurable
function.

Definition 2.2.4. Let (E; E ) be a measurable space. Let f : E → R be a function.
Let us assume that f−1(A ∩ R) is in E for all A contained in R such that A ∩ R is in
M1. We will say that it f is measurable.
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2.2. Introduction to integration theory

Example 2.2.5. Let (E; E ) be a measurable space. Let f, g : E → R be measurable
functions. It’s easy to see that the pointwise maximum f ∨ g, the pointwise minimum
f ∧ g, the sum f + g, the product f · g and the quotient f/g are measurable functions
between E and R (defined where they make sense).

Let {fn}n∈N be a sequence of real-valued measurable function. It’s immediate to see
that the pointwise supremum sup

n∈N
fn, the pointwise infimum inf

n∈N
fn, the pointwise limit

superior lim sup
n→+∞

fn and the pointwise limit inferior lim inf
n→+∞

fn are well defined measurable

functions between E and R.

2.2.2 Integration of nonnegative measurable functions

We will always assume that 0 · (+∞) = 0, for all a in R it holds that a+ (+∞) = +∞
and for all positive real number b it holds that b · (+∞) = +∞.

Definition 2.2.6 (Step function).
Let (E; E ) be a measurable space. Let {E1; . . . ;En} be pairwise disjoint measurable
sets in E such that

E =
n⋃
i=1

Ei.

Let {α1; . . . ;αn} be in [0; +∞]. Let us define f : E→ [0; +∞] such that

f(x) :=
n∑
i=1

αi1Ei(x).

We say that f is a step function. We denote as S (E) the set of the step functions
between E and [0; +∞).

Remark 2.2.7. It’s immediate to see if f is a step function, then it is a measurable
function.

Definition 2.2.8 (Integration of positive step function).
Let (E; E ;µ) be a measurable space with a measure µ. Let f : E → [0; +∞] be a
step function, i.e. there exist {E1; . . . ;En} pairwise disjoint measurable sets in E and
{α1; . . . ;αn} in [0; +∞] such that

f :=
n∑
i=1

αi1Ei .

We define the integral of f with respect to the measure µ as follows:∫
E
f(x)dµ(x) :=

n∑
i=1

αiµ(E1).

Remark 2.2.9. The definition 2.2.8 is well posed, in the sense that it does not depend
on the specific representation of the step function. Let us assume that there exists
{E1; . . . ;En}measurable pairwise disjoint sets, {F1; . . . ;Fd}measurable pairwise disjoint
set, {α1; . . . ;αn} and {β1; . . . ; βd} sets contained in [0; +∞] such that

n∑
i=1

αi1Ei = f =
d∑
j=1

βj1Fj .

9



Chapter 2. Measure and integration

Let i be an integer in {1; . . . ;n}, let j be an integer in {1; . . . ; d}. If Ei ∩ Fj is not
empty, it holds that αi = βj. However, for all i in {1; . . . ;n} for all j in {1; . . . ; d}, it
holds that

αiµ(Ei ∩ Fj) = βjµ(Ei ∩ Fj).

By definition of measure, the following identities hold true:

n∑
i=1

αiµ(Ei) =
n∑
i=1

αi

(
d∑
j=1

µ(Ei ∩ Fj)

)

=
n∑
i=1

(
d∑
j=1

αiµ(Ei ∩ Fj)

)

=
n∑
i=1

(
d∑
j=1

βjµ(Ei ∩ Fj)

)

=
d∑
j=1

(
n∑
i=1

βjµ(Ei ∩ Fj)

)

=
d∑
j=1

βjµ(Fj).

Definition 2.2.10 (Integration of nonnegative measurable function).
Let (E; E ;µ) be a measurable space with a measure µ. Let f :→ [0; +∞] be a measurable
function. We define the integral of f with respect to the measure µ as follows:∫

E
f(x)dµ(x) := sup

{∫
E
g(x)dµ(x)

∣∣∣∣ g ∈ S (E), ∀x ∈ E g(x) ≤ f(x)

}
.

Definition 2.2.11 (Generalized step function).
Let (E; E ) be a measurable space. Let {En}n∈N be a sequence of pairwise disjoint
measurable set such that

E =
⋃
n∈N

En.

Let {αn}n∈N be a sequence in [0; +∞]. Let us define f : E→ [0; +∞] such that

f(x) :=
∑
n∈N

αn1En(x).

We say that f is a generalized step function. We also denote as S ′(E) the set of the
generalized step functions between E and [0; +∞].

Remark 2.2.12. In the setting of definition 2.2.11, let f be in S ′(E) such that

f :=
∑
n∈N

αn1En .

By definition 2.2.10, it immediately follows that∫
E
f(x)dµ(x) =

∑
n∈N

αnµ(En).

10
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Lemma 2.2.13. Let (E; E ;µ) be a measurable space with a measure µ. Let f : E →
[0; +∞] be a measurable function. Then, the following conclusions hold true:∫

E
f(x)dµ(x) = inf

{∫
E
g(x)dµ(x)

∣∣∣∣ g ∈ S ′(E), ∀x ∈ E g(x) ≥ f(x)

}
;∫

E
f(x)dµ(x) = sup

{∫
E
g(x)dµ(x)

∣∣∣∣ g ∈ S ′(E), ∀x ∈ E g(x) ≤ f(x)

}
.

Proof. By definition 2.2.10, it follows that if f, g : E→ [0; +∞] are measurable functions
such that f(x) ≤ g(x) for all x in E, then∫

E
f(x)dµ(x) ≤

∫
E
g(x)dµ(x).

This is enough to conclude that∫
E
f(x)dµ(x) ≤ inf

{∫
E
g(x)dµ(x)

∣∣∣∣ g ∈ S ′(E), ∀x ∈ E g(x) ≥ f(x)

}
,∫

E
f(x)dµ(x) ≥ sup

{∫
E
g(x)dµ(x)

∣∣∣∣ g ∈ S ′(E), ∀x ∈ E g(x) ≤ f(x)

}
.

By definition 2.2.10, it immediately follows that∫
E
f(x)dµ(x) ≤ sup

{∫
E
g(x)dµ(x)

∣∣∣∣ g ∈ S ′(E), ∀x ∈ E g(x) ≤ f(x)

}
.

We complete the proof assuming that µ(E) is a real number. We notice that it is not
restrictive to assume that ∫

E
f(x)dµ(x) < +∞,

otherwise the conclusion is trivial. Let δ be a positive real number; for all n in N we define
En := f−1([nδ; (n + 1)δ); we also define E∞ := f−1({+∞}). Under our assumption,
wa have that µ(E∞) = 0. Since f is measurable, the sets {En | n ∈ N ∪ {+∞}} are
measurable. We define the generalized step function gδ as follows:

gδ :=

(∑
n∈N

nδ1En

)
+∞1E∞ .

We notice that for all x in E it holds that gδ(x) ≤ f(x) ≤ gδ(+) + δ. Hence, we obtain
that ∫

E
gδ(x)dµ(x) ≤

∫
E
f(x)dµ(x) ≤

∫
E
[gδ(x) + δ]dµ(x).

We notice that∫
E
[gδ(x) + δ]dµ(x) =

(∑
n∈N

(n+ 1)δµ(En)

)
+ (∞+ δ)µ(E∞)

=
∑
n∈N

(n+ 1)δµ(En)

=

(∑
n∈N

nδµ(En)

)
+

(∑
n∈N

δµ(En)

)

=

(∫
E
gδ(x)dµ(x)

)
+ δµ(E).

11



Chapter 2. Measure and integration

In other words, for all δ in [0; +∞] there exists gδ in S ′(E) such that for all x in E it
holds that gδ(x) ≤ f(x) and∣∣∣∣∫

E
f(x)dµ(x)−

∫
E
gδ(x)dµ(x)

∣∣∣∣ ≤ δµ(E).

This is enough to conclude that∫
E
f(x)dµ(x) ≥ inf

{∫
E
g(x)dµ(x)

∣∣∣∣ g ∈ S ′(E), ∀x ∈ E g(x) ≥ f(x)

}
.

Proposition 2.2.14. Let (E; E ;µ) be a measurable space with a measure µ. Let
f1, f2 : E→ [0; +∞] be measurable functions. Let α be a real number in [0; +∞). The
following conclusions hold true:

•
∫
E
αf1(x)dµ(x) = α

∫
E
f1(x)dµ(x);

•
∫
E
[f1(x) + f2(x)]dµ(x) =

∫
E
f1(x)dµ(x) +

∫
E
f2(x)dµ(x).

Proof. The first statement is an immediate consequence of definition 2.2.10. As for the
second one, let us suppose that f1 and f2 are in S ′(E), namely

f1 :=
∑
n∈N

αn1En ,

f2 :=
∑
n∈N

βn1Fn .

We notice that
f1 + f2 =

∑
(n;m)∈N2

(αn + βm)1En∩Fm .

Then, it holds that∫
E
(f1(x) + f2(x))dµ(x) =

∑
(n;m)∈N2

[αn + βm]µ(En ∩ Fm)

=
∑
n∈N

(∑
m∈N

αnµ(En ∩ Fm)

)
+
∑
m∈N

(∑
n∈N

βmµ(En ∩ Fm)

)
=
∑
n∈N

αnµ(En) +
∑
m∈M

βmµ(Fm)

=

∫
E
f1(x)dµ(x) +

∫
E
f2(x)dµ(x).

Let f1, f2 be measurable functions between E and [0; +∞]; let g1, g2 be step functions
such that for all x in E it holds that f1(x) ≥ g1(x) and f2(x) ≥ g2(x). Hence, we obtain
that∫

E
[f1(x) + f2(x)]dµ(x) ≥

∫
E
[g1(x) + g2(x)]dµ(x) =

∫
E
g1(x)dµ(x) +

∫
E
g2(x)dµ(x).

12
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By definition 2.2.10, if we take the supremum, we obtain that∫
E
[f1(x) + f2(x)]dµ(x) ≥

∫
E
f1(x)dµ(x) +

∫
E
f2(x)dµ(x).

Let g1, g2 be generalized step functions such that for all x in E it holds that f1(x) ≤ g1(x)
and f2(x) ≤ g2(x). Hence, we obtain that∫

E
[f1(x) + f2(x)]dµ(x) ≤

∫
E
[g1(x) + g2(x)]dµ(x) =

∫
E
g1(x)dµ(x) +

∫
E
g2(x)dµ(x).

Thanks to lemma 2.2.13, if we take the infimum, we obtain that∫
E
[f1(x) + f2(x)]dµ(x) ≤

∫
E
f1(x)dµ(x) +

∫
E
f2(x)dµ(x).

Theorem 2.2.15 (Beppo Levi’s theorem).
Let (E; E ;µ) be a measurable space with a measure µ. Let {fn}n∈N be a sequence of
measurable functions with the following properties:

• for all n in N for almost every x in E it holds that fn(x) ≥ 0;

• for all n in N for almost every x in E it holds that fn(x) ≤ fn+1(x).

Let us define the pointwise supremum f := sup
n∈N
{fn}. f is a measurable function and

∫
E
f(x)dµ(x) = sup

n∈N

{∫
E
fn(x)dµ(x)

}
.

Proof. We have already discussed the measurability of f . Let n be a positive integer.
Since fn(x) ≤ f(x) for almost every x in E, we have that∫

E
fn(x)dµ(x) ≤

∫
E
f(x)dµ(x).

Hence, we obtain that

sup
n∈N

{∫
E
fn(x)dµ(x)

}
≤
∫
E
f(x)dµ(x).

If the right hand side is equal to 0, the conclusion is trivial. Hence, we can assume that∫
E
f(x)dµ(x) > 0

and that there exists a positive real number M such that for all n in N it holds that∫
E
fn(x)dµ(x) ≤M.

Let m be any positive real number such that

m <

∫
E
f(x)dµ(x).

13



Chapter 2. Measure and integration

We claim that there exists n0 in N such that if n is a positive integer greater than n0,
then it holds that ∫

E
fn(x)dµ(x) ≥ m.

Let g be a step function such that g(x) ≤ f(x) for almost every x in E and∫
E
g(x)dµ(x) > m.

In other words, as declared in definitions 2.2.6 and 2.2.8, we are assuming that

g :=
d∑
i=1

αi1E

∫
E
g(x)dµ(x) :=

d∑
i=1

αiµ(Ei),

with the convention that 0 ·∞ = 0. For all i in {1; . . . ; d} we define εi with the following
properties:

• if αi = 0, then εi = 0;

• if αi > 0, then εi is a real number in (0;αi) such that

d∑
i=1

(αi − εi)µ(Ei) > m.

We notice that the choice is possible: if∫
E
g(x)dµ(x) = +∞

the choice is trivial; if ∫
E
g(x)dµ(x) < +∞,

we notice that if µ(Ei) = +∞, then αi = 0; hence, we can choose {ε1; . . . ; εd} as
declared. Let us denote g̃ the step function such that

g̃ :=
d∑
i=1

(αi − εi)1Ei .

We have that g̃(x) < f(x) for almost every x such that f(x) 6= 0 and∫
E
g̃(x)dµ(x) > m.

For all positive integer n we define

Dn := {x ∈ E | fn(x) ≥ g̃(x)}.

14
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Under our hypothesis on {fn}n∈N, it’s easy to see that {Dn}n∈N is a increasing sequence
of measurable set such that

µ

(⋂
n∈N

Dc
n

)
= 0.

For all n in N we have that∫
E
f(x)dµ(x) ≥

∫
E
fn(x)1Dn(x)dµ(x)

≥
∫
E
g̃n(x)1Dn(x)dµ(x)

=
d∑
i=1

(αi − εi)µ(Ei ∩Dn).

We claim that for all i in {1; . . . ; d} it holds that

µ(Ei) = lim
n→+∞

µ(Ei ∩Dn).

This is a consequence of the fact that

µ(Ei) = lim
n→+∞

µ

(
Ei ∩

(
Dn ∪

(⋃
n∈N

Dn

)c))

= lim
n→+∞

µ (Ei ∩Dn) + µ

(
Ei ∩

(⋃
n∈N

Dn

)c)
= lim

n→+∞
µ(Ei ∩Dn).

Hence, we have shown that

lim
n→+∞

∫
E
fn(x)dµ(x) ≥ lim

n→+∞

d∑
i=1

(αi − εi)µ(Ei ∩Dn)

=
d∑
i=1

(αi − εi)µ(Ei)

=

∫
E
g̃(x)dµ(x)

geqm.

Then, the theorem is completely proved.

Lemma 2.2.16 (Fatou’s lemma).
Let (E; E ;µ) be a measurable space with a measure µ. Let {fn}n∈N be a sequence of
measurable functions such that for all n in N for almost every x in E it holds that
fn(x) ≥ 0. Then, the pointwise limit inferior is measurable and it holds that∫

E

(
lim inf
n→+∞

fn(x)

)
dµ(x) ≤ lim inf

n→+∞

∫
E
fn(x)dµ(x).

15
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Proof. We have already discussed the measurability of both the pointwise limit inferior
and the infimum. Let n,m be positive integers such that n ≥ m. We notice that∫

E
fn(x)dµ(x) ≥

∫
E

inf
n≥m
{fn(x)}dµ(x);

hence, we can state that

inf
n≥m

{∫
E
fn(x)dµ(x)

}
≥
∫
E

inf
n≥m
{fn(x)}dµ(x).

If we join the definition of limit inferior and theorem 2.2.15, we obtain that

lim inf
n→+∞

∫
E
fn(x)dµ(x) = sup

m∈N

{
inf
n≥m

{∫
E
fn(x)dµ(x)

}}
≥ sup

m∈N

{∫
E

inf
n≥m
{fn(x)}dµ(x)

}
=

∫
E

sup
m∈N

{
inf
n≥m
{fn(x)}

}
dµ(x)

=

∫
E

{
lim inf
n→+∞

fn(x)

}
dµ(x).

2.2.3 Integration of variable sign measurable functions

Definition 2.2.17 (Integration of variable sign measurable function).
Let (E; E ;µ) be a measurable space with a measure µ. Let f :→ [−∞; +∞] be a
measurable function. Let us consider the usual decomposition in of f in positive part
f+ and negative part f−, i. e. f = f+ − f−. Let us assume that∫

E
f+(x)dµ(x) < +∞

or ∫
E
f−(x)dµ(x) < +∞.

We define the integral of f with respect to the measure µ as follows:∫
E
f(x)dµ(x) :=

∫
E
f+(x)dµ(x)−

∫
E
f−(x)dµ(x).

Proposition 2.2.18. Let (E; E ;µ) be a measurable space with a measure µ. Let
f1, f2 :→ R be a measurable functions such that∫

E
|f1(x)| dµ(x) =

∫
E
f+

1 (x)dµ(x) +

∫
E
f−1 (x)dµ(x) < +∞,∫

E
|f2(x)| dµ(x) =

∫
E
f+

2 (x)dµ(x) +

∫
E
f−2 (x)dµ(x) < +∞.

Then, we can define the integral of f1 + f2 as in definition 2.2.17 and it holds that∫
E
[f1(x) + f2(x)]dµ(x) =

∫
E
f1(x)dµ(x) +

∫
E
f2(x)dµ(x).
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If f1 is such that ∫
E
f+(x)dµ(x) < +∞

or ∫
E
f−(x)dµ(x) < +∞

and α is any real number, then we can define the integral for αf1 as in definition 2.2.17
and it holds that ∫

E
αf1(x)dµ(x) = α

∫
E
f1(x)dµ(x).

Proof. As for the second part of the statement, it is an immediate consequence of
definition 2.2.17.

As for the first statement, we notice that

|f1 + f2| ≤ |f1|+ |f2| ;

hence, it holds that∫
E
|f1(x) + f2(x)| dµ(x) ≤

∫
E
|f1(x)| dµ(x) +

∫
E
|f2(x)| dµ(x).

Therefore, we can define the integral of f1 + f2 with respect to the measure µ as in
2.2.17. We notice that

(f + g)+ − (f + g)− = f + g = f+ − f− + g+ − g−,

namely
(f + g)+ + f− + g− = (f + g)− + f+ + g+.

If we integrate both sides and we use 2.2.14, we obtain that∫
E
(f + g)+ dµ+

∫
E
f− dµ+

∫
E
g− dµ =

∫
E
(f + g)− dµ+

∫
E
f+ dµ+

∫
E
g+ dµ;

if we rearrange terms and use the definition 2.2.17, the conclusion is immediate.

Theorem 2.2.19 (Dominated convergence theorem).
Let (E; E ;µ) be a measurable space with a measure µ. Let {fn}n∈N be a sequence of
measurable functions between E and R. Let us assume that there exists a measurable
function g : E→ R (usually called domination) with the following properties:

• for all n in N for almost every x in E it holds that |fn(x)| ≤ g(x);

•
∫
E
|g(x)| dµ(x) < +∞.

Let us assume that there exists a function f : E→ R such that for almost every x in E
it holds that

lim
n→+∞

fn(x) = f(x).

Then, f is a measurable function and

lim
n→+∞

∫
E
fn(x)dµ(x) =

∫
E
f(x)dµ(x).

17
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Proof. We have already discussed the measurability of f ; obviously, |f(x)| ≤ g(x) for
almost every x in E; hence, we have that∫

E
f(x)dµ(x) < +∞.

Under our hypothesis, we can apply lemma 2.2.16 to the sequence {g − fn}n∈N. We
obtain that

lim inf
n→+∞

∫
E
(g(x)− fn(x))dµ(x) ≥

∫
E

{
lim inf
n→+∞

(g(x)− fn(x))

}
dµ(x).

Since g has finite integral, we can split the integral; hence, we obtain that∫
E
g(x)dµ(x)− lim sup

n→+∞
fn(x)dµ(x) ≥

∫
E
g(x)dµ(x)−

∫
E

{
lim sup
n→+∞

fn(x)

}
dµ(x).

In other words, we have that

lim sup
n→+∞

fn(x)dµ(x) ≤
∫
E

{
lim sup
n→+∞

fn(x)

}
dµ(x).

If we apply the Fatou’s lemma to {fn + g}n∈N , we obtain that

lim inf
n→+∞

∫
E
fn(x)dµ(x) ≥

∫
E

{
lim inf
n→+∞

fn(x)

}
dµ(x).

Since f is the pointwise limit for almost every x in E, the thesis follows immediately.

2.2.4 Product measure

Definition 2.2.20. Let (E1; E1), . . . (En; En) be measurable spaces. We define E the
Cartesian product of E1, . . .En, namely

E =
n∏
i=1

Ei.

Let A be any subset in E. We define the tensor product σ-algebra E as the σ-algebra
generated by the subset of the form B1 × · · · × Bn, where Bi is Ei for all integer i in
{1; . . . ;n}. We denote the tensor-product σ-algebra as

E :=
n⊗
i=1

Ei.

In particular, (E; E ) is a measurable space called product measurable space.

Remark 2.2.21. We immediately notice that the construction of the tensor product
σ-algebra is associative, namely

(E1 ⊗ E2)⊗ E3 = E1 ⊗ (E2 ⊗ E3).

Hence, the theory will be developed for two measurable spaces: the generalization to
finite measurable spaces is an immediate consequence of the induction principle.
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Lemma 2.2.22. Let (E1; E1), (E2; E2) be measurable spaces. Let C be in E1 ⊗ E2. For
all x in E1 we define

C1(x) := {y ∈ E2 | (x; y) ∈ C}.

Then, C1(x) is in E2. Similarly, for all y in E2 we define

C2(y) := {x ∈ E1 | (x; y) ∈ C}.

Then C2(y) is in E1.

Proposition 2.2.23. Let (E1; E1;µ1), (E2; E2;µ2) be measurable spaces with measure
µ1, µ2. Let f : E1 × E2 → [0; +∞] any E1 ⊗ E2-measurable function. For all x in E1 we
define the function fx : E2 → [0; +∞] such that fx(y) := f(x; y); then, the following
conclusions hold true:

• fx is E2-measurable;

• the function ϕ1 : E1 → [0; +∞] such that

ϕ1(x) :=

∫
E2

fx(y)dµ2

is well defined and it is E1-measurable.

Similarly, For all y in E2 we define the function fy : E1 → [0; +∞] such that fy(x) :=
f(x; y); then, the following conclusions hold true:

• fy is E1-measurable;

• the function ϕ2 : E2 → [0; +∞] such that

ϕ2(y) :=

∫
E1

fy(x)dµ2

is well defined and it is E1-measurable.

Theorem 2.2.24 (Fubini-Tonelli’ theorem). Let (E1; E1;µ1), (E2; E2;µ2) be measurable
spaces with measure µ1, µ2. Let C be in E1 ⊗ E2. We define

µ1 ⊗ µ2(C) :=

∫
E1

µ2(C1(x))dµ1(x).

The function µ1 ⊗ µ2 : E1 ⊗ E2 → [0; +∞] is a measure on the measurable space
(E1 × E2; E1 ⊗ E2) with the following properties:

• for all A1 in E1, for all A2 in E2 it holds that

µ1 ⊗ µ2(A1 × A2) = µ1(A1)µ2(A2);

• if f : E1 × E2 → [0; +∞] is a measurable function, it holds that∫
E1×E2

f(x; y)d(µ1 ⊗ µ2)(x; y) =

∫
E1

(∫
E2

f(x; y)dµ2(y)

)
dµ1(x).
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Corollary 2.2.25. Let (E1; E1;µ1), (E2; E2;µ2) be measurable spaces with measure µ1, µ2.
Let f : E1 × E2 → R be a measurable function such that∫

E1×E2

|f(x; y)| d(µ1 ⊗ µ2)(x; y) < +∞.

For all x in E1 we define fx : E2 → R such that fx(y) := f(x; y). Then the following
conclusions hold true:

• the function fx is E2-measurable;

• the function ϕ1 : E1 → R such that

ϕ1(x) :=

∫
E2

fx(y)dµ2(y)

is well defined for almost every x in E1 and it is E2-measurable;

• it holds that∫
E1×E2

f(x; y)d(µ1 ⊗ µ2)(x; y) =

∫
E1

(∫
E2

f(x; y)dµ2(y)

)
dµ1(x).

Remark 2.2.26. It’s easy to see that the for all C in E1 ⊗ E2 it holds that∫
E1

C1(x)dµ1(x) =

∫
E2

C2(y)dµ2(y).

Let f : E1 × E2 → [0; +∞] be a measurable function; then, it holds that∫
E1×E2

f(x; y)d(µ1 ⊗ µ2)(x; y) =

∫
E2

(∫
E1

f(x; y)dµ1(x)

)
dµ2(y).

Similarly, if f : E1 × E2 → R is a measurable function such that∫
E1×E2

|f(x; y)| d(µ1 ⊗ µ2)(x; y) < +∞,

it holds that∫
E1×E2

f(x; y)d(µ1 ⊗ µ2)(x; y) =

∫
E2

(∫
E1

f(x; y)dµ1(x)

)
dµ2(y).

Lebesgue measure in Rd as product measure

Proposition 2.2.27. Let d be a positive integer. Let M be the σ-algebra of the Lebesgue
measurable set in R; we denote as M d the product σ-algebra, i.e.

M d :=
d⊗
i=1

M .

There exists a measure L d on (Rd; M d) with the following property: if A is a box,
namely there exists {I1; . . . ; Id} measurable sets in R such that

A :=
d∏
i=1

Ii,
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then it holds that

L d(A) =
d∏
i=1

L 1(Ii).

Moreover, if f : Rd → [0; +∞] is a measurable function, the following conclusions hold
true:

• for all x in R the function fd : Rd−1 → [0; +∞] such that

fd(x1; . . . ;xd−1) := f(x1; . . . ;xd−1;x)

is measurable;

• the function ϕd : R→ [0; +∞] such that

ϕd(x) :=

∫
Rd−1

fd(x1; . . . ;xd−1)dx1 · · · dxd−1

is measurable;

• it holds that∫
Rd
f(x1; . . . xd)dx1 · · · dxd =

∫
R

(∫
Rd−1

f(x1; . . . ;xd−1)dx1 · · · dxd−1

)
dxd.

Proof. It is an immediate consequence of Fubini-Tonelli’s theorem (see 2.2.24).

Corollary 2.2.28. Let d be a positive integer. Let f : Rd → R̄ be a measurable function
such that ∫

Rd
|f(x1; . . . xd)| dx1 · · · dxd < +∞.

Then, the following conclusions hold true:

• for all x in R the function fd : Rd−1 → R̄ such that

fd(x1; . . . ;xd−1) := f(x1; . . . ;xd−1;x)

is measurable;

• the function ϕd : R→ R̄ such that

ϕd(x) :=

∫
Rd−1

fd(x1; . . . ;xd−1)dx1 · · · dxd−1

is well defined for almost every x in R and it is measurable;

• it holds that∫
Rd
f(x1; . . . xd)dx1 · · · dxd =

∫
R

(∫
Rd−1

f(x1; . . . ;xd−1)dx1 · · · dxd−1

)
dxd.

Proof. It is an immediate consequence of 2.2.25.
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Chapter 2. Measure and integration

2.2.5 Lebesgue integral vs Riemann integral

Let A in R be a closed interval; let f : A→ R be a continuous function. In particular,
if we extend f at 0 out of A, we have that f is a measurable function between Rd and
R. We can define the Lebesgue integral and the Riemann integral. As a matter of facts,
they coincide.

In deed the following theorem holds true.

Theorem 2.2.29 (Vitali-Lebesgue).
Let f : [a, b]→ R be a bounded function. Then it is Riemann-integrable if and only if
it is measurable, Lebesgue-integrable and the set of discontinuity points has Lebesgue
measure 0. Moreover, the two integral coincide.

Example 2.2.30. The function f(x) := sin(x)
x

is continuous and bounded in (0,+∞); it
can be proved that

lim
n→+∞

∫ n

0

sin(x)

x
dx =

∫ +∞

0

sin(x)

x
dx =

π

2
,

namely the sequence of the Riemann integrals converges to π
2
; unfortunately it is also

true that ∫ +∞

0

|sin(x)|
|x|

dx = +∞

and it is not possible to define the Lebesgue integral of f in (0,+∞).

We state the change of variable formula.

Theorem 2.2.31 (Change of variable).
Let A,B be bounded open sets in Rn; let f : A → B be a diffeomorphism (namely a
bijective C1-function such that f−1 is a C1-function). For all x ∈ A we define

Jf (x) :=

√√√√det

([
∂f

∂x
(x)

]T
·
[
∂f

∂x
(x)

])
,

where ∂f
∂x

(x) is the jacobian of f at the point x (it is an n× n-matrix). Assume that Jf
is bounded in A. For all Borel function h : A→ R (measurable function in Rn equipped
with the Borel sets σ-algebra) it holds that h ◦ f−1 : B → R is measurable and∫

A

h(x)Jf (x) dx =

∫
B

h(f−1(y)) dy.

2.3 Appendix

Theorem 2.3.1 (Continuity of integral).
Let Ω be any open set in Rd. Let f : [a; b]× Ω→ R be any function with the following
properties:

• for almost every x in Ω for all t in [a; b] it holds that

lim
h→0

f(t+ h;x)− f(x) = 0;
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• for all t in [a; b] the function ϕt : Ω→ R such that ϕt(x) = f(t;x) is measurable;

• there exists a function α in L1(Rd) such that for all (t;x) in [a; b]×Ω it holds that

|f(t;x)| ≤ α(x).

For all t in [a; b], we denote

F (t) :=

∫
Ω

f(t;x)dx.

Then, F : [a; b]→ R is well defined and it is continuous.

Proof. Under our hypothesis, F is well defined, obviously. Let t0 be any point in [a; b];
we claim that

lim
h→0

∫
Ω

f(t0 + h;x)dx =

∫
Ω

f(t0;x)dx.

We notice that for almost every x in Ω it holds that

lim
h→0

f(t0 + h;x) = f(t0;x);

moreover, α is a suitable domination in L1(Ω). Hence, the conclusion is an immediate
consequence of the dominated convergence theorem.

Theorem 2.3.2 (Derivation under integral).
Let Ω be any open set in Rd. Let f : [a; b]× Ω→ R be any function with the following
properties:

• for all t in [a; b] the function ϕt : Ω→ R such that ϕt(x) = f(t;x) is measurable;

• for all t in [a; b] for almost every x in Ω there exists
∂f

∂t
(t;x);

• for all t in [a; b] there exists a measurable function ψt : Ω → R such that for
almost every x in Ω it holds that

ψt(x) =
∂f

∂t
(t;x);

• for all t in [a; b] for almost every x in Ω it holds that

lim
h→0

ψt+h(x) = ψt(x);

• there exists a function α in L1(Rd) such that for all t in [a; b] for almost every x
in Ω it holds that

max

{
|f(t;x)| ;

∣∣∣∣∂f∂t (t;x)

∣∣∣∣} ≤ α(x).

Then, the following conclusions hold true:

• F : [a; b]→ R and G : [a; b]→ R are well defined;

• G is continuous in [a; b];

• F is in C1((a; b)) and for all t in (a; b) it holds that F ′(t) = G(t).
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Chapter 2. Measure and integration

Proof. We notice that the function F is well defined, obviously. Thanks to theorem
2.3.1, the function G is well defined and continuous. Let t0 be any point in [a; b]; if we
show that

F (t0)− F (a) =

∫ t0

a

G(t)dt,

then the thesis follows immediately from the fundamental theorem of calculus. By
definition of G, we have that∫ t0

a

G(t)dt =

∫ t0

a

(∫
Ω

∂f

∂t
(t;x)dx

)
dt. (2.1)

We notice that∫
Ω×[a;t0]

∣∣∣∣∂f∂t (t;x)

∣∣∣∣ dtdx ≤ ∫
Ω×[a;t0]

α(x)dtdx = ‖α‖L1(Ω) (t0 − a).

Having said that, we can use Fubini’s theorem and switch the order of integration at
the right hand side of (2.1); thanks to the fundamental theorem of calculus, we obtain
that ∫ t0

a

G(t)dt =

∫
Ω

(∫ t0

a

∂f

∂t
(t;x)dt

)
dx

=

∫
Ω

[f(t0;x)− f(a;x)]dx.

To conclude, since α is a suitable domination for ϕt in L1(Ω), we notice that we can
split the integral and the following identity holds true:∫ t0

a

G(t)dt =

∫
Ω

f(t0;x)dx−
∫

Ω

f(a;x)dx,

that is equivalent to the thesis.
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Chapter 3

Lp space

3.1 Definitions and main properties
Definition 3.1.1. Let (E; E ;µ) be a measurable space with a measure µ. Let p be a
real number in [1; +∞). Let f : E→ R be a measurable function. We denote

‖f‖Lp(E) :=

(∫
E
|f(x)|p dµ(x)

) 1
p

.

We denote

‖f‖L∞(E) := inf
{
c ∈ R | c ≥ |f(x)| for almost every x ∈ E

}
.

Remark 3.1.2. Let (E; E ;µ) be a measurable space with a measure µ. Let f : E→ R
be a measurable function. We claim that the infimum in the definition of ‖f‖L∞(E)

is actually a minimum. We have to show that for almost every x in E it holds that
|f(x)| ≤ ‖f‖L∞(E). We notice that |f(x)| > ‖f‖L∞(E) if and only if there exists n in N
such that

|f(x)| ≥ 1

n
+ ‖f‖L∞(E) .

For all n in N we define

An := f−1

([
− 1

n
− ‖f‖L∞(E) ;

1

n
+ ‖f‖L∞(E)

]c)
.

This is enough to state that

f−1
([
−‖f‖L∞(E) ; ‖f‖L∞(E)

]c)
=
⋃
n∈N

An.

Hence, we can conclude that

µ
(
f−1

([
−‖f‖L∞(E) ; ‖f‖L∞(E)

]c))
≤ µ

(⋃
n∈N

An

)
≤
∑
n∈N

µ (An) = 0.

Remark 3.1.3. In the setting of definition 3.1.1, if ‖f‖L∞(E) is a real number, then f is
finite for almost every x in E. Let p be a real number in [1; +∞); let us assume that
‖f‖Lp(E) is a real number. Then f is finite for almost every x in E . In fact, if we denote

A := f−1({−∞; +∞}),
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Chapter 3. Lp space

then A is measurable and we have that∫
E
|f(x)|p dx ≥ µA · (+∞).

Therefore, it must be that µ(A) is equal to 0.

Definition 3.1.4 (Lp space).
Let (E; E ;µ) be a measurable space with a measure µ. Let f : E→ R be a measurable
function. Let p be in [1; +∞]. Let us denote Dp the collection of the measurable
functions between E and R such that ‖f‖Lp(E) is a real number. We introduce the
following relation of equivalence in Dp: we say that f and g are equivalent if and only
if f(x) = g(x) for almost every x in E; we will write f ∼ g. We define Lp(E) as the
quotient set Dp/ ∼.

Remark 3.1.5. In the setting of definition 3.1.1, it is immediate to see that if f, g are
measurable functions such that f(x) = g(x) for almost every x in E, then it holds that

‖f‖Lp(E) = ‖g‖Lp(E) .

So, if [f ] is an element in Lp(E), i.e. [f ] is a set of functions that coincide almost
everywhere, we can well define

‖[f ]‖Lp(E) := ‖g‖Lp(E) ,

where g is any function in [f ]. As a matter of facts, we will always refer to the classes
of functions coinciding almost everywhere as functions.

3.1.1 Integral inequalities

We show the most famous integral inequalities. However, the aim of this subsection is
to give Lp the structure of normed vector space.

Proposition 3.1.6 (Jensen’s inequality).
Let (E; E ;µ) be a measurable space with a measure µ. Let f : E→ R be a measurable
function that is µ-integrable. Let us assume that µ(E) is a real number. Let ϕ : R→ R
be a convex function. Then, it holds that

ϕ

(
1

µ(E)

∫
E
f(x)dµ(x)

)
≤ 1

µ(E)

∫
E
ϕ(f(x))dµ(x).

Proof. Let us denote

y0 :=
1

µ(E)

∫
E
f(x)dµ(x).

Since ϕ is a convex function, there exists a real number m such that for all y in R it
holds that

ϕ(y) ≥ ϕ(y0) +m(y − y0).

In particular, for all x in E it holds that

ϕ(f(x)) ≥ ϕ(y0) +m(f(x)− y0).
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If we integrate, we obtain the following inequalities:∫
E
ϕ(f(x))dµ(x) ≥

∫
E
[ϕ(y0) +m(f(x)− y0)]dµ(x)

= µ(E)ϕ

(
1

µ(E)

∫
E
f(x)dµ(x)

)
+m

[∫
E
f(x)dµ(x)− µ(E)y0

]
= µ(E)ϕ

(
1

µ(E)

∫
E
f(x)dµ(x)

)
.

Definition 3.1.7 (Conjugate indices). Let p be in [1; +∞]. We say that p∗ is it’s
conjugate index of p if it holds that

1

p
+

1

p∗
= 1,

with the convention that 1
∞ = 0.

Proposition 3.1.8 (Young’s inequality).
Let p, p∗ be real conjugate indices in (1; +∞). Let a, b be real numbers in [0; +∞); then
the following inequality holds true:

ab ≤ ap

p
+
bp
∗

p∗
.

More precisely, the equal holds true if and only if ap = bp
∗.

Proof. If a equals 0 or b equals 0, the conclusion is trivial. So, it is not restrictive to
assume that either a and b are positive real numbers. Since log(x) is a concave function
and p, p∗ are conjugate indices, we can state that

1

p
log(ap) +

1

p∗
log(bp

∗
) ≤ log

(
ap

p
+
bp
∗

p∗

)
.

We notice that the left hand side equals log(ab). Since log(x) is an increasing function,
we obtain that

ab ≤ ap

p
+
bp
∗

p∗
.

Since log(x) is a strictly concave function, equal holds true if and only if ap = bq.

Proposition 3.1.9 (Hölder’s inequality).
Let (E; E ;µ) be a measurable space with a measure µ. Let f, g : E→ R be measurable
functions. Let p, p∗ be conjugate indices in [1; +∞]. Then, the following inequality holds
true:

‖fg‖L1(E) ≤ ‖f‖Lp(E) ‖g‖Lp∗ (E) .

Moreover, if p, p∗ are real numbers in (1; +∞) and ‖f‖Lp(E) , ‖g‖Lp∗ (E) are positive real
numbers, it holds that

‖fg‖L1(E) = ‖f‖Lp(E) ‖g‖Lp∗ (E)

if and only if

|f(x)|p = |g(x)|p
∗ ‖f‖pLp(E)

‖g‖p∗
Lp∗ (E)

for almost every x in E.
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Proof. Let us assume that p = +∞ and p∗ = 1. Then, for almost every x in E it holds
that

|f(x)| ≤ ‖f‖L∞(E) .

Hence, we have that

‖fg‖L1(E) =

∫
E
|f(x)g(x)| dµ(x)

≤
∫
E
‖f‖L∞(E) |g(x)| dµ(x)

= ‖f‖L∞(E) ‖g‖L1(E) .

If p = 1 and p∗ = +∞, the proof is completely similar. So, we can assume that p, p∗
are real numbers in (1; +∞). If ‖f‖Lp(E) is 0, then f(x) equals 0 for almost every x in
E; then f(x)g(x) is 0 for almost every x in E and the conclusion is trivial. If ‖g‖Lp∗ (E)
is 0, the conclusion is trivial. Hence, we can assume that both ‖f‖Lp(E) and ‖g‖Lp∗ (E)
are in (0; +∞]. We notice that if ‖f‖Lp(E) = +∞ or ‖g‖Lp∗ (E) = +∞, the conclusion is
trivial. Having said that, it is not restrictive to assume that p, p∗ are real numbers in
(1; +∞) and ‖f‖Lp(E) , ‖g‖Lp∗ (E) are real numbers in (0; +∞). In particular, both f(x)
and g(x) are real numbers for almost every x in E. Thanks to Young’s inequality (see
3.1.8), for almost every x in E it holds that

|f(x)g(x)|
‖f‖Lp(E) ‖g‖Lp∗ (E)

≤ |f(x)|p

p ‖f‖pLp(E)

+
|g(x)|p

∗

p∗ ‖g‖p∗
Lp∗ (E)

.

If we integrate, we obtain that∫
E

|f(x)g(x)|
‖f‖Lp(E) ‖g‖Lp∗ (E)

dµ(x) ≤ 1

p

∫
E

|f(x)|p

‖f‖pLp(E)

dµ(x) +
1

p∗

∫
E

|g(x)|p
∗

‖g‖p∗
Lp∗ (E)

dµ(x)

=
1

p
+

1

p∗
= 1.

The thesis follows rearranging terms. Moreover, we notice that the equal holds true if
and only for almost every x in E it holds that

|f(x)g(x)|
‖f‖Lp(E) ‖g‖Lp∗ (E)

=
|f(x)|p

p ‖f‖pLp(E)

+
|g(x)|p

∗

p∗ ‖g‖p∗
Lp∗ (E)

.

As shown in 3.1.8, this is equivalent to require that for almost every x in E it holds that

|f(x)|p

‖f‖pLp(E)

=
|g(x)|p

∗

‖g‖p∗
Lp∗ (E)

.

Proposition 3.1.10 (Minkowski’s inequality).
Let (E; E ;µ) be a measurable space with a measure µ. Let f, g : E→ R be measurable
functions. Let p be in [1; +∞]. The following inequality holds true:

‖f + g‖Lp(E) ≤ ‖f‖Lp(E) + ‖g‖Lp(E) .

28



3.1. Definitions and main properties

Proof. If p is equal to 1, the thesis is an immediate consequence of the triangular
inequality.

If p is equal to +∞, for almost every x in E it holds that |f(x)| ≤ ‖f‖L∞(E) and
|g(x)| ≤ ‖g‖L∞(E). Hence, for almost every x in E it holds that

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖L∞(E) + ‖g‖L∞(E) .

So, the conclusion is immediate.
Let us assume that p is a real number in (1; +∞). If ‖f‖Lp(E) equals +∞ or ‖g‖Lp(E)

equals +∞, the conclusion is trivial. So, we can assume that both ‖f‖Lp(E) , ‖g‖Lp(E)

are real numbers. In particular, f(x) and g(x) are real numbers for almost every x in E.
Since p is greater that 1, the function ϕp(x) := |x|p is convex. For all x in E, it holds
that

|f(x) + g(x)|p ≤ 2p
(
|f(x)|+ |g(x)|

2

)p
≤ 2p−1 (|f(x)|p + |g(x)|p) .

If we integrate, we obtain that

‖f + g‖Lp(E) ≤ 2p−1
(
‖f‖Lp(E) + ‖g‖Lp(E)

)
< +∞.

Let p∗ be the conjugate index of p; by definition 3.1.7, we have that

p∗ =
p

p− 1
.

Thanks to Hölder’s inequality (see 3.1.9), we obtain that∫
E
|f(x) + g(x)|p dµ(x) =

∫
E
|f(x) + g(x)|p−1 |f(x) + g(x)| dµ(x)

≤
∫
E
|f(x) + g(x)|p−1 |f(x)| dµ(x)

+

∫
E
|f(x) + g(x)|p−1 |g(x)| dµ(x)

≤
(∫

E
|f(x) + g(x)|(p−1)p∗ dµ(x)

) 1
p∗
(∫

E
|f(x)|p dµ(x)

) 1
p

+

(∫
E
|f(x) + g(x)|(p−1)p∗ dµ(x)

) 1
p∗
(∫

E
|g(x)|p dµ(x)

) 1
p

=

(∫
E
|f(x) + g(x)|p dµ(x)

) p−1
p
(∫

E
|f(x)|p dµ(x)

) 1
p

+

(∫
E
|f(x) + g(x)|p dµ(x)

) p−1
p
(∫

E
|g(x)|p dµ(x)

) 1
p

.

We have shown that

‖f + g‖pLp(E) ≤ ‖f + g‖p−1
Lp(E)

(
‖f‖Lp(E) + ‖g‖Lp(E)

)
.

We notice that if ‖f + g‖pLp(E) is 0, the conclusion is trivial; otherwise we can divide both
sides by the real positive real number ‖f + g‖p−1

Lp(E) and the thesis follows immediately.
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Theorem 3.1.11. Let (E; E ;µ) be a measurable space with a measure µ. Let p be in
[1; +∞]. The function

‖·‖Lp(E) : Lp(E)→ [0; +∞)

defined in 3.1.5 is a norm. In particular, Lp(E) is a metric space with the distance
induced by the norm.

Proof. The well definition of the function

‖·‖Lp(E) : Lp(E)→ [0; +∞)

has already bee discussed in 3.1.5. We claim that it is a norm.

• Obviously, for all f in Lp(E), it holds that ‖f‖Lp(E) is a real number in [0; +∞).

• We notice that ‖f‖Lp(E) = 0 if and only if f(x) = 0 for almost every x in E, i.e. f
is the null function in the quotient set.

• If λ is any real number, it holds that

|λ| ‖f‖Lp(E) = ‖λf‖Lp(E) .

• As for the triangular inequality, it is an immediate consequence of the Minkowski’s
inequality (see 3.1.10).

Lp vs Lq

Proposition 3.1.12. Let X,Y be normed vector spaces. Let T : X→ Y a linear map.
The following facts are equivalent:

1. T is continuous;

2. T is continuous in 0;

3. T is bounded, i. e. there exists C in R such that for all x in X it holds that

‖T (x)‖Y ≤ C ‖x‖X ;

4. there exists D in R such that T is D-Lipschitz.

Proof. It is obvious that 3) implies 4), that implies 1) that implies 2). As for the the 2)
implies 3), by definition of continuity in 0, there exists a positive real number δ such
that if ‖x‖X ≤ δ then ‖T (x)‖Y ≤ 1. If x is any vector in X \ {0}, it holds that

‖T (x)‖Y =

∥∥∥∥T (‖x‖Xδ δx

‖x‖X

)∥∥∥∥
Y

=
‖x‖X
δ

∥∥∥∥T ( δx

‖x‖X

)∥∥∥∥
Y
≤ 1

δ
‖x‖X .

Proposition 3.1.13. Let (E; E ;µ) be a measurable space with a measure µ. Let us
assume that µ(E) is finite. Let p, q such that 1 ≤ p < q ≤ +∞. Let us consider the
inclusion map i : Lq(E) ↪→ Lp(E). Then, it is well defined and continuous.
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Proof. If q equals +∞ and f is any function in L∞(E), then it is bounded almost
everywhere; in particular, it is in Lp(E) and the following inequality holds true:

‖f‖Lp ≤ µ(E)
1
q ‖f‖L∞(E) ;

so, the conclusion follows by proposition 3.1.12.
Let us assume that p, q are real numbers. We notice that the function ϕ(x) := |x|

q
p

is convex. Thanks to Jensen’s inequality (see 3.1.6), it holds that

ϕ

(
1

µ(E)

∫
E
|f |p dµ(x)

)
≤ 1

µ(E)

∫
E
ϕ(|f(x)|p)dµ(x).

In other words, we obtain that(
1

µ(E)

∫
E
|f(x)|p dµ(x)

) 1
p

≤
(

1

µ(E)

∫
E
|f(x)|q dµ(x)

) 1
q

.

If we rearrange terms, we obtain that

‖f‖Lq(E) ≤ µ(E)
1
q
− 1
p ‖f‖Lp(E)

and the thesis is an immediate consequence of 3.1.12.

Remark 3.1.14. The statement of the proposition 3.1.13 is generally false if µ(E) is not
finite. In Rd with the Lebesgue measure, we can consider the function fα : Rd → R
such that

fα(x) :=
1

|x|α
1B(0;1).

Let p be a real number in [1; +∞); it’s easy to see that fα is in Lp(Rd) if and only if
αp < d; if we consider the function gα : Rd → R such that

gα(x) :=
1

|x|α
1B(0;1)c ,

it’s easy to see that gα is in Lp(Rd) if and only if αp > d. Then, we obtain all the
counterexamples requested.

3.1.2 Completeness

The aim of this subsection is to show that LP (E) is a complete metric space with respect
to the distance induced by the norm. In other words, (Lp(E; ‖·‖Lp(E)) is a Banach space.
However, we have to show some preliminary lemmas.

Lemma 3.1.15 (Chebyshev’s inequality).
Let (E; E ;µ) be a measurable space with a measure µ. Let g : E → [0; +∞] be a
measurable function. Let δ be any positive real number. If we define

Eδ := {x | g(x) ≥ δ} ,

then, the following inequality holds true:

µ(Eδ) ≤
1

δ

∫
E
g(x)dµ(x).
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Proof. We notice that for all x in E it holds that δ1Eδ(x) ≤ g(x). If we integrate, we
obtain that

δµ(Eδ) =

∫
E
δ1Eδ(x)dµ(x) ≤

∫
E
g(x)dµ(x).

Lemma 3.1.16 (Borel-Cantelli’ lemma).
Let (E; E ;µ) be a measurable space with a measure µ. Let {An}n∈N be a sequence of
measurable sets. We define

A := {x ∈ E | x ∈ An for infinite indices n} .

Let us assume that ∑
n∈N

µ(An) < +∞.

Then, A is a measurable set and µ(A) = 0.

Proof. Let m be any positive integer. We define

Em :=
⋃
n≥m

An.

We notice that

A =
⋂
m∈N

(⋃
n≥m

An

)
=
⋂
m∈N

Em.

So, A is measurable. It’s easy to see that

µ(A) ≤ inf
m∈N

µ(Em) ≤ inf
m∈N

(∑
n≥m

µ(An)

)
;

in conclusion, we notice that the right hand side is 0 because we are assuming that∑
n∈N

µ(An) < +∞.

Lemma 3.1.17. Let (X; d) be a metric space; let {xn}n∈N be a sequence in X. Let us
assume that ∑

n∈N

d(xn;xn+1) < +∞.

Then {xn}n∈N is a Cauchy’s sequence with respect to the distance in X.

Proof. Let ε be any positive real number; let n0 in N such that∑
n≥n0

d(xn;xn+1) ≤ ε.

If n,m are positive integer such that m > n > n0, we can use the triangular inequality
and we obtain that:

d(xm;xn) ≤
m−1∑
k=n

d(xk;xk+1) ≤
∑
k≥n0

d(xk;xk+1) ≤ ε.
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Lemma 3.1.18. Let (X; d) be a metric space; let {xn}n∈N be a Cauchy’s sequence in
X. Let {δk}k∈N be any infinitesimal sequence of positive real numbers. There exists a
subsequence {xnk}k∈N such that for all k in N it holds that d(xnk ;xnk+1

) ≤ δk.

Proof. The sequence {nk}k∈N can be defined by recursion. Thanks to our hypothesis,
there exists a natural number n0 such that for all n greater than or equal to n0 it
holds that d(xn0 ;xn) ≤ δ0. Hence, we have defined xn0 . Let k any positive integer.
Let us assume that {xn0 ; . . . ;xnk} have already been defined. There exists an integer
nk+1 greater than nk such that for all n greater than or equal to nk+1 it holds that
d(xnk+1

;xn) ≤ δk+1. Hence, we have defined xnk+1
.

Theorem 3.1.19. Let (E; E ;µ) be a measurable space with a measure µ. Let p be in
[1; +∞]. Then

(
Lp(E); ‖·‖Lp(E)

)
is a complete metric space.

Proof. Let {fn}n∈N be a Cauchy’s sequence in Lp(E). Let us denote {f̃n}n∈N the
correspondent sequence of functions in Dp. If we show that there exists a measurable
function f̃ : E→ R such that f̃ is in Dp and

lim
n→+∞

∥∥∥f̃n − f̃∥∥∥
Lp(E)

= 0

and we denote f the corresponding class of f̃ in Lp(E), it is immediate to see that
{fn}n∈N converges toward f with respect to the Lp norm in the quotient set. In other
words, we can assume that {fn}n∈N is a well defined sequence of functions.

Step 1: Let us assume that p is +∞. By definition of Cauchy’s sequence, if ε is a
positive real number, there exists a positive integer n0 such that for all integer n,m
greater than or equal to n0 it holds that

‖fn − fm‖L∞(E) < ε.

Be definition 3.1.1, there exists a measurable set C in E such that µ(Cc) = 0 and for all
x in C we have that {fn(x)}n∈N is a Cauchy’s sequence. Hence, for all x in C we define
f(x) as the pointwise limit of {fn(x)}n∈N; if x is in Cc, we define f(x) := 0. Hence, f is
a well defined function between E and R. Moreover, we can also assume that for all
n in N for all x in C it holds that |fn(x)| ≤ ‖fn‖L∞(E). Since {fn}n∈N is a Cauchy’s
sequence in L∞(E), it’s easy to see that there exists a positive real number M such
that for all n in N it holds that ‖fn‖L∞(E) ≤M . In particular, for all x in C, we have
that |f(x)| ≤M . As f is the pointwise limit of {fn}n∈N in C and f is 0 in Cc, it is a
measurable function. Hence, f in L∞(E). Let ε be any positive real number; let n0 be a
positive integer such that for all integers n,m greater than or equal to n0 it holds that

‖fn − fm‖L∞(E) ≤ ε.

By definition of C, we have that for all x in C for all integers n,m greater than or equal
to n0 it holds that |fn(x)− fm(x)| ≤ ε. In particular, we can state that

|fn(x)− f(x)| = lim
m→+∞

|fn(x)− fm(x)| ≤ ε.

In other words, {fn}n∈N converges toward f with respect to L∞ norm.
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Step 2: Let us assume that p is a real number in [1; +∞). Thanks to lemma 3.1.18,
there exists a subsequence {fnk}k∈N such that for all k in N it holds that∥∥fnk−1

− fnk
∥∥
Lp(E)

≤ 4−k.

For all k in N we define
gk :=

∣∣fnk+1
− fnk

∣∣ ,
Ak :=

{
x ∈ E | gk(x) ≥ 2−k

}
.

It’s immediate to see that gk is a measurable function between E and R and Ak is a
measurable set. Thanks to Chebyshev’s inequality (see 3.1.15), we obtain that

µ(Ak) = µ({x ∈ E | gk(x)p ≥ 2−kp}) ≤ 1

2−kp

∫
E
gk(x)pdµ(x) ≤ 2−kp.

We define the measurable set

A := {x ∈ E | x ∈ Ak for infinite indices k}.

Thanks to Borel-Cantelli’ lemma (see 3.1.16), we obtain that µ(A) = 0. Hence, for all x
in Ac we have that {fnk(x)}k∈N is a Cauchy’s sequence (see lemma 3.1.17). For all x in
Ac we define f(x) the pointwise limit of {fnk(x)}k∈N; for all x in A we define f(x) = 0.
As shown in the previous step, we have that f is a well defined measurable function
between E and R. As described in the previous step, there exists a positive real number
M such that for all n in N it holds that ‖fn‖Lp(E) ≤M ; thanks to Fatou’s lemma, we
have that ∫

E
|f(x)|p dµ(x) ≤ lim inf

k→+∞

∫
E
|fnk(x)|p dµ(x) ≤Mp.

In particular, f is in Lp(E). Let k be any positive integer. Thanks to Fatou’s lemma,
we have that

‖f − fnk‖
p
Lp(E) =

∫
E
|fnk(x)− f(x)|p dµ(x)

=

∫
E

(
lim

h→+∞
|fnk(x)− fnh(x)|p

)
dµ(x)

≤ lim inf
h→+∞

∫
E
|fnk(x)− fnh(x)|p dµ(x)

≤ 4−kp.

Hence, {fnk}k∈N converges toward f with respect to Lp norm. To conclude, we notice
that the whole sequence {fn}n∈N converges toward f with respect to Lp norm, because
it is a Cauchy’s sequence.

Example 3.1.20 (`p space).
Let µ be the measure in N that counts point, i.e. if A is any subset in N we define µ(A)
as it’s cardinality. We notice that (N;P (N) ;µ) is a measurable space with a measure µ.
We define lp := Lp(N). In other words, if p is a real number, lp is the collection of the
function f : N→ R such that ∫

N
|f(n)|p dµ(n) < +∞.
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More explicitly, we notice that∫
N
|f(n)|p dµ(n) =

∑
n∈N

|f(n)|p .

Obviously, if we define ‖·‖`p : `p → [0; +∞) such that

‖f‖`p :=

(∑
n∈N

|f(n)|p
) 1

p

,

then ‖·‖`p is a norm and (`p; ‖·‖`p) is a a complete metric space. We claim that `p is
separable. If n is any positive integer, we define fn : N→ R such that fn(n) = 1 and
fn(k) = 0 for all natural number k 6= n. It’s easy to see that SpanQ {fn | n ∈ N} is a
countable dense subset in `p.

If p is equal to +∞, we define `∞ := L∞(N). In other words, `∞ is the collection of
the bounded-valued function between N and R. We notice that

‖f‖L∞(N) = sup
n∈N
{|f(n)|}

and it is always denoted as ‖f‖`∞(N). Obviously, (`∞; ‖·‖`∞) is a complete metric space.

3.1.3 Convergence of measurable functions

Definition 3.1.21 (Convergence in measure).
Let (E; E ;µ) be a measurable space with a measure µ. Let {fn}n∈N be a sequence of
measurable functions between E and R; let f be a measurable function between E and
R. Let us assume that if ε is any positive real number it holds that

lim
n→+∞

µ ({x ∈ E | |fn(x)− f(x)| ≥ ε}) = 0.

We say that {fn}n∈N converges toward f in measure.

Proposition 3.1.22. Let (E; E ;µ) be a measurable space with a measure µ. Let us
assume that µ(E) < +∞. Let {fn}n∈N be a sequence of measurable functions between E
and R; let f be a measurable function between E and R. If {fn(x)}n∈N converges toward
f(x) for almost every x in E, then {fn}n∈N converges toward f in measure.

Proof. Let ε be any positive real number. For all n in N we define

Bε
n := {x ∈ E | ∃m ≥ n : |fm(x)− f(x)| ≥ ε} .

If we define
Bε :=

⋂
n∈N

Bε
n,

B :=

{
x ∈ E

∣∣∣∣ lim inf
n→+∞

|fn(x)− f(x)| > 0

}
,

we notice that Bε is completely contained in B. We know that µ(B) = 0; since E is a
finite measure space, we have that

lim
n→+∞

µ(Bε
n) = µ(Bε) ≤ µ(B) = 0.
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If we notice that for all n in N it holds that

{x ∈ E | |fn(x)− f(x)| ≥ ε} ⊆ Bε
n,

the conclusion follows immediately.

Example 3.1.23. In 3.1.22, it is necessary to assume that E is a finite measure space. In
fact, if E = R with the Lebesgue measure, we notice that {1[n;+∞)}n∈N is a sequence of
measurable functions whose pointwise limit is the null function; however, it does not
converge toward 0 in measure.

Proposition 3.1.24. Let (E; E ;µ) be a measurable space with a measure µ. Let {fn}n∈N
be a sequence of measurable functions between E and R; let f be a measurable function
between E and R. Let p be a real number in [1; +∞). If {fn}n∈N converges toward f
with respect to Lp norm, then {fn}n∈N converges toward f in measure.

Proof. Let us fix a positive real number ε. Thanks to Chebyshev’s inequality (see
3.1.15), we have that

lim
n→+∞

µ (x ∈ E | |fn(x)− f(x)| ≥ ε) ≤ lim
n→+∞

1

εp

∫
E
|fn(x)− f(x)|p dµ(x) = 0.

Proposition 3.1.25. Let (E; E ;µ) be a measurable space with a measure µ. Let {fn}n∈N
be a sequence of measurable functions between E and R; let f be a measurable function
between E and R. Let us assume that {fn}n∈N converges toward f in measure. There
exists a subsequence {fnk}k∈N such that {fnk(x)}k∈N converges toward f(x) for almost
every x in E.

Proof. For all ε in (0; +∞) for all n in N we define

Aεn := {x ∈ E | |fn(x)− f(x)| ≥ ε} .

Under our hypothesis, it holds that

lim
n→+∞

µ(Aεn) = 0.

If we apply a diagonal procedure, we can find a subsequence {fnk}k∈N such that for

all k in N it holds that µ
(
A

1
k
nk

)
≤ 2−k. Thanks to lemma Borel-Cantelli’ lemma (see

3.1.16), if we define

A :=
{
x ∈ E | x ∈ A

1
k
nk for infinite indices k

}
,

we obtain that µ(A) = 0. In particular, for all x in E \A, there exists k0 in N such that
for all k greater than k0 it holds that |fnk(x)− f(x)| ≤ 1

k
.

Example 3.1.26. For all n in N we define

δn :=
n∑
i=1

1

i
.
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In [0; 1) with the Lebesgue measure, for all n in N we define the measurable set

An := {x ∈ [0; 1) | ∃k ∈ Z : x+ k ∈ (δn; δn+1]} .
Let {fn}n∈N be the sequence of measurable functions such that

fn := 1An .

It’s easy to see that {fn}n∈N converges toward the zero function in measure. Since the
sequence {δn}n∈N is not bounded and the sequence {δn+1 − δn}n∈N is infinitesimal, for
all x in [0; 1) for all n in N there exists an integer m greater than n such that x is in
Am. This is enough to conclude that the sequence {fn}n∈N does not converge pointwise
toward zero function in any point.

Theorem 3.1.27 (Severini-Egorov’s theorem).
Let (E; E ;µ) be a measurable space with a measure µ. Let us assume that µ(E) is
finite. Let {fn}n∈N be a sequence of measurable functions between E and R; let f be a
measurable function between E and R. Let us suppose that {fn(x)}n∈N converges toward
f(x) for almost every x in E. For all positive real number ε, there exists a measurable
set Eε such that µ(Eε) ≤ ε and {fn}n∈N converge toward f uniformly in E \ Eε.
Proof. Let n, k be positive integers. We define

Bn;k :=

{
x ∈ E | ∃m ≥ n : |fm(x)− f(x)| ≥ 1

k

}
.

Since E is a finite measure space, if we define

Bk :=

{
x ∈ E | |fn(x)− f(x)| ≥ 1

k
for infinite indices n

}
=
⋂
n∈N

Bn;k,

it holds that
lim

n→+∞
µ(Bn;k) = µ(Bk).

Since {fn(x)}n∈N converges toward f(x) for almost every x in E, we obtain that
µ(Bk) = 0.

Let us fix a positive real number ε. We can state that there exists a subsequence
{Bnk;k}k∈N such that for k in N it holds that

µ(Bnk;k) ≤
ε

2k+1
.

We define
Eε :=

⋃
k∈N

Bnk;k

and we obtain that
µ(Eε) ≤

∑
k∈N

µ(Bnk;k) ≤
∑
k∈N

ε

2k+1
= ε.

If x is in Ec
ε, for all k in N for all integer m greater than nk it holds that

|fm(x)− f(x)| ≤ 1

k
.

Hence, {fn}n∈N converges toward f uniformly in Ec
e.

Example 3.1.28. In theorem 3.1.27, it is necessary to assume that µ(E) is finite. Other-
wise, we can consider E = R with the Lebesgue measure and

{
1[n;+∞)

}
n∈N . It’s easy

to see that the sequence converge toward zero function pointwise; unfortunately, if B is
any finite measure subset, the convergence is not uniform in Bc.
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3.1.4 Density in Lp

The aim of this subsection is to show the density of some collections of functions with
respect to Lp norm.

Proposition 3.1.29. Let (E; E ;µ) be a measurable space with a measure µ. Let p be
in [1; +∞]. Let us define

Bp(E) := {f ∈ Lp(E) | ∃M ∈ R : |f(x)| ≤M for almost every x ∈ E} .

Then Bp(E) is dense in Lp(E) with respect to the Lp norm.

Proof. If p equals +∞ the conclusion is trivial. Let us assume that p is a real number
in [1; +∞). Let f be any function in Lp(E). Let N be any positive integer. We define
the function TNf : E→ R such that

TNf(x) := (f(x) ∧ n) ∨ (−n).

We say that TNf is the truncation of f between −N and N . We notice that {TNf}N∈N
is a sequence in Bp(E) that converges pointwise toward f almost everywhere and
|TNf(x)− f(x)|p ≤ 2 |f(x)|p for almost every x in E. Since |f |p is a suitable domination
in L1(E), the dominated convergence theorem implies that

lim
N→+∞

∫
E

(TNf(x)− f(x))p dµ(x) = 0.

Proposition 3.1.30. Let E be a σ-algebra in Rd that contains the open balls; let µ be
any measure over (Rd; E ). Let p be a real number in [1; +∞). We define

Ap(Rd) :=
{
f ∈ Lp(Rd) | ∃M ∈ R : f(x) = 0 for almost every x ∈ B(0;M)c

}
.

Then Ap(R) is dense in Lp(R) with respect to the Lp norm.

Proof. Let f be any function in Lp(E). For all positive integer n, we define fn : Rd → R
such that

fn(x) := f(x)1B(0;n).

It’s immediate to see that the sequence {fn}n∈N is in Ap(Rd), it converges pointwise
toward f for almost every x in Rd and |fn(x)− f(x)|p ≤ 2 |f(x)|p for almost every x in
Rd for all n in N. Since |f |p is in L1(Rd), the dominated convergence theorem implies
that

lim
N→+∞

∫
E

(fn(x)− f(x))p dµ(x) = 0.

Example 3.1.31. In proposition 3.1.30 it is necessary to assume that p is a real number.
If p equals +∞, in (R; M ; L ) we notice that the function 1R is in L∞(R), but it cannot
be approximated by a sequence of function supported in bounded subsets with respect
to L∞ norm.
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Proposition 3.1.32. Let E be a σ-algebra in Rd that contains the open balls; let µ be
any measure over (Rd; E ). Let p be a real number in [1; +∞). We define

Cp(Rd) := Ap(Rd) ∩ Bp(Rd).

Then Cp(R) is dense in Lp(R) with respect to the Lp norm.

Proof. Let f be a function in Lp(Rd). Let n be any positive integer. We denote as Tnf
the truncation of f between −n and n (see 3.1.29). We define fn : Rd → R such that

fn(x) = Tnf(x)1B(0;n).

If we slightly modify the procedure described in 3.1.30, we obtain that {fn}n∈N is a
sequence of measurable function in Cp(Rd) that converges toward f with respect to Lp
norm.

Remark 3.1.33. Let (X; τ) be a topological space. Let A, B subsets in X. Let us assume
that B is dense in X and A contains B. It’s immediate to see that A = X; in other
words, A is dense in X.

Proposition 3.1.34. Let (E; E ;µ) be a measurable space with a measure µ. Let p be
in [1; +∞]. We define S (E) as the set of the step functions (see 2.2.6). Then S (E) is
dense in Lp(E) with respect to Lp norm.

Proof. Let f be any function in Lp(E). We claim that there exists a sequence of step
functions that converges toward f with respect to Lp norm. If we join 3.1.29 and 3.1.33,
we can assume that f is a bounded-valued function. Let n be a positive integer. If k is
a positive integer, we define

Ak;n := f−1

([
k

n
;
k + 1

n

))
;

if k is a negative integer, we define

Ak;n := f−1

([
k − 1

n
;
k

n

))
.

Then, we define fn : E→ R such that

fn(x) :=
∑
k∈Z∗

k

n
1Ak;n(x).

Since f is a bounded-valued function, fn is defined by a finite sum; hence, {fn}n∈N is a
sequence in S (E). It’s easy to see that for all n in N for all x in E it holds that

|fn(x)− f(x)| ≤ 1

n
.

In other words, we obtain that

lim
n→+∞

‖fn − f‖L∞(E) = 0;

so, if p is +∞, the thesis is proved. Let us assume that p is a real number in [1; +∞). We
have already shown that {fn}n∈N converges pointwise toward f for almost every x in E.
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It’s easy to see that for all n in N for all x in E it holds that |fn(x)− f(x)|p ≤ 2 |f(x)|p;
since |f |p is a suitable domination in L1(E), the dominated convergence theorem implies
that

lim
N→+∞

∫
E

(fn(x)− f(x))p dµ(x) = 0.

Proposition 3.1.35. Let p be a real number in [1; +∞). Then, the set Cc(Rd) of the
continuous functions supported in a bounded subsets is dense in Lp(Rd) with respect to
the Lp norm.

Proof. Let f be a function in Lp(Rd). If we join 3.1.32, 3.1.34 and 3.1.33, we can assume
that f is the indicator function of a bounded measurable subset E. Let us fix a positive
real number ε. Thanks to 2.1.22, there exist an open set A and a close set C such that

C ⊆ E ⊆ A

and L d(A \ C) ≤ ε. We recall that if X is any subset in Rd, the function dist(·;X) :
Rd → R such that

dist(y;X) := inf{|y − z| | z ∈ X}

has the following properties:

• it is well defined and continuous;

• dist(y;X) = 0 if and only if y is in X.

If we define gε : Rd → [0; 1] such that

gε(x) :=
dist(x;Ac)

dist(x;Ac) + dist(x;C)
,

we notice that gε is well defined and continuous and it holds that∫
Rd
|gε(x)− 1E(x)|p dx =

∫
A\C
|gε(x)− 1E(x)|p dx ≤ L d(A \ C) ≤ ε.

Proposition 3.1.36. Let p be a real number in [1; +∞). Then, Lp(Rd) is a separable
metric space.

Proof. We will complete the proof under the further assumption that d equals 1. Let
us define B as the collection of indicator functions of intervals whose boundary value is
rational. B is countable. We define

D := SpanQ(B).

It’s immediate to see that D is countable. We claim that it is dense in Lp(Rd) with
respect to Lp norm. Let f be any function in Lp(Rd). We have to show that if ε is any
real number, there exists a function fε in D such that ‖f − fε‖Lp(Rd) ≤ ε. If we join
3.1.32 and 3.1.34, we can assume that f = c1E, where c is a real number and E is a
measurable bounded set in R. Since Q is dense in R, we can also assume that c is a
equal to 1. Let ε be any positive real number. Thanks to 2.1.22, there exists an open
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set A such that E is contained in A and L 1(A\E) ≤ ε
2
. In other words, we can assume

that A is an open bounded set. We know that there exists a finite of countable collection
of pairwise disjoint intervals that cover A; without loss of generality, we assume that

A :=
⋃
n∈N

(an; bn)

and ∑
n∈N

(bn − an) < +∞.

In other words, we can assume that the sum is finite, namely

A =
N⋃
n=1

(an; bn).

For all n in N there exist cn and dn in Q such that (cn; dn) is contained in (an; bn) and

L 1((an; bn) \ (cn; dn)) ≤ ε

4n
.

It’s immediate to see that

fε :=
N∑
i=1

1(cn;dn)

is in D and
‖fε − f‖Lp(R) ≤ ε.

Remark 3.1.37. The statement of proposition 3.1.36 is false if p equals +∞. In fact,
L∞(R) is not separable. It’s enough to consider the collection of functions {1[x;+∞)}x∈R:
it is more than countable and if x1 6= x2 it holds that∥∥1[x1;+∞ − 1[x2;+∞)

∥∥
L∞(R)

= 1.

Hence, L∞(R) is a metric space that admits a more than countable subset {fx |x ∈ R}
such that the open balls

B :=

{
B
(
fx;

1

2

) ∣∣∣∣ x ∈ R
}

are pairwise disjoint. This is enough to conclude that L∞(R) is not separable. By
contradiction, let us assume that L∞(R) is a separable metric space, namely there
exists a countable dense subset D. Thanks to the choice axiom, there exists a function
ψ : B → D such that for all B

(
fx;

1
2

)
in B it holds that ψ

(
B
(
fx;

1
2

))
is in B

(
fx;

1
2

)
∩D.

Since the open balls are pairwise disjoint, the function ψ is injective. As B is more
than countable and D is countable, the absurd follows immediately.

Theorem 3.1.38 (Lusin’s theorem).
Let E be a measurable subset in Rd. Let f : E → R be a measurable function. Let us
assume that L d(E) is finite. For all positive real number ε there exists a closed set Eε
with the following properties:

• Eε is completely contained in E;
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• L d(E \ Eε) ≤ ε;

• f |Eε is continuous.

Proof. Step 1: Let us assume that f is a bounded-valued function. Then f is in L1(E);
thanks to 3.1.35, there exists a sequence of continuous functions {fn}n∈N that converges
toward f with respect to L1 norm. Up to further subsequences, not relabelled, we
can assume that the convergence is pointwise for almost every x in E. Let us fix a
positive real number ε. Thanks to Severini-Egorov’ theorem (see 3.1.27), there exists a
measurable subset E ′ε such that

• E ′ε is completely contained in E;

• L d(E \ E ′ε) ≤ ε
2
;

• {fn}n∈N converges toward f uniformly in E ′ε.

If E ′ε is closed, the theorem is proved; otherwise, thanks to 2.1.22, there exists a closed set
Eε contained in E ′ε such that L d(E ′ε \Eε) ≤ ε

2
. Hence, we obtain that L d(E \Eε) ≤ ε.

Step 2: Let f be any real-valued measurable function. It is enough to show that for
all positive real number ε there exists a measurable set Aε in E such that L (E \Aε) ≤ ε
and f is bounded in Aε. For all positive integer n we define

A 1
n

:= f−1([−n;n]).

Since f is a real-valued function, {A 1
n
}n∈N is a decreasing sequence of measurable sets

and it holds that ⋂
n∈N

A 1
n

= ∅.

Since E is a finite measure set, this is enough to conclude that

lim
n→+∞

L (A 1
n
) = 0.

3.2 Convolution
Let f, g : Rd → R be measurable functions, the function f ∗ g is called convolution
between f and g. We will give reasonable hypothesis to make sure that the function is
well defined and we will study the its main properties. However, the convolution plays
a fundamental role to show the density of smooth functions in Lp, for p in [0; +∞).
Qualitatively, f ∗g(x) is a kind of weighted average of the value of f in the neighborhood
of x with respect to the value of g. Hence, it is not surprising that the convolution
makes functions more regular.

3.2.1 Definition and main properties

Definition 3.2.1 (Convolution for nonnegative functions).
Let f, g : Rd → [0; +∞] be measurable functions; let x be any point in Rd. We define

(f ∗ g)(x) :=

∫
Rd
f(x− y)g(y)dy.
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Remark 3.2.2. Since the integral make sense for nonnegative functions, we notice that
definition 3.2.1 is always well posed, i. e. f ∗ g(x) is in [0; +∞].

Remark 3.2.3. Let f, g, h : Rd → [0; +∞] be measurable functions. The convolution has
the following properties:

• (commutative) if we define z := x − y and we change variables, the following
identities hold true:

(f ∗ g)(x) =

∫
Rd
f(x− y)g(y)dy =

∫
Rd
f(z)g(x− z)dz = (g ∗ f)(x).

• (associative) Since the functions are nonnegative, we can use Fubini’s theorem
and we can switch the order of integration; if we define t := y − z we obtain that

[(f ∗ g) ∗ h](x) =

∫
Rd

(f ∗ g)(y)h(x− y)dy

=

∫
Rd

(∫
Rd
f(z)g(y − z)dz

)
h(x− y)dy

=

∫
Rd
f(z)

(∫
Rd
g(y − z)h(x− y)dy

)
dz

=

∫
Rd
f(z)

(∫
Rd
g(t)h(x− z − t)dt

)
dz

=

∫
Rd
f(z)(g ∗ h)(x− z)dz

= [f ∗ (g ∗ h)](x).

• (linearity in both factors) If λ is any positive real number, it’s easy to see that

(λf + g) ∗ h ≡ λ(f ∗ h) + (g ∗ h);

f ∗ (λg + h) ≡ λ(f ∗ g) + (f ∗ h).

• (measurability) The function f ∗ g : Rd → [0; +∞] is measurable, as follows from
Fubini’s theorem.

Definition 3.2.4 (Convolution for variable sign functions).
Let f, g : Rd → R be measurable functions; let x be any point in Rd. We define

(f ∗ g)(x) :=

∫
Rd
f(x− y)g(y)dy.

Remark 3.2.5. Unlike the case of definition 3.2.1, the integral the defines convolution
may not have sense. The purpose of next lemmas is to find reasonable hypothesis to
make sure that definition 3.2.4 is well posed.

Proposition 3.2.6. Let f, g : Rd → [0; +∞] be measurable functions. If f and g are
in L1(Rd), then ‖f ∗ g‖L1(Rd) = ‖f‖L1(Rd) ‖g‖L1(Rd).
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Proof. Thanks to Fubini’s theorem, we can switch the order of integration; so, the
following identities hold true:

‖f ∗ g‖L1(Rd) =

∫
Rd
f ∗ g(x)dx

=

∫
Rd

(∫
Rd
f(x− y)g(y)dy

)
dx

=

∫
Rd

(∫
Rd
f(x− y)dx

)
g(y)dy

= ‖g‖L1(Rd) ‖τy(f)‖L1(Rd)

= ‖g‖L1(Rd) ‖f‖L1(Rd) .

Corollary 3.2.7. Let f, g : Rd → R measurable functions in L1(Rd); then definition
3.2.4 is well posed; in other words, the integral make sense and f ∗ g(x) is finite for
almost every x in Rd. In particular, the function f ∗ g is well defined for almost every
x in Rd and it is measurable. Moreover, the following inequality holds true:

‖f ∗ g‖L1(Rd) ≤ ‖f‖L1(Rd) ‖g‖L1(Rd) .

Proof. Thanks to proposition 3.2.6, |f | ∗ |g| is in L1(Rd). In particular |f | ∗ |g| (x) is
finite for almost every x in Rd. Let x be any point in Rd. If we define

[ζx(f, g)](y) := f(x− y)g(y),

we have already shown that ζx(f, g) is in L1(Rd) for almost every x in Rd; hence f ∗ g
make sense and it is finite for almost every x in Rd. Thanks to Fubini’s theorem, f ∗ g
is measurable. Since we can switch the order of integration, we can slightly modify the
proof of proposition 3.2.6 to show that the following inequalities hold true:

‖f ∗ g‖L1(Rd) =

∫
Rd
|f ∗ g(x)| dx

=

∫
Rd

∣∣∣∣∫ f(x− y)g(y)dy

∣∣∣∣ dx
≤
∫
Rd

(∫
Rd
|f(x− y)| |g(y)| dy

)
dx

= ‖f‖L1(Rd) ‖g‖L1(Rd) .

Proposition 3.2.8. Let f, g : Rd → [0; +∞] be measurable functions; let p be in
[1; +∞]. If f is in Lp(Rd) and g is in L1(Rd), then ‖f ∗ g‖Lp(Rd) ≤ ‖f‖Lp(Rd) ‖g‖L1(Rd) .

Proof. If p equals +∞ the conclusion is immediate. If p is equal to 1, the thesis has
already been proved in proposition 3.2.6. Let us assume that p is in (1; +∞). Let x be
any point in Rd; thanks to Hölder’s inequality, we obtain that

f ∗ g(x) =

∫
Rd
f(x− y)g(y)dy

=

∫
Rd
f(x− y)g(y)

1
p g(y)1− 1

pdy

≤
(∫

Rd
f(x− y)pg(y)dy

) 1
p
(∫

Rd
g(y)dy

)1− 1
p

.
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Integrating in x and switching the order of integrals, we find that

‖f ∗ g‖p
Lp(Rd)

=

∫
Rd

[f ∗ g(x)]pdx

≤
∫
Rd

(∫
Rd
f(x− y)pg(y)dy

)
‖g‖p−1

L1(Rd)
dx

= ‖g‖p−1
L1(Rd)

∫
Rd
g(y)

(∫
Rd
f(x− y)pdx

)
dy

= ‖g‖p−1
L1(Rd)

‖g‖L1(Rd) ‖f‖
p
Lp(Rd)

= ‖g‖p
L1(Rd)

‖f‖p
Lp(Rd)

.

Corollary 3.2.9. Let f, g : Rd → R measurable functions; let p be in [1; +∞]. If
we assume that f is in Lp(Rd) and g is in L1(Rd), then definition 3.2.4 is well posed,
namely the integral make sense and f ∗ g(x) is finite for almost every x in Rd. In
particular, the function f ∗ g is well defined and measurable. Moreover, the following
inequality holds true:

‖f ∗ g‖Lp(Rd) ≤ ‖f‖Lp(Rd) ‖g‖L1(Rd) .

Proof. Thanks to proposition 3.2.8, we can slightly modify the proof of corollary 3.2.7;
then thesis follows immediately.

Proposition 3.2.10. Let f, g : Rd → [0; +∞] measurable functions; let p be in [1; +∞];
let p∗ be the conjugate index of p as in 3.1.7. If f is in Lp(Rd) and g is in Lp

∗
(Rd),

then ‖f ∗ g‖L∞(Rd) ≤ ‖f‖Lp(Rd) ‖g‖Lp∗ (Rd) .

Proof. If p equals +∞, thesis follows from 3.2.8. Let us assume that p is in [1; +∞).
Let x be any point in Rd; thanks to Hölder’s inequality, we obtain that

f ∗ g(x) =

∫
Rd
f(x− y)g(y)dx

≤
(∫

Rd
f(x− y)pdy

) 1
p
(∫

Rd
g(y)p

∗
dy

) 1
p∗

= ‖f‖Lp(Rd) ‖g‖Lp∗ (Rd) .

Corollary 3.2.11. Let f, g : Rd → R be measurable functions; let p be in [1; +∞]; let
p∗ be the conjugate index of p as in 3.1.7. If we assume that f is in Lp(Rd) and g is in
Lp
∗
(Rd), then definition 3.2.4 is well posed, namely the integral make sense and f ∗ g(x)

is finite for almost every x in Rd. In particular, the functions f ∗ g is measurable.
Moreover, the following inequality holds true:

‖f ∗ g‖L∞(Rd) ≤ ‖f‖Lp(Rd) ‖g‖Lp∗ (Rd) .

Proof. Thanks to proposition 3.2.10, we can slightly modify the proof of corollary 3.2.7;
then thesis follows immediately.

Lemma 3.2.12. Let f : Rd → R be a measurable function. Let p be in [1; +∞). Let
us assume that f is in Lp(Rd). Let h be any vector in Rd; let τhf be as in 1.0.1 Then
{τhf}h∈R converges toward f with respect to Lp norm, when h approaches to 0.
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Proof. Step 1: Let us assume that f is in C0
c (Rd), namely there exists a positive

real number R such that f is supported in B(0;R). Hence, if |h| is lower than 1, the
following inequalities hold true:

‖τhf − f‖pLp(Rd)
=

∫
B(0;R+1)

|f(x− h)− f(x)|p dx.

We claim that the right hand side converges toward 0 as h approaches to 0. We have
that:

• since f is continuous, for all x in Rd it holds that

lim
h→0

f(x− h)− f(x) = 0;

• for all x in Rd for all h in B(0; 1) it holds that

|f(x− h)− f(x)| ≤ 2 ‖f‖L∞(Rd) 1B(0;R+1)(x).

Since f is supported in a compact subset, the left hand side is function in Lp(Rd).

Then the conclusion follows from dominated convergence theorem.
Step 2: Let f be any function in Lp(Rd). Let ε be any positive real number; since

p is real, there exists f in C0
c (Rd) such that

‖f − g‖Lp(Rd) ≤
ε

3
.

Let h be any vector in Rd. We notice that

‖τhf − τhg‖Lp(Rd) = ‖f − g‖Lp(Rd) ≤
ε

3
.

As shown in the first step, there exists a positive real number h0 with the following
property: if h is in B(0;h0), it holds that

‖g − τhg‖LP (Rd) ≤
ε

3
.

Hence, if h is in B(0; 1), the following inequalities hold true:

‖f − τhf‖Lp(Rd) ≤ ‖f − g‖Lp(Rd) + ‖τhf − τhg‖Lp(Rd) + ‖g − τhg‖Lp(Rd)

≤ ε

3
+
ε

3
+
ε

3
= ε.

Then, thesis follows immediately.

Proposition 3.2.13. Let f, g : Rd → R be measurable functions; let p be in [1; +∞];
let p∗ be the conjugate index of p as in 3.1.7. If we assume that f is in Lp(Rd) and g is
in Lp∗(Rd), then f ∗ g is a uniformly continuous function.
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Proof. Let x and h be any vectors in Rd. It is not restrictive to assume that p is in
[1; +∞). Thanks to Hölder’s inequality, we obtain that

|f ∗ g(x− h)− f ∗ g(x)| ≤
∫
Rd
|f(x− h− y)− f(x− y)| |g(y)| dy

≤
(∫

Rd
|f(x− h− y)− f(x− y)|p dy

) 1
p
(∫

Rd
|g(y)|p

∗
dy

) 1
p∗

≤
(∫

Rd
|f(t− h)− f(t)|p dy

) 1
p
(∫

Rd
|g(y)|p

∗
dy

) 1
p∗

= ‖τhf − f‖Lp(Rd) ‖g‖Lp∗ (Rd) .

Thanks to lemma 3.2.12, ‖τhf − f‖Lp(Rd) is a continuity module that does not depend
of x. Hence, thesis follows immediately.

3.2.2 Regularization and approximation

Proposition 3.2.14. Let p be in [1; +∞]. Let us define p∗ the conjugate index of p as
in 3.1.7. Let f, g : Rd → R be measurable functions. Let g be in Lp(Rd). Let i be an
integer in {1; . . . ; d}. Let us assume that there exists ∂f

∂xi
and it is continuous; let us

suppose that f and ∂f
∂xi

are in Lp∗(Rd). Then, there exists ∂(f∗g)
∂xi

and it equals ∂f
∂xi
∗ g.

Proof. Thanks to proposition 3.2.11 and 3.2.13, f ∗ g and ∂f
∂xi
∗ g are well defined and

uniformly continuous. Without loss of generality, we can assume that i equals 1. Let
(x1; . . . ;xd) be any vector in Rd; if we denote y := (x2; . . . ;xd), we have to show that for
all (x; y) in R×Rd−1, the following identity holds true (assuming that x is nonnegative):

f ∗ g(x; y)− f ∗ g(0; y) =

∫ x

0

∂f

∂x1

∗ g(t, y)dt.

Then, thesis follows immediately from the fundamental theorem of calculus. Let x be
any positive real number; let (t;w; y) be any vector in [0;x]×R×Rd−1. We claim that
the function ζ : [0;x]× R× Rd−1 defined as

ζ(t, w, y) :=
∂f

∂x1

(t− w; y)g(w; y)

is in L1([0;x]× Rd). In deed, we can use Hölder’s inequality and Fubini’s theorem for
nonnegative function and we obtain that∫

[0;x]×Rd
|ζ(t, w, y)| dtdwdy =

∫ x

0

(∫
Rd

∣∣∣∣ ∂f∂x1

∣∣∣∣ (t− w; y)g(w; y)dwdy

)
dt

≤
∫ x

0

∥∥∥∥ ∂f∂x1

∥∥∥∥
Lp∗ (Rd)

‖g‖Lp(Rd) dt

= |x|
∥∥∥∥ ∂f∂x1

∥∥∥∥
Lp∗ (Rd)

‖g‖Lp(Rd) .
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Hence, for all (x; y) in [0; +∞)× Rd−1 the following identities hold true:∫ x

0

(
∂f

∂x1

∗ g
)

(t; y)dt =

∫ x

0

(∫
Rd

∂f

∂x1

(t− w; y)g(w; y)dwdy

)
dt

=

∫
Rd

(∫ x

0

g(w; y)
∂f

∂x1

(t− w; y)dt

)
dwdy

=

∫
Rd
g(w; y)

(∫ x

0

∂f

∂x1

(t− w; y)dt

)
dydw

=

∫
Rd
g(w; y)[f(x− w; y)− f(0− w; y)]dwdy

= f ∗ g(x; y)− f ∗ g(0; y).

In the last identity we used the fact that f ∗ g is finite for every (x; y) in R × Rd−1,
then we can split the integral.

Corollary 3.2.15. Let p be in [1; +∞]. Let p∗ be the conjugate index of p as in 3.1.7.
Let f, g : Rd → R be measurable functions. Let g be in Lp(Rd). Let (i1; . . . ; in) be
in {1; . . . ; d}n. Let us assume that there exists ∂nf

∂xi1 ...∂xin
and it is continuous; let us

suppose that f and ∂kf
∂xi1 ...∂xik

are in Lp∗(Rd) for all integer k in {1; . . . ;n}. Then, there

exists ∂n(f∗g)
∂xi1 ...∂xin

and it equals ∂nf
∂xi1 ...∂xin

∗ g. In particular, if f is in C∞(Rd) then f ∗ g is
in C∞(Rd).

Proof. If is an immediate consequence of proposition 3.2.14.

Theorem 3.2.16. Let p be a real number in [1; +∞). Let f, g : Rd → R be measurable
functions. Let g be in L1(Rd); let f be in Lp(Rd). For all positive real number δ we
define σδg as in 1.0.2. Then σδg ∗f is in Lp(Rd) for all δ greater that 0 and {σδg ∗f}δ>0

converges toward f ‖g‖L1(Rd) with respect to Lp norm as δ approaches 0.

Proof. First of all, we notice that if ‖g‖L1(Rd) = 0, the conclusion is trivial. Hence, we
can suppose that ‖g‖L1(Rd) 6= 0. We notice that it is not restrictive to assume that
‖g‖L1(Rd) is equal to 1. In fact, it’s easy to see that ‖g‖L1(Rd) = ‖σδg‖L1(Rd) for all
positive real number δ. Let us consider the family of functions{

σδg

‖σδg‖L1(Rd)

∗ f

}
δ>0

.

If we show that it converges toward f with respect to Lp norm, then thesis in the most
general case follows immediately.

Let x be any vectors in Rd and δ any positive real number. For all y in Rd, we
denote t := y

δ
; hence, dt equals dy

yd
. Having said that, we obtain that

f ∗ σδg(x) =

∫
Rd
f(x− y)

1

δd
g
(y
δ

)
dy =

∫
Rd
f(x− δt)g(t)dt,

f(x) =

∫
Rd
f(x)g(t)dt.
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Thanks to Hölder’s inequality, we have that

|f ∗ σδg(x)− f(x)| =
∣∣∣∣∫

Rd
[f(x− δt)− f(x)]g(t)dt

∣∣∣∣
≤
∫
Rd
|f(x− δt)− f(x)| |g(t)|

1
p |g(t)|1−

1
p dt

≤
(∫

Rd
|f(x− δt)− f(x)|p |g(t)| dt

) 1
p
(∫

Rd
|g(t)| dt

)1− 1
p

=

(∫
Rd
|f(x− δt)− f(x)|p |g(t)| dt

) 1
p

.

Since we can use Fubini’s theorem with nonnegative functions, the following inequalities
hold true:

‖f ∗ σδg − f‖pLp(Rd)
=

∫
Rd
|f ∗ σδg(x)− f(x)|p dx

≤
∫
Rd

(∫
Rd
|f(x− δt)− f(x)|p |g(t)| dt

)
dx

=

∫
Rd

(∫
Rd
|f(x− δt)− f(x)|p |g(t)| dx

)
dt

=

∫
Rd

(∫
Rd
|f(x− δt)− f(x)|p dx

)
|g(t)| dt

=

∫
Rd
|g(t)| ‖τδtf − f‖pLp(Rd)

dt.

We claim that the last integral converges toward 0 as δ approaches 0. Since g is in
L1(Rd), g(t) is finite for almost every t in Rd; then, for almost every t in Rd lemma
3.2.12 implies that

lim
δ→0
|g(t)| ‖τδtf − f‖pLp(Rd)

= 0.

We notice that for almost every t in Rd for all δ greater than 0 it holds that

|g(t)| ‖τδtf − f‖pLp(Rd)
≤ |g(t)| (2 ‖f‖Lp(Rd))

p,

that is a suitable domination in L1(Rd). Hence, the thesis is an immediate consequence
of dominated convergence theorem.

Corollary 3.2.17. Let p be any real number in [1; +∞). Let f, g : Rd → R be
measurable functions. Let g be in C∞c (Rd); let f be in Lp(Rd). For all positive real
number δ we define σδg as in 1.0.2. Then σδg ∗ f is in Lp(Rd) ∩ C∞(Rd) for all δ
greater that 0 and {σδg ∗ f}δ>0 converges toward f ‖g‖L1(Rd) with respect to Lp norm as
δ approaches to 0. In particular, if p is any real number in [1; +∞), then C∞(Rd) and
C∞c (Rd) are dense in Lp(Rd).

Proof. Let p∗ be the conjugate index of p. Since g is in C∞c (Rd), g and all its partial
derivatives are in Lp∗(Rd); as for the density of C∞(Rd) in Lp(Rd), it is an immediate
consequence of proposition 3.2.15 and theorem 3.2.16.

As for the density of C∞c (Rd) in Lp(Rd), we notice that if g is supported in B(0;R)
and f is supported in B(0;M), then f ∗ g is supported in B(0;M + R). Hence, the
thesis is a consequence of proposition 3.1.30, remark 3.1.33 and theorem 3.2.16.
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Remark 3.2.18. We notice that corollary 3.2.17 is false if p equals +∞. In fact, if u
is any function in L∞(Rd) and {gn}n∈N is any sequence of functions in C(Rd) that
converges toward u with respect to L∞ norm, there exists another function ũ such that:

• ũ and u coincide almost everywhere;

• {gn}n∈N converges toward ũ uniformly in Rd.

Hence, ũ is a continuous function; in particular u coincides almost everywhere with a
continuous function. The absurd follows taking u := 1[0;+∞)×Rd−1 .

On the pointwise convergence of the convolution

Proposition 3.2.19. Let {gn}n∈N be any sequence of functions in L1(Rd) such that

• if n is any natural number, then ‖gn‖L1(Rd) = 1;

• if δ is any positive real number, then it holds that

lim
n→+∞

∫
Rd\B(0;δ)

|gn(x)| dx = 0.

If f : Rd → R is any function in L∞(Rd) and x0 is any point in Rd such that f is
continuous in x0, then the following conclusion holds true:

lim
(h;n)→(x0;+∞)

f ∗ gn(x0 + h) = f(x0).

Proof. Let ε be any positive real number. Let δ be a positive real number such that if
x, y are in B(0; δ), then it holds that

|f(x0 + h− y)− f(x0)| ≤ ε

2
.

Let n0 be a natural number such that if n is any integer greater that or equal to n0,
then ∫

Rd\B(0;δ)

|gn(y)| dy ≤ ε

4 ‖f‖L∞(Rd)

.

Then, if n is any integer greater that or equal to n0 and h is any point in B(0; δ), the
following inequalities hold true:

|f ∗ gn(x0 + h)− f(x0)| =
∣∣∣∣∫

Rd
f(x0 + h− y)gn(y)dy −

∫
Rd
f(x0)gn(y)dy

∣∣∣∣
≤
∫
Rd
|gn(y)| |f(x0 + h− y)− f(x0)| dy

=

∫
B(0;δ)

|gn(y)| |f(x0 + h− y)− f(x0)| dy

+

∫
Rd\B(0;δ)

|gn(y)| |f(x0 + h− y)− f(x0)| dy

≤ ε

2

∫
B(0;δ)

|gn(y)| dy + 2 ‖f‖L∞(Rd)

∫
Rd\B(0;δ)

|gn(y)| dy

≤ ε

2
‖gn‖L1(Rd) +

ε

4 ‖f‖L∞(Rd)

2 ‖f‖L∞(Rd)

= ε.

So, the thesis follows immediately.
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Corollary 3.2.20. Let g : Rd → R be any function in L1(Rd) such that ‖g‖L1(Rd) = 1.
Let δ be any positive real number; let us consider σδg as in 1.0.2. If f is any function
in L∞(Rd) and x0 is any point in Rd such that f is continuous in x0, then the following
conclusion holds true:

lim
(h;δ)→(0;0)

f ∗ σδg(x0 + h) = f(x0).

Proof. Thanks to proposition 3.2.19, it is enough to show that if θ is any positive real
number, then

lim
δ→0

∫
Rd\B(0;θ)

σδg(y)dy = 0.

Hence, let us fix θ in (0; +∞). If we denote t := x
δ
, then dt equals dx

δd
. So, it holds that

lim
δ→0

∫
Rd\B(0;θ)

σδg(y)dy = lim
δ→0

∫
Rd\B(0;θ)

1

δd
g
(y
δ

)
dy

= lim
δ→0

∫
Rd\B(0; θ

δ )
g(t)dt

= 0,

as follows immediately from the dominated convergence theorem, because |g| is a
suitable domination in L1(Rd).
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Hilbert space

In this chapter, we will assume that any vector space is over the fields F that denotes
either C of R.

4.1 Inner product space

4.1.1 Definition and main properties

Definition 4.1.1 (Inner product space).
Let V be a vector space over the field F; let < ·, · >: V × V → F be a map with the
following properties:

• conjugate symmetry, i. e. for all x, y in V it holds that

< x, y >= < x, y >;

• linearity in the first argument, i.e. for all x, y, z in V for all α in F it holds that

< x+ αy, z >=< x, z > +α < y, z >;

• positive-definiteness, i. e. for all x in V it holds that < x, x > is real and
nonnegative; moreover, < x, x > equals 0 if and only if x is 0.

We say that (V;< ·, · >) is an inner space product.

Definition 4.1.2 (Norm associated to the inner product).
Let (V;< ·, · >) be an inner space product. For all x in V we define

‖x‖ :=
√
< x, x >.

We say that ‖·‖ : V→ [0; +∞) is the norm associated to the inner product.

Lemma 4.1.3 (Cauchy-Schwarz inequality).
Let (V;< ·, · >) be an inner space product. For all x, y in V the following inequality
holds true:

|< x, y >| ≤
√
< x, x >

√
< y, y >.
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4.1. Inner product space

Proof. Let x, y be vectors in V. If y is 0, the thesis follows immediately. Hence, we can
assume that ‖y‖ 6= 0. Let us denote

λ :=
< x, y >

‖y‖2 .

Since < ·, · > is an inner product, the following inequality hold true:

0 ≤ ‖x− λy‖2

=< x, x > −λ < y, x > −λ < y, x >+ λλ < y, y >

= ‖x‖2 − |< x, y >|2

‖y‖2 .

So, the thesis follows immediately.

Lemma 4.1.4. The function ‖·‖ : V→ R defined in 4.1.2 is actually a norm.

Proof. The only non-obvious property is the triangular inequality: as a matter of fact,
it follows immediately from Cauchy-Schwarz inequality.

Remark 4.1.5. Since any inner product space is a normed vector space, it has the
structure of metric space and topological space.

Remark 4.1.6. Let (V;< ·, · >) be an inner product space. The following identities
holds for all x, y in V:

• parallelogram identity:

‖x+ y‖2 + ‖x− y‖2 = ‖x‖2 + ‖y‖2 ;

• restitution formula for complex spaces:

< x, y >=
1

4

(
‖x+ y‖2 − ‖x− y‖2 + i ‖x+ iy‖2 − i ‖x− iy‖2) ;

• restitution formula for real spaces:

< x, y >=
1

4

(
‖x+ y‖2 − ‖x− y‖2) .

Lemma 4.1.7. Let (V;< ·, · >) be any inner product space; if we consider the normed
space V× V with the product topology, the function < ·, · >: V× V→ F is continuous.

Proof. We claim that the functions + : V× V→ V, − : V× V→ V and ‖·‖ : V→ R
are continuous. As a matter of facts, these statements follow immediately from the
triangular inequality.

Having said that, we notice that the thesis is a consequence of restitution formula
and the fact that the composition of continuous function is a continuous function.
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Chapter 4. Hilbert space

4.1.2 Orthonormal set and Hamel’s basis

Definition 4.1.8 (Orthogonal).
Let (V;< ·, · >) be an inner product space. Let X be a subset in V. We define the
orthogonal of X as the set

X⊥ := {v ∈ V | ∀x ∈ X < x, v >= 0} .

Definition 4.1.9 (Orthonormal set).
Let (V;< ·, · >) be an inner product space. Let F be a set in V such that for all e1, e2

in F , with e1 6= e2 it holds that ‖e1‖ = 1 and < e1, e2 >= 0. We say that F is an
orthonormal set.

If F is an orthonormal set, we say that it is maximal if for all orthonormal set F ′

such that F ⊆ F ′ it holds that F = F ′.
If F is an orthonormal set, we say that it is complete if Span(F ) is dense in V.

Remark 4.1.10. If (V;< ·, · >) is an inner product space and {v1; . . . ; vn} is any finite
set in V on linearly independent vectors, we can use the Gram–Schmidt process to
orthonormalise them.

If we assume Zorn’s lemma, we can easily show the existence of maximal orthonormal
set. If F is any orthonormal set, we define

G := {F ′ | F ⊆ F ′,F ′ is an orthonormal set in V}

partially ordered with the relation of inclusion. We notice that any totally ordered set
H has an upper bound, i.e.

H :=
⋃

K ∈H

K .

Thanks to Zorn’s lemma, we can state that there exists at least a maximal element J .
It’s easy to see that J is a maximal orthonormal set of V.

More precisely, we have shown that any orthonormal set in V can be extended to a
maximal orthonormal set.
Remark 4.1.11. Let (V;< ·, · >) be an inner product space. If F is a complete
orthonormal set, then it is maximal. Let us assume that F is not maximal; as shown
in 4.1.10, there exists a vector x in V \F with the following properties:

• ‖x‖ = 1;

• for all e in F it holds that < x, e >= 0.

Hence, we have that x is in Span(F )⊥. If {vn}n∈N is any sequence in Span(F ), then
for all n in N it holds that < x, vn >= 0. If we join 4.1.7 and the fact that x 6= 0, the
sequence {vn}n∈N cannot converge toward x with respect to the norm of V.

Definition 4.1.12 (Hamel’s basis).
Let V be any vector space; let F be a subset of V. We say that F is an algebraic basis
(or Hamel’s basis) if it holds that

V = Span(F ).

Remark 4.1.13. If we slightly modify the procedure shown in 4.1.10, we can easily prove
that any set of linearly independent vectors can be completed to an algebraic basis of
V.

54



4.2. Hilbert space

4.2 Hilbert space

4.2.1 Definition and main properties

Definition 4.2.1 (Hilbert space).
A Hilbert space H is a real or complex inner product space that is also a complete
metric space with respect to the distance function induced by the inner product.

Example 4.2.2. Let H be any n-dimensional real (complex) Hilbert space; there exists
an isometry ψ between V and Rn (or Cn). Let us denote {v1; . . . ; vn} an orthonormal
basis of H and {e1; . . . ; en} the canonical basis of Rn (or Cn); if i is any integer in
{1; . . . ;n}, we can define ψ(vi) = ei.

Example 4.2.3. Let (E; E ;µ) be a measurable space with a measure µ. We claim that
(L2(E); ‖·‖L2(E)) is an Hilbert space. We have already shown that it is complete. We
notice that the function < ·, · >: L2(E)× L2(E)→ R such that

< f, g >:=

∫
E
f(x)g(x)dµ(x)

is well defined and it is the inner product that induces the L2 norm. As for L2
C(E), we

notice that the function < ·, · >: L2
C(E)× L2

C(E)→ C such that

< f, g >:=

∫
E
f(x)g(x)dµ(x)

is well defined and it is the inner product that induces the L2 norm.
In particular, `2 is an Hilbert space with the inner product < ·, · >: `2 × `2 → R

such that for all x := {xn}n∈N, y := {yn}n∈N in `2 it holds that

< x, y >:=
∑
n∈N

xnyn.

As for `2
C the function < ·, · >: `2

C× `2
C → C such that for all x := {xn}n∈N, y := {yn}n∈N

in `2 it holds that
< x, y >:=

∑
n∈N

xnyn

is the inner product that induces the `2
C norm.

4.2.2 Hilbert’s basis theorem

Lemma 4.2.4. Let H be an Hilbert space. Let F be any countable orthonormal set in
H, namely

F := {en | n ∈ N}.

Let {αn}n∈N be any sequence in C. For all n in N, we define

Sn :=
n∑
i=1

αiei,

S̃n :=
n∑
i=1

|αi|2 .
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Chapter 4. Hilbert space

Then {Sn}n∈N converges toward x0 with respect to the norm of H if and only if {S̃n}n∈N
converges in R. If we denote

x0 :=
∑
n∈N

αnen,

the following conclusions hold true:

• if i is any natural number, then < x0, ei >= αi;

• ‖x0‖2 =
∑
n∈N

|αi|2.

Proof. Since F is an orthonormal set, we notice that for all n,m in N (n > m) it holds
that

‖Sn − Sm‖2 =

∥∥∥∥∥
n∑

i=m+1

αiei

∥∥∥∥∥
2

=
n∑

i=m+1

|α1|2 =
∣∣∣S̃n − S̃m∣∣∣ .

We have that there exists x0 in H such that {Sn}n∈N converges toward x0 with respect
to the norm of H if and only if {Sn}n∈N is a Cauchy sequence with respect to the norm
of H. Hence, {Sn}n∈N is a Cauchy sequence if and only if {S̃n}n∈N is a Cauchy sequence,
that is equivalent to assume that it is convergent.

As for the second part of the statement, since the inner product is a continuous
function (see 4.1.7), if i is any integer, we can state that

< x0, ei >= lim
n→+∞

<
n∑
j=1

αjej, ei >= αi.

Thanks to the continuity of the norm, we can state that

‖x0‖2 = lim
n→+∞

‖Sn‖2 = lim
n→+∞

n∑
i=1

|αi|2 =
∑
n∈N

|αn|2 .

Theorem 4.2.5 (Hilbert’s basis theorem).
Let H be an Hilbert space; let F be countable orthonormal set in H, namely

F := {en | n ∈ N}.

Let x be any vector in H; for all n in N we define

xn :=< x, en >,

Sn(x) :=
n∑
i=1

xiei.

Then, the following conclusions hold true:

•
∑
n∈N

|xn|2 ≤ ‖x‖2, also known as Bessel’s inequality;

• there exists x0 in H such the sequence {Sn(x)}n∈N converges toward x0 with respect
to the norm of H;
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• ‖x0‖2 =
∑
n∈N

|xn|2 ≤ ‖x‖2;

• x− x0 is in Span(F )⊥;

• if F is a maximal orthonormal set, then x equals x0. In particular, it holds that

x =
∑
n∈N

< x, en > en,

‖x‖2 =
∑
n∈N

|< x, en >|2 .

Proof. Step 1: Let x be any vector in H. For all n in N there exists yn in H such that

x = yn +
n∑
i=1

xiei.

We notice that if j is any natural number lower than or equal to n it holds that

< yn, ej >=< x−
n∑
i=1

xiei, ej >= 0.

Hence, we can state that

‖x‖2 =
n∑
i=1

|xi|2 + ‖yn‖2 ≥
n∑
i=1

|xi|2 .

Therefore, the Bessel’s inequality follows taking the supremum in n.
Step 2: As for the second, the third and the fourth statement, they follow immedi-

ately from lemma 4.2.4. Hence, let us denote

x0 :=
∑
n∈N

xnen.

Step 3: If F is maximal, we claim that Span(F ) = {0}. If there exists v in
Span(F ) \ {0}, then we can extend F to an orthonormal set

F ′ := F ∪
{

v

‖v‖

}
;

this is against the fact that F is maximal. Therefore, we can state that x− x0 equals
0.

Remark 4.2.6. Let H be an Hilbert space with a countable orthonormal maximal set
F . The following statements are immediate consequences of the theorem 4.2.5:

• F is complete if and only if F is maximal;

• H is separable. If H is a real space, it’s easy to see that

SpanQ(F ) := {v ∈ Span(F) | ∀i ∈ N < v, ei >∈ Q}

is a dense countable set. If H is a complex space, it is enough to define

SpanQ(F ) := {v ∈ Span(F) | ∀i ∈ N < < v, ei >∈ Q, = < v, ei >∈ Q}.
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• For all x in H, we define T (x) = {< x, en >}n∈N and we notice that T (x) is in
`2. In other words, the map T : H→ `2 is linear and well defined; we also know
that T is injective and surjective. It is an isometry between H and `2. Thanks to
restitution formula, it preserves the inner product; more precisely, if H is a real
space, for all x, y in H the following identity (also know as Parseval’s identity)
holds true:

< x, y >H =
1

4

(
‖x+ y‖2

H − ‖x− y‖
2
H
)

=
1

4

(
‖T (x+ y)‖2

`2 − ‖T (x− y)‖2
`2

)
=< T (x), T (y) >`2

=
∑
n∈N

< x, en >H · < y, en >H .

If H is complex space, the proof can be easily adapted;

• Span(F ) is an Hilbert’s basis that is not an Hamel’s basis. Thanks to lemma
4.2.4, we can state that ∑

n∈N

1

2n
en

is a well defined vector in H \ Span(F ).

Remark 4.2.7. As a matter of facts, if (V;< ·, · >) is an inner product space and F is
a non-countable infinite complete set, then H cannot be a separable space. We notice
that if x, y are different point in F , then it holds that ‖x− y‖ =

√
2. If D is any dense

subset, thanks to choice axiom, there exists a function ψ : F → D such that for all x in
F it holds that ‖ψ(x)− x‖ ≤ 1

2
; this is enough to state that the function ψ is injective.

So, D is a non-countable infinite set.
In deed, F (countable or non-countable) is an example of closed and bounded set

that is non-compact. In fact, we have shown that it is not totally bounded.

4.2.3 A step toward duality

Lemma 4.2.8. Let (X; d) be a separable metric space; let Y a subspace in X. Then, Y
is separable.

Proof. Let D be a countable dense subset in X. If we denote

D := {qn | n ∈ N} ,

F :=

{
B
(
qn;

1

m

) ∣∣∣∣ n,m ∈ N
}
,

we notice that F is countable basis for the topology. We say that (n,m) in N2 are in
I if B

(
qn; 1

m

)
∩ Y 6= ∅. For all (n,m) in I , we choose pn;m in B

(
qn; 1

m

)
∩ Y 6= ∅. If

we define
G := {pn;m | (n;m) ∈ I } ,

we claim that G is a countable dense subset in Y with respect to the subspace topology.
Let A be any non-empty open set in Y . By definition of subspace topology, there exists
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an open set V in X such that A = V ∩ Y . Since there exists a subset J in N2 such
that

V =
⋃

(n;m)∈J

B
(
qn;

1

m

)
,

we can state that there exists (n0;m0) in J such that

B
(
qn0 ;

1

m0

)
∩ Y 6= ∅;

hence, pn0;m0 is in D ∩ A.

Theorem 4.2.9 (Projection on a closed vector subspace).
Let H be a separable Hilbert space; let Y be a closed vector subspace in H. If x is any
vector in H, there exist π(x) in Y and ξ(x) in Y ⊥ such that

x = π(x) + ξ(x).

π(x) and ξ(x) are uniquely determined. We will write

H = Y ⊕ Y ⊥.

Moreover, π(x) is the unique point in Y that minimizes the function dx : Y → R such
that for all y in Y it holds that dx(y) = ‖x− y‖2.

Proof. Step 1: Thanks to lemma 4.2.8, Y is a separable metric space. Since Y is
closed, it inherits from H the structure of Hilbert space. If we join 4.2.7 and theorem
4.2.5, we can state that there exists F countable Hilbert’s basis of Y . If we denote

F := {en | n ∈ N},

theorem 4.2.5 implies that there exists π(x) in Y such that

π(x) :=
∑
n∈N

< x, en > en.

Moreover, x − π(x) is in Span(F )⊥. Thanks to 4.1.7, we immediately notice that
x− π(x) is in Span(F )

⊥
that equals Y ⊥. So, we can define ξ(x) := x− π(x).

Step 2: If there exist y in Y and z in Y ⊥ such that x = y + z, we immediately
notice that y−π(x) = ξ(x)− z is a vector in Y ∩Y ⊥; hence, it equals 0. In other words,
the decomposition of x is unique.

Step 3: If y is any point in Y we notice that x− π(x) and π(x)− y are orthogonal.
Hence, the following inequalities hold true:

dx(y) = ‖x− y‖2

= ‖x− π(x) + π(x)− y‖2

= ‖x− π(x)‖2 + ‖π(x)− y‖2

≥ ‖x− π(x)‖2

= dx(π(x)).

More precisely, the the identity dx(y) = dx(π(x)) holds if and only if y = π(x).
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Remark 4.2.10. In theorem 4.2.9 it is necessary to assume that Y is a closed subspace.
If F is an Hilbert’s basis in H, we have shown in 4.2.6 that Span(F ) 6= H; thanks to
4.1.7, we can state that

Span(F )⊥ = Span(F )
⊥

= H⊥ = {0}.

Theorem 4.2.11 (Riesz’s representation theorem).
Let H be a separable Hilbert space. Let λ : H→ F a continuous linear functional. There
exists a unique yλ in H such that for all x in H it holds that

λ(x) =< x, yλ > .

Proof. Since λ is continuous, we notice that Ker(λ) is a closed vector subspace of H.
Thanks to theorem 4.2.9, we have the following decomposition:

H = Ker(λ)⊕Ker(λ)⊥.

If λ(x) = 0 for all x in H, we can define yλ = 0. Otherwise, it is true that Ker(λ) 6= H.
We claim that Ker(λ)⊥ is a 1-dimensional vector space; otherwise there exists a 2-
dimensional subspace X such that for all x in X it holds that λ(x) 6= 0. Let x0 be any
point in Ker(λ)⊥ such that x0 6= 0. We define

yλ :=
λ(x0)

‖x0‖2x0.

If x is any vector in Ker(λ), we have that

< x, yλ >= 0 = λ(x).

If x is a vector in Ker(λ), there exists α in F such that x = αx0. So, the following
identities hold true:

< x, yλ >=< αx0,
λ(x0)

‖x0‖2x0 >= α
λ(x0)

‖x0‖2 < x0, x0 >= αλ(x0) = λ(αx0) = λ(x).

Since λ is linear, we have that for all x in H it holds that

λ(x) =< x, yλ > .

As for the uniqueness, if there exists y1, y2 in H such that for all x in H it holds that

< x, y1 >= λ(x) =< x, y2 >,

then y1 − y2 is in H⊥, that is equivalent to y1 − y2 = 0.

Remark 4.2.12. If (V;< ·, · >) is a infinite dimensional inner product space, there exists
a linear, non continuous functional. Let F be a countable orthonormal set, namely

F := {en | n ∈ N}.

As shown in 4.1.13, we can extend F to an Hamel’s basis G . For all n in N, we define

λ(en) := 2n;
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for all e in G \F , we define
λ(e) := 0.

Since G is an Hamel’s basis, we can extend λ to a linear functional over H. We notice
that it is non-continuous: we notice that

{
en
2n

}
n∈N converges toward 0 with respect to

the distance in H, but for all n in N it holds that

λ
(en

2n

)
= 1.

Remark 4.2.13. Thanks to 4.1.7, we notice that if λ is a non-continuous functional, it
cannot be represented by the inner product as in theorem 4.2.11.

Remark 4.2.14. In theorem 4.2.11, it is necessary that H is an Hilbert space. Otherwise,
we can consider in `2 the vector subspace

X :=
{
{xn}n∈N ∈ `2 | xn = 0 definitively

}
and the functional λ : `2 → F such that if x = {xn}n∈N il in `2, then

λ(x) :=
∑
n∈N

xn
2n
.

If we denote y := {2−n}, we notice that for all x in `2 it holds that λ(x) =< x, y >; so,
λ is continuous. By restriction, λ defines a continuous functional λ|X over X; obviously,
λ|X cannot by represented by a vector in X.

61



Chapter 5

Fourier series

5.1 Complex Fourier series

5.1.1 Definition and main properties

Definition 5.1.1 (Fourier coefficient).
Let f be any function in L2

C((−π; π)). Let n be any integer. We define the n-Fourier
coefficient as follows:

cn(f) :=
1

2π

∫ π

−π
f(x)e−inxdx.

Remark 5.1.2. Since f is in L2
C((−π;π)), it’s immediate to see that definition 5.1.1 is

well posed.

Definition 5.1.3 (Fourier partial sum).
Let f be any function in L2

C((−π; π)); for any integer i we define ci(f) as in 5.1.1. For
all n in N we define the n-Fourier partial sum Sn(f) : [−π; π]→ C such that

Snf(x) :=
n∑

j=−n

cj(f)eijx.

Theorem 5.1.4. Let n be any integer: we define en : [−π; π]→ C such that

en(x) :=
einx√

2π
.

If we denote
F := {en | n ∈ Z} ,

then F is an Hilbert’s basis of L2
C((−π; π)).

Proof. Step 1: Let n be any integer. We notice that

< en, en >=
1

2π

∫ π

−π
einxe−inxdx = 1.

Let n,m be different integers; since the function en−m is 2π
|n−m| -periodic, it holds that

< en, em >=
1

2π

∫ π

−π
eix(n−m)dx = 0.
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This is enough to state that F is an orthonormal set in L2
C((−π; π)).

Step 2: We claim that F is complete. Let x, y be any points in [−π; π]. We say
that x, y are equivalent if and only if x = y or x, y are in {−π; π}. We will write x ∼ y.
Let us denote as K := [−π; π]/∼ the quotient space where −π and π have been identified.
We also denote i : [−π;π]→ K the identification. It’s easy to see that K is a compact
Hausdorff space.

Since en(−π) = en(π) for all integer n, we notice that the identification induces a
set F̃ of continuous functions between K and C, namely

F̃ := {ẽn | n ∈ Z} .

We claim that Span(F̃ ) is a set of complex-valued continuous functions over K with
the following properties:

• it is an algebra: let n,m be any integers; it’s easy to see that ẽn · ẽm = ẽn+m;

• it is closed under complex conjugation: if n is any integer, it’s easy to see that
ẽn = ẽ−n;

• it separates point: if x, y are different points in K, it holds that ẽ1(x) 6= ẽ1(y) (we
notice that this is the reason why we introduce the quotient space K);

• since ẽ0(x) = 1 for all x in K, the constant functions are in Span(F̃ ).

Step 3: We can apply Stone-Weierstrass theorem (see 5.3.7) and we can state that
Span(F̃ ) is dense in the set of the continuous function between K and C with respect
to the norm of the uniform convergence. We define X as the set of the continuous
functions between [−π; π] and C that coincide in −π and π. We notice that a function
f belongs to X if and only if there exists a continuous function f̃ between K and C
such that f = f̃ ◦ i. Then, it’s easy to see that Span(F ) is dense X with respect to the
norm of the uniform convergence.

Since [−π; π] is a finite measure space, we have that Span(F ) is dense in X with
respect to L2 norm. Since X is dense in C(K;C) with respect to L2 norm and C(K;C)
is dense in L2

C((−π; π)) with respect to L2 norm, then Span(F ) is dense in L2
C((−π; π))

with respect to L2 norm.

Corollary 5.1.5. Let f be in L2
C((−π; π)). For all integer n we define cn(f) as in

5.1.1; for all n in N we define Snf as in 5.1.3. Then, the following conclusions hold
true:

• {Snf}n∈N converges toward f with respect to L2 norm;

• 2π
∑
n∈Z

|cn(f)|2 = ‖f‖2
L2((−π;π)) ;

• if g is in L2
C((−π; π)), then it holds that

< f, g >=

∫ π

−π
f(x)g(x)dx = 2π

∑
n∈Z

cn(f)cn(g).

Proof. Let F be as in theorem 5.1.4; we notice that if n is any integer, then it holds
that

cn(f) =
1√
2π

< f, en > .

Then, the thesis in an immediate consequence of theorems 4.2.5 and 5.1.4.
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Remark 5.1.6. We remark that if f in any function in L2
C((−π; π)), then {Snf}n∈N

converges toward f with respect to the L2 norm; so, there exists a subsequence that
converges pointwise toward f for almost every x in (−π; π). This is not enough to state
that the whole sequence {Snf}n∈N converges pointwise toward f for almost every x in
(−π; π). As a matter of fact, this is a consequence of a theorem proved by the Swedish
mathematician L. Carleson in 1966. However, the pointwise convergence of a specific
subsequence is enough to characterize some punctual properties of the functions with
other relations among the Fourier coefficient.

Proposition 5.1.7. Let f be any function in L2
C((−π; π)). Let us define the Fourier

coefficient {cn(f)}n∈Z as 5.1.1. Then f is a real-valued function if and only if for all
integer n it holds that c−n(f) = cn(f).

Proof. Let f be a real-valued function; let n be any integer; we have that

cn(f) =
1

2π

∫ π

−π
f(x)e−inxdx

=
1

2π

∫ π

−π
f(x)e−inxdx

=
1

2π

∫ π

−π
f(x)einxdx = c−n(f).

Let us assume that f is such that for all integer n it holds that c−n(f) = cn(f). We
notice that c0(f) is a real number. Let N be any positive integer; if we define the
Fourier partial sum as in 5.1.3, we obtain that

SNf(x) =
N∑

n=−N

cn(f)einx

= c0(f) +
N∑
n=1

[
cn(f)einx + c−n(f)e−inx

]
= c0(f) +

N∑
n=1

[
cn(f)einx + cn(f)einx

]
= c0(f) + 2

N∑
n=1

<{cn(f)einx}.

Let us denote {SNkf}k∈N the subsequence that converges toward f for almost every x
in [−π; π] Since {SNkf}k∈N is a real-valued sequence of functions that converges toward
f for almost every x in [−π; π] and R is a closed set in C, then f coincides almost
everywhere with a real-valued function.

Remark 5.1.8. We notice that if f is in L1
C((−π; π)) the definition of the Fourier

coefficients (see 5.1.1) make sense. So, if CZ denotes the collection of the complex-
valued sequences {an}n∈Z, we can well define the function Θ : L1

C((−π;π))→ RZ such
that

Θ(f) := {cn(f)}n∈Z.
First of all, we notice that for all f in L1

C((−π; π)), the sequence cn(f) is infinitesimal.
In fact, this is a consequence of Riemann-Lebesgue’ lemma (see 6.1.3), assuming that
f(x) is equal to 0 if x is not in (−π; π).
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We claim that Θ is injective. Since Θ is obviously linear, it is enough to show that
cn(f) = 0 for all n in Z implies that f(x) = 0 for almost every x in (−π; π). We notice
that if f belongs to L2

C((−π; π)) this statement has already been proved in 5.1.5. So,
let f be a function in L1

C((−π; π)) such that for all n in Z it holds

cn(f) =
1

2π

∫ π

−π
f(x)e−inxdx = 0.

For all n in Z, we define the function en : [−π; π]→ C as in 5.1.4, i. e.

en(x) :=
1√
2π
einx;

we also define
F := {en | n ∈ Z}.

So, if g is Span(F ), we have that ∫ π

−π
f(x)g(x) = 0.

Let us define Cper([−π; π]) the collection of the continuous functions that coincides
in −π and π. We have shown in theorem 5.1.4 that F is dense in Cper([−π; π]) with
respect to the uniform convergence. So, if g is any function in Cper([−π; π]), there exists
a sequence of function {gn}n∈N that converges toward g uniformly in [−π; π]. So, there
exists a real number M such that |gn(x)| ≤ M for all n in N for all x in [−π; π]. We
claim that

lim
n→+∞

∫ π

−π
f(x)gn(x)dx =

∫ π

−π
f(x)g(x)dx.

In fact, the {fgn}n∈N converges pointwise toward gf for almost every x in (−π; π) and
M |f | is a suitable domination in L1. So, we can easily use the dominated convergence
theorem. In particular, we have that for all g in Cper([−π; π]) it holds that∫ π

−π
f(x)g(x)dx = 0.

Let h be any real-valued function in L∞((−π; π)). There exists a sequence of real-valued
functions {hn}n∈N in Cper([−π; π]) that converges toward h with respect to L2 norm. So,
up to subsequences, not relabelled, the convergence is pointwise for almost every x in
(−π; π). We define T‖h‖L∞ as the truncation between −‖h‖L∞((−π;π)) and ‖h‖L∞((−π;π)),
i. e.

T‖h‖L∞ (x) :=


‖h‖L∞((−π;π)) if x ≥ ‖h‖L∞((−π;π)) ;

x if x ∈
[
−‖h‖L∞((−π;π)) ; ‖h‖L∞((−π;π))

]
;

−‖h‖L∞((−π;π)) if x ≤ −‖h‖L∞((−π;π)) .

Since T is a 1-Lipschitz function, we have that
{
T‖h‖L∞ ◦ hn

}
n∈N is a sequence of

continuous equibounded function in Cper([−π; π]) that converges pointwise for almost
every x in (−π; π) toward h. Thanks to the dominated convergence theorem, the
sequence converges with respect to L1 norm toward h. Hence, we have that∫ π

−π
f(x)h(x)dx = lim

n→+∞

∫ π

−π
f(x)hn(x)dx = 0.
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In particular, we can take h(x) = sgn(f(x)). So, we can conclude that

0 =

∫ π

−π
f(x)sgn(f(x))dx =

∫ π

−π
|f(x)| dx;

in other words, f(x) is equal to 0 for almost every x in (−π; π).

5.1.2 On the convergence of the Fourier series

Let f be any function in L2
C((−π; π)); we have already shown that the Fourier series

converges toward f with respect to L2 norm. The aim of this section is to tie up the
regularity of f and convergence of the Fourier series. We will find reasonable hypothesis
on f under which the Fourier series converges toward f punctually or uniformly. We
will show that the rapid convergence of the Fourier series force f to be regular. We
will also investigate the link between the decay of Fourier coefficients and the speed of
convergence of the Fourier series.

Ck functions vs convergence of the Fourier series

Definition 5.1.9. Let k be any positive integer. We define Xk
per as the space of functions

with the following properties:
• f is in Ck−1([−π; π];C);

• there exists a partition of [−π; π], namely

−π := x0 < x1 < · · · < xj < xj+1 := π

such that if i is any integer in {0; . . . ; j}, then f∣∣[xi;xi+1]
is in ∈ Ck([xi;xi+1];C);

• for all i in {0; . . . ; k − 1} it holds that f i(π) = f i(−π).
Lemma 5.1.10. Let k be any positive integer; if f is any function in Xk

per and ϕ is
any 2π-periodic smooth function, it holds that∫ π

−π

[
dkf

dxk
(x)

]
ϕ(x)dx = (−1)k

∫ π

−π
f(x)

[
dkϕ

dxk
(x)

]
dx.

Proof. The statement can be easily proved by induction on k. Let us assume that k
equals 1; let us denote

−π := x0 < x1 < · · · < xj < xj+1 := π

the partition as declared in definition 5.1.9. Let ϕ any 2π-periodic smooth function.
Since f is a piecewise C1 function and it is globally continuous, we can integrate by
parts and delete the boundary terms. So, we obtain that∫ π

−π
f ′(x)ϕ(x)dx =

j∑
i=0

∫ xi+1

xi

f ′(x)ϕ(x)dx

=

j∑
i=0

[
f(xi+1)ϕ(xi+1)− f(xi)ϕ(xi)−

∫ xi+1

xi

f(x)ϕ′(x)dx

]
= f(π)ϕ(π)− f(−π)ϕ(−π)−

∫ π

−π
f(x)ϕ′(x)dx

= −
∫ π

−π
f(x)ϕ′(x)dx.
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The inductive step is completely similar to the basis.

Theorem 5.1.11. Let k be any positive integer; let f be a function in Xk
per. For all n

in Z, let cn(f) be as in definition 5.1.1. Then, the following conclusions hold true:

•
∑
n∈Z

n2k |cn(f)|2 < +∞; in particular cn(f) is o
(

1

|n|k

)
;

• if α is any real number such that α < k − 1
2
, then it holds that∑

k∈Z

|n|α |cn(f)| < +∞;

• for all integer j in {0; . . . ; k − 1} it holds that{
djSnf

dxj

}
n∈N

converges toward djf
dxj

totally in [−π; π] and for all x in [−π; π] we have that

djf

dxj
(x) =

∑
n∈Z

(in)jcn(f)einx.

Proof. Step 1: First of all, we notice that dkf
dxk

is in L2
C((−π; π)). Thanks to lemma

5.1.10, for all n in N it holds that

cn

(
dkf

dxk

)
=

1

2π

∫ π

−π

[
dkf

dxk
(x)

]
e−inxdx

=
(−1)k

2π

∫ π

−π
f(x)(−in)ke−inxdx

= (in)kcn(f).

If apply the Parseval’s identity (see 5.1.5) to dkf
dxk

, we obtain that∥∥∥∥dkfdxk
∥∥∥∥
L2((−π;π))

= 2π
∑
n∈Z

n2k |cn(f)|2 .

Step 2: Let α be a positive real number such that α < k − 1
2
. We can apply the

Cauchy-Schwartz’ inequality in `2 (see 4.2.3 and 4.1.3) and we obtain that∑
n∈Z

|n|α |cnf | =
∑
n∈Z

|n|k |cnf |
1

|n|k−α

≤

(∑
n∈Z

|n|2k |cnf |2
)(∑

n∈Z

1

|n|2k−2α

)
< +∞,

thanks to the previous step and our assumption on α.
Step 3: If we join step 1 and step 2, we have that for all integer j in {0; . . . ; k − 1}

it holds that ∑
n∈Z

sup
[−π;π]

{
cn

(
djf

dxj

)
einx
}

=
∑
n∈Z

|n|j |cn(f)| < +∞.
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In other words, we have shown the total convergence in [−π; π] of the series{
djSnf

dxj

}
n∈N

.

Hence, for all x in [−π; π], we obtain that

djf

dxj
(x) =

∑
n∈Z

cn

(
djf

dxj

)
einx =

∑
n∈Z

(in)jcn(f)einx.

Remark 5.1.12. If f is any function in C1([−π; π]) such that f(π) 6= f(−π), it cannot
be that ∑

n∈Z

|cn(f)| < +∞.

Otherwise, the Fourier series would converge punctually in −π and π; in particular, it
should be f(−π) = f(π).

Theorem 5.1.13. Let f be a function in L2
C((−π; π)). Let us define the Fourier

coefficient as in 5.1.1. Let k be any integer greater than or equal to 0. Let us assume
that one of the following alternatives holds true:

• there exists α > k + 1 such that cn(f) is O
(

1
|n|α

)
;

• there exists β > k + 1
2
such that∑

n∈Z

|n|2β |cn(f)|2 < +∞.

Then f is in Ck([−π; π]) and for all j in {0; . . . ; k} it holds that

djf

dxj
(−π) =

djf

dxj
(π).

Proof. Let us assume that the first condition holds true; then, there exists a positive
real number M such that for all integer n we have that

|cn(f)| ≤ M

|n|α
.

If α > k − 1, we can state that∑
n∈Z

|n|k |cn(f)| ≤M
∑
n∈Z

1

|n|α−k
< +∞.

As a matter of facts, we have already shown in theorem 5.1.11 (see step 2) that the
second condition implies that ∑

n∈Z

|n|k |cn(f)| < +∞.
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However, for all integer j in {0; . . . ; k} it holds that

∑
n∈Z

sup
[−π;π]

{∣∣∣∣cn(f)
dj

dxj
einx
∣∣∣∣} =

∑
n∈Z

sup
[−π;π]

∣∣cn(f)(in)jeinx
∣∣ =

∑
n∈Z

|cn(f)| |n|j < +∞.

In other words, if we define en as in 5.1.4, for all integer j in {0; . . . ; k} we have shown
the total convergence in [−π; π] of the series

∑
n∈Z

cn(f)
djen
dxj

.

In particular, we have that the Fourier series converges uniformly toward f . If we derive
the series, for all integer j in {1; . . . ; k} we can state that f is a function in Cj([−π; π])
and for all x in [−π; π] it holds that

djf

dxj
(x) =

dj

(∑
n∈Z

cn(f)en

)
dxj

(x)

=
∑
n∈Z

cn(f)
djen
dxj

(x)

=
∑
n∈Z

cn(f)(in)jeinx.

Since the series converges totally, we obtain that

djf

dxj
(−π) =

djf

dxj
(π).

Remark 5.1.14. If we join theorem 5.1.11 and theorem 5.1.13, we immediately obtain
that f is in C∞per([−π; π]) if and only if cn(f) is o

(
1
|n|α

)
for all α greater than 0.

Example 5.1.15. Let us consider the function f in L2((−π; π)) such that f(x) := x2.
Integrating twice by parts, we can easily compute the Fourier coefficients and we obtain
that

cn(f) =


2(−1)n

n2
if n 6= 0;

π2

3
if n = 0.

Since f is in X0
per, we can apply theorem 5.1.11 and the following identities hold true:

π2 =
∑
n∈Z

cn(f)einπ =
π2

3
+ 2

+∞∑
n=1

2

n2
.

If we rearrange terms, we obtain the very well know identity

+∞∑
n=1

1

n2
=
π2

6
.

69



Chapter 5. Fourier series

Hölder’s function vs convergence of the Fourier series

Proposition 5.1.16. Let α be a real number in (0; 1); let f be a function in C0;α([−π; π])
such that f(−π) = f(π). If β is any real number such that β > α− 1

2
, then it holds that∑

n∈Z

|n|β |cn(f)| < +∞.

If α is greater that or equal to 1
2
, the Fourier series converges toward f totally in [−π; π].

Proof. Since f(−π) = f(π), we can extend f to a 2π-periodic function in C0;α(R) with
constant cf ; we will denote the extension as f .

Step 1: Let γ be any real number. We define

I(γ) :=

∫ 1

0

1

h2γ

(∫ π

−π
|f(x+ h)− f(x)|2 dx

)
dh.

We claim that if γ < α+ 1
2
, then I(γ) is a real number. Since 2γ − 2α < 1 we obtain

that

I(γ) =

∫ 1

0

1

h2γ

(∫ π

−π
|f(x+ h)− f(x)|2 dx

)
dh

≤ cf

∫ 1

0

1

h2γ

(∫ π

−π
|h|2α dx

)
dh

= 2πcf

∫ 1

0

1

h2γ−2α
dh < +∞.

Step 2: Let h be any real number; let τhf be as in definition 1.0.1; we claim that
for all n in Z it holds that

cn(τhf) = einhcn(f).

If we recall that f has been extended to a 2π-periodic function, we have that

cn(τhf) =
1

2π

∫ π

−π
f(x+ h)e−inxdx

=
einh

2π

∫ π

−π
f(x+ h)e−in(x+h)dx

=
einh

2π

∫ π+h

−π+h

f(x+ h)e−in(x+h)dx

=
einh

2π

∫ π

−π
f(x)e−inxdx = einhcn(f).

Step 3: Let h be any real number. We define gh : [−π; π]→ C such that

gh(x) := f(x+ h)− f(x).

We claim that ∫ π

.π

|gh(x)|2 dx = 2π
∑
n∈Z

∣∣einh − 1
∣∣2 |cn(f)|2 .

Since gh is in L2
C((−π; π)), for all n in Z it holds that

cn(gh) = cn(τhf)− cn(f) = (einh − 1)cn(f).
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We can apply the Parseval’s identity to gh (see 5.1.5) and we obtain that

‖gh‖2
L2((−π;π)) =

∑
n∈Z

∣∣einh − 1
∣∣2 |cn(f)|2 .

Step 4: For all integer n we define

α(γ;n) := 2π

∫ 1

0

∣∣einh − 1
∣∣2

h2γ
dh.

Since α in (0; 1), γ is lower than 3
2
; hence, it’s immediate to see that the sequence

{α(γ;n)}n∈Z is well defined. Since we have shown in step 3 the total convergence of the
series ∑

n∈Z

∣∣einh − 1
∣∣2 |cn(f)|2 ,

we can switch the series and the integral and we obtain that

I(γ) =

∫ 1

0

1

h2γ

(∫ π

−π
|f(x+ h)− f(x)|2 dx

)
dh

=

∫ 1

0

(
1

h2γ
2π
∑
n∈Z

∣∣einh − 1
∣∣2 |cn(f)|2

)
dh

= 2π
∑
n∈Z

|cn(f)|2
(∫ 1

0

1

h2γ

∣∣einh − 1
∣∣2 dh)

=
∑
n∈Z

α(γ;n) |cn(f)|2 .

Step 5: We claim that there exists a positive real number α(γ), such that for all n
in Z \ {0} it holds that

α(γ;n) ≥ α(γ) |n|2γ−1 .

Let n be any integer such that n 6= 0; if we denote t := nh, then dt = ndh; hence, the
following identities hold true:

α(γ;n) = 2π

∫ 1

0

∣∣einh − 1
∣∣2

h2γ
dh

= 2π

∫ n

0

|eit − 1|2

t2γ
|n|2γ−1 dt

≥ |n|2γ−1 2π

∫ 1

0

|eit − 1|2

t2γ
dt.

So, it is enough to define

α(γ) :=

∫ 1

0

|eit − 1|2

t2γ
dt.

Step 6: If γ < α + 1
2
we join step 1, step 4 and step 5, we obtain that

α(γ)
∑
n∈Z

|n|2γ−1 |cn(f)|2 ≤
∑
n∈Z

α(γ, n) |cn(f)|2 = I(γ) < +∞.
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In particular, we have that ∑
n∈Z

|n|2γ−1 |cn(f)|2 < +∞. (5.1)

Let β be any real number such that β < α− 1
2
. Let ε be a positive real number such

that β + ε
2
< α− 1

2
. If we apply Cauchy-Schwartz inequality in `2 (see 4.1.3 and 4.2.3),

we obtain that∑
n∈Z

|n|β |cn(f)| =
∑
n∈Z

|n|β−α+ ε
2 |cn(f)| |n|α−

ε
2

≤

(∑
n∈Z

|n|2β−2α+ε

) 1
2
(∑
n∈Z

|n|2α−ε |cn(f)|2
) 1

2

.

We notice that 2β − 2α + ε < −1; moreover, if we define γ0 := α + 1
2
− ε

2
, we have that

γ0 < α + 1
2
and 2α− ε = 2γ0 − 1. This is enough to state that the series at right hand

side are both convergent. To conclude, it’s easy to see that if α is grater than 1
2
, we can

choose β = 0 and it holds that ∑
n∈Z

|cn(f)| < +∞;

so, the Fourier series converges totally toward f .

Definition 5.1.17 (Convolution for 2π-periodic functions). .
Let f, ϕ be any functions in L2

C((−π; π)). We denote as f and ϕ their extensions
by periodicity over R. We define the convolution between f and ϕ as the function
f ∗2π ϕ : [−π; π]→ C such that

f ∗2π ϕ(x) :=

∫ π

−π
f(t)ϕ(x− t)dt.

Definition 5.1.18 (Dirichlet kernel).
Let N be any positive integer. We define the function DN : [−π; π]→ C such that

DN(t) :=
N∑

n=−N

eint.

The sequence of functions {DN}N∈N is called Dirichlet kernel.

Remark 5.1.19. Since DN is the finite sum of complex exponentials for all N in N, we
can state that the Dirichlet kernel is a sequence of analytic functions. Moreover, it’s
easy to see that for all positive integer N it holds that∫ π

−π
DN(t)dt = 2π.
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Remark 5.1.20. Let N be any positive integer; let t be any point in (−π; π). The
following identities hold true:

DN(t) =
N∑

n=−N

eint =
N∑

n=−N

(
eit
)n

=
(
eit
)−N 2N∑

n=0

(
eit
)n

=
(
eit
)−N (eit)

2N+1 − 1

eit − 1
=
eit(N+ 1

2) − e−it(N+ 1
2)

ei
t
2 − e−i t2

=
sin
((
N + 1

2

)
t
)

sin
(
t
2

) .

Remark 5.1.21. Let f be any function in L2
C((−π; π)). Let us define the sequence of

Fourier coefficients {cn(f)}n∈Z as in 5.1.1 and the sequence of the Fourier partial sum
{Snf}n∈N as in 5.1.3. Let N be any natural number; for all x in [−π; π] it holds that

SN(f) =
N∑

n=−N

cn(f)einx

=
N∑

n=−N

einx

2π

(∫ π

−π
f(y)e−inydy

)

=
1

2π

∫ π

−π

(
f(y)

N∑
n=−N

ein(x−y)

)
dy

=
1

2π

∫ π

−π
f(y)DN(x− y)dy

=
1

2π
f ∗2π DN(t).

We notice that if there exists M in R such that ‖DN‖L1((−π;π)) is lower that M for all
positive integer N , then we could use something like proposition 3.2.19; therefore, if f
is any continuous function in L2

C((−π; π)), we could conclude that the Fourier series
converges point-wise toward f for all x in (−π; π). As a matter of facts, there exists
a continuous function f in L2

C((−π; π)) and a subset D dense in [−π; π] such that for
all x in D the Fourier series does not converge pointwise toward f . In fact, it can be
proved that

lim inf
n→+∞

∫ π

−π
|Dn(t)| dt = +∞.

Proposition 5.1.22. Let f be any function in L2
C((−π; π)). Let x0 be any point in

[−π;π]. Let us assume that there exists α in (0; 1] such that f is α-Hölder in x0, i. e.
there exists a positive real number C such that for all x in [π; π] it holds that

|f(x0)− f(x)| ≤ C |x− x0|α .

Let us define the sequence {Snf}n∈N as in 5.1.3. Then, it holds that

lim
n→+∞

Snf(x0) = f(x0).

Proof. We will also denote as f the extension of the function by periodicity over R.
Under our hypothesis, it’s easy to see that for all x in R it holds that

|f(x0)− f(x)| ≤ C |x− x0|α .
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If we join 5.1.19, 5.1.21 and 5.1.20, for all positive integer N the following inequalities
hold true:

|SNf(x0)− f(x0)| = 1

2π

∣∣∣∣∫ π

−π
f(x0 − t)DN(t)dt−

∫ π

−π
f(x0)DN(t)dt

∣∣∣∣
=

1

2π

∣∣∣∣∫ π

−π
(f(x0 − t)− f(x0))DN(t)dt

∣∣∣∣
=

1

2π

∣∣∣∣∣
∫ π

−π
C

(f(x0 − t)− f(x0))

sin
(
t
2

) sin

((
N +

1

2

)
t

)
dt

∣∣∣∣∣
If we define g : R→ R such that

g(t) :=
f(x0 − t)− f(x0)

2π sin
(
t
2

) 1[−π;π](t),

we have shown that for all positive integer N it holds that

|SNf(x0)− f(x0)| ≤
∣∣∣∣∫

R
g(t) sin

((
N +

1

2

)
t

)
dt

∣∣∣∣ .
If we show that g is in L1(R), then we can apply Riemann-Lebesgue’s lemma (see 6.1.3)
to conclude that

lim
N→+∞

∫
R
g(t)ei(N+ 1

2)tdt = 0.

If we consider the imaginary part, the thesis follows immediately. So it is enough to
show that g is in L1(R). It’s easy to see that if t is any point in [0; π] then sin

(
t
2

)
≥ πt.

Since α is in (0; 1], we obtain that

‖g‖L1(R) =

∫ π

−π
|g(t)| dt

=

∫ π

−π

|f(x0 − t)− f(x0)|∣∣sin ( t
2

)∣∣ dt

≤ C

2π

∫ π

0

|t|α

π |t|
dt

=
C

2π2

∫ π

0

1

|t|1−α
dt < +∞.

Proposition 5.1.23. Let f be any function in L2
C((−π; π)). Let us assume that there

exists a partition of [−π; π] i. e.

−π := x0 < x1 < · · · < xk < xk+1 := π

such that for all integer i in {0; . . . ; k} it holds that

• f |[xi;xi+1] is in C1((xi;xi + 1));

• f ′|[xi;xi+1] is in L2
C((xi;xi+1)).
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Let us assume that for all integer i in {0; . . . ; k} there exists l+i such that

f(xi)
+ := lim

x→x+i
f(x)

and for all integer i in {1; . . . ; k + 1} there exists l−i such that

f(xi)
− := lim

x→x−i
f(x).

Let us define the sequence of the Fourier partial sum as in 5.1.3; then, the following
conclusions hold true:

• {Snf}n∈N converges toward f uniformly in any closed interval that does not
intersect {xi | i ∈ {0; . . . ; k + 1}};

• for all i in {1; . . . ; k} it holds that

lim
n→+∞

Snf(xi) =
f(xi)

+ + f(xi)
−

2
;

• lim
n→+∞

Snf(π) =
f(x0)+ + f(xk+1)−

2
.

Proof. Step 1: Without loss of generality, we can assume that

f(xi) =
f(xi)

+ + f(xi)
−

2

for all integer i in {1; . . . ; k} and

f(π) = f(−π) =
f(x0)+ + f(xk+1)−

2
.

Let us define g0 : [0; 2π)→ R such that g0(0) := 0 and g0(x) := π− x for all x in (0; 2π).
So, g0 can be extended in R be periodicity. We also denote as g0 this extension. For
all h in [−π; π) we define gh : R → R such that gh(x) := g0(x − h). Obviously, gh is
a piecewise affine function; moreover, h is the unique discontinuity point in [−π; π).
Moreover, we have that

gh(h)+ := lim
x→h+

gh(x) = π,

gh(h)− := lim
x→h−

gh(x) = −π,

0 = gh(h) =
gh(h)+ + gh(h)−

2
.

Step 2: For all integer i in {1; . . . ; k} we define

di :=
f(xi)

+ − f(xi)
−

2π
,

we also define

d0 :=
f(x0)+ − f(x−k+1)

2π
.
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We denote as fc : [−π; π)→ C the function such that

fc(x) := f(x)−
k∑
i=0

digxi(x).

Thanks to the properties of gh, we have that fc is a piecewise C1 function; it is continuous
and fc(−π) = fc(π). So, if we define the sequence {Snfc}n∈N of the Fourier partial
sum for fc as in 5.1.3, we can use theorem 5.1.11 and we obtain that the {Snfc}n∈N
converges toward fc uniformly in [π; π].

Step 3: We show the theorem assuming that f is equal to g0. We define the
sequence {cn(g0)}n∈N of the Fourier coefficient for g0 as in 5.1.1. It’s easy to compute
that

cn(g0) =

{
0 if n = 0;

− i
n

if n 6= 0.

Moreover, for all n in N for all x in [−π; π] we have the

Sng0(x) =
n∑
j=1

[
cj(g0)eijx + c−j(g0)e−ijx

]
= i

n∑
j=1

1

j

[
e−ijx−e

ijx
]

= 2=

(
n∑
j=1

eijx

)
.

For all n in N we define an(x) := einx; we also define

Bn(x) :=

{
1
n
if n ≥ 1,

1 if n = 0.

An(x) :=
n∑
k=0

eixk =
1− eix(n+1)

1− eix
.

For all positive integer n we denote

bn = Bn −Bn−1 =

{
− 1
n(n−1)

if n ≥ 2,

0 if n = 1.

So, we can use the summation by parts formula and we obtain that

m∑
j=1

eijx =
1

n
An(x)− 1 +

n∑
k=2

1

k(k − 1)
Ak−1(x).

Let ε be any positive real number. Since the sequence of functions {An}n∈N is uniformly
bounded in [ε; 2π − ε], the sequence {Sng0}n∈N converges uniformly toward g0 (as a
matter of facts, we know that g0 is the limit with respect to L2 norm and it is unique).
Moreover, Sn(0) is equal to 0 for all n in N; hence, the theorem is completely proved
assuming that f is equal to g0.

76



5.1. Complex Fourier series

Step 4: Let h be any point in [−π; π); we notice that §ngh(x) = Sng0(x− h) for all
n in N for all x in [−π; π]. So, the theorem is true if f is equal to gh.

In conclusion, we notice that

Smf(x) = Smfc(x) +
k∑
i=0

diSngxi(x)

for all m in N for all x in [−π; π]. So, if we join the second step and the third step, the
conclusion follows immediately.

5.1.3 Application of the complex Fourier series to PDE

Heat equation with periodic boundary conditions

Definition 5.1.24. Let u0 : [−π; π]→ C be any function. Let us consider the following
partial derivative equation

∂u

∂t
(t;x) =

∂2u

∂x2
(t;x) if (t;x) ∈ (0;T )× [−π; π]

u(t; π) = u(t;−π) if t ∈ (0;T )
∂u

∂x
(t; π) =

∂u

∂x
(t;−π) if t ∈ (0;T )

u(0;x) = u0(x) if x ∈ [−π; π]

(5.2)

We say that (5.2) is the heat equation in [−π; π] with periodic boundary conditions.

Definition 5.1.25. Let u0 : [−π; π] → C be any function; let T be any positive real
number. We say that u : [0;T )× [−π; π]→ C is a solution of (5.2) if it has the following
properties:

• u is continuous in [0;T )× [−π; π];

• for all (t;x) in (0;T )× [−π; π], there exists

∂2u

∂x2
(t;x)

and it is continuous in (0;T )× [−π; π];

• for all (t;x) in (0;T )× [−π; π], there exists

∂u

∂t
(t;x)

and it is continuous in (0;T )× [−π; π];

• for all (t;x) in (0;T )× [−π; π] the following identity holds true:

∂2u

∂x2
(t;x) =

∂u

∂t
(t;x);

• for all t in (0;T ) it holds that

u(t; π) = u(t;−π),

∂u

∂x
(t; π) =

∂u

∂x
(t;−π);
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• for all x in [−π; π] it holds that

u(0;x) = u0(x).

We are looking for reasonable hypothesis on u0 to make sure that there exist a time
T in (0; +∞) and a function u : [0;T )× [−π; π]→ C that is a solution of (5.2) in the
sense of definition 5.1.25.

Theorem 5.1.26 (Existence and uniqueness of the solution for heat equation with
periodic boundary conditions).
Let u0 : [−π; π]→ C be any function in L2

C((−π; π)); let us define the Fourier coefficient
{c0
n}n∈Z as in 5.1.1. Let us assume that∑

n∈Z

∣∣c0
n

∣∣ < +∞.

Let u : [0; +∞)× [−π; π]→ C such that

u(t;x) :=
∑
n∈Z

c0
ne
−n2teinx.

Then the following conclusions hold true:

• u is a well defined complex-valued function in [0; +∞)× [−π; π];

• u is in C∞((0; +∞)× [−π; π]);

• u is a solution of (5.2) in the sense of definition 5.1.25;

• if u0 is a real-valued function, then u is a real-valued function;

• if v is a solution of (5.2) in the sense of 5.1.25, then v is equals to u.

Proof. Step 1: We claim that u is well defined and it continuous in [0; +∞)× [−π; π].
We notice that ∑

n∈Z

sup
[0;+∞)×[−π;π]

{∣∣∣c0
ne
−n2teinx

∣∣∣} ≤∑
n∈Z

∣∣c0
n

∣∣ < +∞.

If u0 is a real-valued function, then cn(f) = c−n(f) for all integer n, as shown in 5.1.7.
For all N in N we define SNu : [0; +∞)× [−π; π]→ C such that

SNu(t;x) :=
N∑

n=−N

c0
ne
−n2teinx.

We notice that for all N in N for all (t;x) in [0; +∞)× [−π; π] it holds that

SNu(t;x) = c0
0 +

N∑
n=1

[
c0
ne
−n2teinx + c0

−ne
−2te−inx

]
= c0

0 + 2
N∑
n=1

e−n
2t<{c0

ne
inx}.

78



5.1. Complex Fourier series

Hence, we obtain that {Snu}n∈N is real-valued sequence of functions that converges
toward u uniformly in [0; +∞) × [−π; π]. Since R is a closed set in C, then u is a
real-valued function.

We claim that u is in C∞((0; +∞)× [π;π]). Let δ be a positive real number. Let
k, j be nonnegative integers. We notice that for all integer n it holds that

sup
(δ;+∞)×[−π;π]

{∣∣c0
n

∣∣ ∣∣∣∣ ∂k+j

∂xk∂th
(e−n

2teinx)

∣∣∣∣} =
∣∣c0
n

∣∣ |n|2h+k e−n
2δ.

Hence, we obtain that∑
n∈Z

sup
(δ;+∞)×[−π;π]

{∣∣c0
n

∣∣ ∣∣∣∣ ∂k+j

∂xk∂th
(e−n

2teinx)

∣∣∣∣} ≤∑
n∈Z

∣∣c0
n

∣∣ |n|2h+k e−n
2δ

Since δ is a positive real number and the sequence {c0
n}n∈Z is bounded, we can state

that the right hand side series converges. So, we derive the series and we obtain that u
is in C∞((δ; +∞) × [−π; π]). This is enough to state that u is a smooth function in
(0; +∞)× [−π; π]. In particular, if (t;x) is in (0; +∞)× [−π; π], it is true that

∂u

∂t
(t;x) =

∑
n∈Z

c0
n

∂

∂t
(e−n

2teinx) =
∑
n∈Z

−n2c0
ne
−n2teinx;

∂2u

∂x2
(t;x) =

∑
n∈Z

c0
n

∂2

∂x2
(e−n

2teinx) =
∑
n∈Z

−n2c0
ne
−n2teinx.

As for the periodic boundary conditions, if t is any positive real number, we have that

u(t; π) =
∑
n∈Z

c0
ne
−n2teinπ =

∑
n∈Z

c0
ne
−n2te−inπ = u(t;−π),

∂u

∂x
(t; π) =

∑
n∈Z

inc0
ne
−n2teinπ =

∑
n∈Z

inc0
ne
−n2te−inπ =

∂u

∂x
(t;−π).

As for the initial datum, we know that the Fourier series of u0 is totally convergent (see
5.1.11); hence, if x is any point in [−π; π], we have that

u(0;x) =
∑
n∈Z

c0
ne
inx = u0(x).

This is enough to state that u is a solution of (5.2) in the sense of definition 5.1.25.
Step 2: Let v be any solution of (5.2) in the sense of definition 5.1.25. Let t be

any real number in [0;T ). We define

cn(v(t; ·)) :=
1

2π

∫ π

−π
v(t;x)e−inxdx.

For all integer n we define

cn

(
∂v

∂t
(t; ·)

)
:=

1

2π

∫ π

−π

∂v

∂t
(t;x)e−inxdx.

Since v is continuous in [0;T )× [−π;π], we can apply theorem 2.3.1 and we have that
for all n in Z the function cn(v(−; ·)) : [0;T )→ C is continuous. Since ∂v

∂t
is continuous
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in (0;T ) × [−π; π], we can apply theorem 2.3.2 and we have that if n is any integer,
then cn(v(t; ·)) is in C1((0;T )) and for all t in (0;T ) it holds that

cn

(
∂v

∂t
(t; ·)

)
=

1

2π

∫ π

−π

∂v

∂t
(t;x)e−inxdx = cn(v(t; ·))′.

We recall that v is such that for all t in (0;T ) it holds that

v(t; π) = v(t;−π),

∂v

∂x
(t; π) =

∂v

∂x
(t;−π).

Let n be any integer; we define

cn

(
∂2v

∂2x
(t; ·)

)
:=

1

2π

∫ π

−π

∂2v

∂2x
(t;x)e−inxdx.

Thanks to lemma 5.1.10, for all integer n it holds that

cn

(
∂2v

∂2x
(t; ·)

)
=

1

2π

∫ π

−π

∂2v

∂x2
(t;x)e−inxdx

=
−n2

2π

∫ π

−π
v(t;x)e−inxdx

= −n2cn(v(t; ·)).

We recall that v is such that for all (t;x) in (0;T )× [−π; π] it holds that

∂v

∂t
(t;x) =

∂2v

∂x2
(t;x).

Hence, for all integer n for all t in (0;T ), we have that

cn

(
∂v

∂t
(t; ·)

)
= cn

(
∂2v

∂x2
(t; ·)

)
.

In other words, for all integer n for all t in (0;T ) it holds that

cn(v(t; ·))′ = −n2cn(v(t; ·)).

Since v(0;x) = u0(x) for all x in [−π; π], we can state that

cn(v(0; ·)) = c0
n.

We have that cn(v(t; ·)) is a solution of the following differential problem{
y′(t) = −n2y(t) if t > 0,

y(0) = 0,

and it is continuous in 0; this is equivalent to state that cn(v(t; ·)) is a solution of the
following Cauchy’s problem: {

y′(t) = −n2y(t) if t ≥ 0,

y(0) = 0.
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Hence, we have that for all t in [0; +∞) it holds that

cn(v(t; ·)) = c0
ne
−n2t.

This is enough to state that that for all t in [0; +∞) the function v∣∣{t}×[−π;π]
coincides

with the function u∣∣{t}×[−π;π]
, i.e. for all (t;x) in [0; +∞) × [−π; π] it holds that

v(t;x) = u(t;x).

Remark 5.1.27. We can show that there exist an initial datum u0 such that for all
positive real number δ the problem (5.2) has no solution in the sense of definition 5.1.25
in (−δ; 0] × [−π; π]. Let u0 : [−π; π] → C be the initial datum; we denote {c0

n}n∈Z
the sequence of the Fourier coefficients. Let us assume that there exist a positive real
number δ and a function v : (−δ; 0] × [−π; π] → C that is a solution of (5.2) in the
sense of definition 5.1.25. For all integer n for all t in (−δ; 0] we define

cn(v(t; ·)) :=
1

2π

∫ π

−π
v(t;x)e−inxdx.

As shown in further details in the proof of theorem 5.1.26 (see the second step), the
function cn(v(t; ·)) has the following properties:

• it is well defined and it is continuous in (−δ; 0];

• cn(v(0; ·)) equals c0
n;

• it is in C1((−δ; 0));

• it is a solution of the following Cauchy’s problem{
y(t)′ = −n2y(t) if t ∈ (−δ; 0],

y(0) = c0
n.

Hence, we can state that for all n in N for all t in (−δ; 0] it holds that

cn(v(t; ·)) = c0
ne
−n2t.

Since the function v∣∣{− δ2}×[−π;π]
is in C1

per([−π; π]), we can apply theorem 5.1.11 and

we obtain that ∑
n∈Z

∣∣∣∣cn(v(−δ2; ·
))∣∣∣∣ < +∞.

In other words, we have that ∑
n∈Z

∣∣∣c0
ne
n2 δ

2

∣∣∣ < +∞.

If u0 is such that c0
n = e−|n| for all integer n, it’s easy to see that u0 is in C∞per([−π;π])

(see theorem 5.1.11 and 5.1.13) but it holds that

lim
n→+∞

∣∣∣c0
ne
n2 δ

2

∣∣∣ = +∞.
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Wave equation with periodic boundary conditions

Definition 5.1.28. Let u0, u1 : [−π; π] → C be any functions. Let c be any real
number. Let us consider the following partial derivative equation

∂2u

∂t
(t;x) = c2∂

2u

∂x2
(t;x) if (t;x) ∈ (0;T )× [−π; π]

u(t; π) = u(t;−π) if t ∈ (0;T )
∂u

∂x
(t; π) =

∂u

∂x
(t;−π) if t ∈ (0;T )

u(0;x) = u0(x) if x ∈ [−π; π]
∂u

∂t
(0;x) = u1(x) if x ∈ [−π; π]

(5.3)

We say that (5.3) is the wave equation in [−π; π] with periodic boundary conditions.

Definition 5.1.29. Let u0, u1 : [−π; π]→ C be any functions; let c be any real number.
Let T be any positive real number. We say that u : [0;T )× [−π; π]→ C is a solution
of (5.3) if it has the following properties:

• u is continuous in [0;T )× [−π; π];

• for all (t;x) in [0;T )× [−π; π] there exists

∂u

∂t
(t;x)

and it is continuous in [0;T )× [−π; π];

• for all (t;x) in (0;T )× [−π; π], there exists

∂2u

∂x2
(t;x)

and it is continuous in (0;T )× [−π; π];

• for all (t;x) in (0;T )× [−π; π], there exists

∂2u

∂t2
(t;x)

and it is continuous in (0;T )× [−π; π];

• for all (t;x) in (0;T )× [−π; π] the following identity holds true:

c2∂
2u

∂x2
(t;x) =

∂2u

∂t2
(t;x);

• for all t in (0;T ) it holds that

u(t; π) = u(t;−π),

∂u

∂x
(t; π) =

∂u

∂x
(t;−π);
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• for all x in [−π; π] it holds that

u(0;x) = u0(x);

• for all x in [−π; π] it holds that

∂u

∂t
(0;x) = u1(x).

We are looking for reasonable hypothesis on u0 and u1 to make sure that there exists
a time T in (0; +∞) and a function u : [0;T )× [−π;π]→ C that is a solution of (5.3)
in the sense of definition 5.1.29.

Theorem 5.1.30 (Existence and uniqueness of the solution for wave equation with
periodic boundary conditions (1)).
Let u0, u1 : [−π; π] → C be any functions in L2

C((−π; π)); let c be any positive real
number. Let us define the Fourier coefficient {c0

n}n∈Z for u0 and {c1
n}n∈Z for u1 as in

5.1.1. Let us assume that ∑
n∈Z

∣∣n2c0
n

∣∣ < +∞,

∑
n∈Z

∣∣nc1
n

∣∣ < +∞.

For all n in Z \ {0}, we define

αn :=
1

2

[
c0
n +

c1
n

icn

]
,

βn :=
1

2

[
c0
n −

c1
n

icn

]
.

Let u : R× [−π; π]→ C such that

u(t;x) := c0
0 + c1

0t+
∑

n∈Z\{0}

[
αne

in(x+ct) + βne
in(x−ct)] .

Then the following conclusions hold true:

• u is a well defined complex-valued function in R× [−π; π];

• u is in C2(R× [−π; π]);

• u is a solution of (5.3) in the sense of definition 5.1.29;

• if u0 and u1 are real-valued functions, then u is a real-valued function;

• if v is a solution of (5.3) in the sense of 5.1.29, then v is equals to u.

Proof. Step 1: We claim that u is well defined and it is continuous in R× [−π; π]. We
notice that∑

n∈Z\{0}

sup
R×[−π;π]

{∣∣αnein(x+ct) + βne
in(x−ct)∣∣} ≤ ∑

n∈Z\{0}

|αn|+ |βn|

≤
∑

n∈Z\{0}

∣∣c0
n

∣∣+

∣∣∣∣ c1
n

cn

∣∣∣∣ < +∞.
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We claim that if u0 and u1 are real-valued functions, then u is a real-valued function.
As shown in 5.1.7, we have that c0

−n = c0
n and c1

−n = c1
n for all integer n. In particular,

c0
0 and c1

0 are real numbers. For all N in N we define SNu : R× [−π;π]→ C such that

SNu(t;x) := c0
0 + c1

0 +
1∑

n=−N

[
αne

in(x+ct) + βne
in(x−ct)]+

N∑
n=1

[
αne

in(x+ct) + βne
in(x−ct)] .

It’s easy to see that for all n in Z for all (t;x) in R× [−π; π] it holds that

αnein(x+ct) + βnein(x−ct) = α−ne
−in(x+ct) + β−ne

−in(x−ct).

Therefore, we obtain that

SNu(t;x) = c0
0 + c1

0t+ 2
N∑
n=1

<
{
αne

in(x+ct) + βne
in(x−ct)} .

Since {SNu}n∈N is a real-valued sequence of functions that converges toward u uniformly
in R× [−π; π] and R is a closed set in C, it holds that u is a real-valued function.

We claim that u is a C2 function in R × [−π; π]. Let h, k be integers in {0; 1; 2}
such that h+ k ≤ 2. First of all, we state that

∑
n∈Z\{0}

sup
R×[−π;π]

{∣∣∣∣ ∂h+k

∂tk∂xh
(αne

in(x+ct) + βne
in(x−ct))

∣∣∣∣} < +∞.

For all n in Z \ {0} for all (t;x) in R× [−π; π] it holds that

∣∣∣∣ ∂h+k

∂tk∂xh
(αne

in(x+ct) + βne
in(x−ct))

∣∣∣∣ =
∣∣αnck(in)k+hein(x+ct) + βn(−c)k(in)k+hein(x−ct)∣∣

≤ ck (|αn|+ |βn|) |n|k+h

≤ ck
(∣∣c0

n

∣∣+
|c1
n|
|cn|

)
|n|k+h

= ck
∣∣c0
n

∣∣ |n|k+h + ck−1
∣∣c1
n

∣∣ |n|k+h−1 .

Since we are assuming that h+ k ≤ 2, we obtain that

∑
n∈Z\{0}

sup
R×[−π;π]

{∣∣∣∣ ∂h+k

∂tk∂xh
(
αne

in(x+ct) + βne
in(x−ct))∣∣∣∣} ≤ ck

∑
n∈Z\{0}

∣∣c0
n

∣∣ |n|2 +
∣∣c1
n

∣∣ |n|
c

;

under our hypothesis, the right hand side series converges. In particular, if we derive
the series we obtain that for all h, k in {0; 1; 2} such that h + k ≤ 2 for all (t;x) in
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R× [−π; π] it holds that

∂2u

∂t2
(t;x) =

∑
n∈Z\{0}

∂2

∂t2
(
αne

in(x+ct) + βne
in(x−ct))

=
∑

n∈Z\{0}

−n2c2αne
in(x+ct) − n2c2βne

in(x−ct)

= c2
∑

n∈Z\{0}

−n2einx
[

1

2

(
c0
n +

c1
n

icn

)
eicnt +

1

2

(
c0
n −

c1
n

icn

)
e−icnt

]

= c2
∑

n∈Z\{0}

−n2einx
[
c0
n

eicnt + e−icnt

2
+

(
c1
n

cn

)
eicnt − e−icnt

2i

]

= c2
∑

n∈Z\{0}

−n2einx
[
c0
n cos(cnt) +

c1
n

cn
sin(cnt)

]
.

Similarly, it can be proved that

∂2u

∂x2
(t;x) =

∑
n∈Z\{0}

−n2einx
[
c0
n cos(cnt) +

c1
n

cn
sin(cnt)

]
.

As for the periodic boundary conditions, for all t in R we have that

u(t; π) = c0
0 + c1

0t+
∑

n∈Z\{0}

αne
in(π+ct) + βne

in(π−ct)

= c0
0 + c1

0t+
∑

n∈Z\{0}

αne
in(−π+ct) + βne

in(−π−ct)

= u(t;−π);

if we derive the series, we can state that for all t in R it holds that

∂u

∂x
(t; π) =

∑
n∈Z\{0}

inαne
in(π+ct) + inβne

π−ct

=
∑

n∈Z\{0}

inαne
in(−π+ct) + inβne

−π−ct

=
∂u

∂x
(t;−π).

As for the initial datum, we can similarly show that for all x in [−π; π] it holds that

u(0;x) = u0(x),

∂u

∂t
(0;x) = u1(x).

We can finally conclude that u is a solution of (5.3) in the sense of definition 5.1.29.
Step 2: Let v : [0;T )×[−π; π]→ C be any solution of (5.3) in the sense of definition

5.1.29. Let n be any integer; let t be any point in [0;T ). We define

cn(v(t; ·)) :=
1

2π

∫ π

−π
v(t;x)e−inxdx;
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cn

(
∂v

∂t
(t; ·)

)
:=

1

2π

∫ π

−π

∂v

∂t
(t;x)e−inxdx;

cn

(
∂2v

∂t2
(t; ·)

)
:=

1

2π

∫ π

−π

∂2v

∂t2
(t;x)e−inxdx.

Since v is continuous in [0;T )× [−π; π], we can apply theorem 2.3.1 and we can state
that the function

cn(v(t; ·)) : [0;T )→ C

is well defined and it is continuous. Since ∂v
∂t

is continuous in [0;T )× [−π; π], we can
use theorem 2.3.2 and we obtain that the function cn(v(t; ·)) is in C1([0;T )) and for all
t in [0;T ) it holds that

cn(v(t; ·))′ = 1

2π

∫ π

−π

∂v

∂t
e−inxdx = cn

(
∂v

∂t
(t; ·)

)
.

By definition 5.1.29, we have that ∂2v
∂t2

is continuous in (0;T )× [−π; π]. So, thanks to
theorem 2.3.2, we have that cn(v(t; ·)) is in C2((0;T )) and for all t in (0;T ) it holds
that

cn(v(t; ·))′′ = 1

2π

∫ π

−π

∂2v

∂t2
(t;x)e−inxdx = cn

(
∂2v

∂t2
(t; ·)

)
.

We recall that for all x in [−π; π] it holds that

v(0;x) = u0(x),

∂v

∂t
(0;x) = u1(x).

Hence, it’s immediate to see that

cn(v(0; ·)) = c0
n,

cn(v(0; ·))′ = c1
n.

Let n be any integer; let t be any point in (0;T ). We define

cn

(
∂2v

∂x2
(t; ·)

)
:=

1

2π

∫ π

−π

∂2v

∂x2
(t;x)e−inxdx.

By definition 5.1.29, for all t in (0;T ) it holds that

v(t; π) = v(t;−π),

∂v

∂x
(t; π) =

∂v

∂x
(t;−π).

Hence, we can use lemma 5.1.10 and we obtain that

cn

(
∂2v

∂t2
(t; ·)

)
=

1

2π

∫ π

−π

∂2v

∂t2
(t;x)e−inxdx

=
−n2

2π

∫ π

−π
v(t;x)e−inxdx

= −n2cn(v(t; ·)).
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We recall that v is such that for all (t;x) in (0;T )× [−π; π] it holds that

∂2v

∂t2
(t;x) = c2 ∂

2v

∂x2
(t;x).

Hence, for all integer n for all t in (0;T ), we have that

cn

(
∂2v

∂t2
(t; ·)

)
= cn

(
c2 ∂

2v

∂x2
(t; ·)

)
.

In other words, we have shown that for all integer n the function cn(v(t; ·)) is a solution
of the following differential problem

y′′(t) = −n2y(t) if t > 0,

y(0) = c0
n,

y′(0) = c1
n

and it is continuous in 0; this is equivalent to state that cn(v(t; ·)) is a solution of the
following Cauchy’s problem:

y′′(t) = −n2y(t) if t ≥ 0,

y(0) = c0
n,

y′(0) = c1
n.

So, if n is 0, for all t in [0; +∞) it holds that

c0(t) = c0
0 + c1

0t;

otherwise, it’s easy to see that

cn(t) = c0
n cos(cnt) +

c1
n

cn
sin(cnt) = αne

inct + βne
−inct.

This is enough to state that that for all t in [0; +∞) the function v∣∣{t}×[−π;π]
coincides

with the function u∣∣{t}×[−π;π]
, i. e. for all (t;x) in [0; +∞) × [−π; π] it holds that

v(t;x) = u(t;x).

Theorem 5.1.31 (Existence of solution for wave equation with periodic boundary
conditions (2)).
Let u0 be any function in C2

per([−π; π]); let u1 be any function in C1
per([−π; π]); let c be

any positive real number. Then, there exist c0
0 and c1

0 in C and there exist complex-valued
2π-periodic functions ϕ+ and ϕ− in C2(R) with the following property: if we define
u : [−π; π]× R→ C such that

u(t;x) = c0
0 + c1

0t+ ϕ+(x− ct) + ϕ−(x+ ct),

then u is a solution of (5.3) in the sense of 5.1.29 in R× [−π; π].

Proof. If we show that there exist c0
0 and c1

0 in C and there exist ϕ+, ϕ− : R→ C such
that for all x in [−π; π] it holds that{

u0(x) = c0
0 + ϕ+(x)− ϕ−(x),

u1(x) = c1
0 − cϕ+(x)′ + cϕ−(x)′,
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then thesis follows immediately (the other requests are obviously satisfied.) We can
derive the first equation and we obtain that for all x in [−π; π] it holds thatϕ

+(x)′ + ϕ−(x)′ = u0(x)′,

−ϕ+(x)′ + ϕ−(x)′ =
u1(x)− c1

0

c
.

Hence, the following identities hold true:
ϕ+(x)′ =

1

2

(
u0(x)′ − u1(x)− c1

0

c

)
,

ϕ−(x)′ =
1

2

(
u0(x)′ +

u1(x)− c1
0

c

)
.

(5.4)

We can choose c1
0 such that ∫ π

−π
(u1(x)− c1

0)dx = 0;

since, u0 is in C2
per([−π; π]), we have that∫ π

−π
u0(x)′dx = 0.

We notice that the right hand side of the equations 5.4 are functions with zero mean.
From now on, we will identity u0 and u1 with their extension over R by periodicity. If
we choose c0

0 := u0(0), for all x in R we can define
ϕ+(x) =

1

2

∫ x

0

(
u0(t)′ − u1(t)− c1

0

c

)
dt,

ϕ−(x) =
1

2

∫ x

0

(
u0(t)′ +

u1(t)− c1
0

c

)
dt.

We have that ϕ+ and ϕ− are 2π-periodic functions in C2(R) that satisfy all the
requests.

5.2 Real Fourier series

5.2.1 Decomposition in sines and cosines

Theorem 5.2.1. Let us define

G :=

{
1√
2π

}
∪
{

1√
π

cos(nx)

∣∣∣∣ n ∈ N∗
}
∪
{

1√
π

sin(nx)

∣∣∣∣ n ∈ N∗
}
.

Then G is a real-valued functions Hilbert’s basis of L2
C((−π; π)).

Proof. If we show that G is a maximal set, then thesis follows immediately (the other
requests are obviously satisfied). If we define

F :=

{
1√
2π
einx

∣∣∣∣ n ∈ Z
}
,
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we have shown in theorem 5.1.4 that F is an Hilbert’s basis of L2
C((−π; π)). It’s

immediate to see that
Span(F ) ⊆ Span(G );

this is enough to state that

Span(G ) = L2
C((−π; π)).

Remark 5.2.2. We remark that the maximality can be proved as a direct consequence
of Stone-Weierstrass theorem; unfortunately, the proof of the fact that G is an algebra
is a bit technical.

Definition 5.2.3 (Real Fourier coefficient). Let f be any function in L2
C((−π; π)). Let

n be any positive integer. We define

an(f) =
1

π

∫ π

−π
f(x) cos(nx)dx;

bn(f) =
1

π

∫ π

−π
f(x) sin(nx)dx.

We also define
a0(f) =

1

2π

∫ π

−π
f(x)dx.

Definition 5.2.4 (Real Fourier partial sum).
Let f be any function in L2

C((−π; π)). Let us define the real Fourier coefficients as in
5.2.3. Let n be any positive integer. For all x in [−π; π] we define

Gnf(x) := a0(f) +
n∑
k=1

[ak(f) cos(kx) + bk(f) sin(kx)] .

We say that {Gnf}n∈N∗ is the sequence of the real Fourier partial sum of f .

Corollary 5.2.5. Let f be any function in L2
C((−π; π)). Let us define {Gnf}n∈N∗ as

in 5.2.4; then {Gnf}n∈N∗ is a sequence of functions that converges toward f with respect
to L2 norm. Moreover, if f is a real-valued function, then {Gnf}n∈N∗ is a real-valued
sequence of functions, c0(f) = a0(f) and for all n in N∗ it holds that

an(f) = cn(f) + c−n(f) = 2<(cn(f)),

bn(f) = i(cn(f)− c−n(f)) = 2=(cn(f)).

Proof. As for the first statement, it is an immediate consequence of theorems 5.2.1 and
4.2.5.

By definitions 5.1.1 and 5.2.3, it follows that c0(f) = a0(f). Let n be any positive
integer; then, we have that

cn(f) + c−n(f) =
1

2π

∫ π

−π
f(x)

[
e−inx + einx

]
dx =

1

π

∫ π

−π
f(x) cos(nx)dx = an(f),

i(cn(f)− c−n(f)) =
i

2π

∫ π

−π
f(x)

[
e−inx − einx

]
dx =

1

π

∫ π

−π
f(x) sin(nx)dx = bn(f).
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Let us assume that f is a real-valued function. Thanks to proposition 5.1.7, we can
state that for all n in Z it holds that cn(f) = c−n(f). Hence, we can conclude that a0

is a real number and for all n in N∗ it holds that

an(f) = 2<(cn(f)),

bn(f) = 2=(cn(f)).

5.2.2 Decomposition in sines

Definition 5.2.6. Let f be any function in L2
C((0; π)). Let n be any positive integer.

We define
βn(f) :=

2

π

∫ π

0

f(x) sin(nx)dx.

Theorem 5.2.7. Let us define

S :=

{√
2

π
sin(nx)

∣∣∣∣ n ∈ N∗
}
.

Then S is an Hilbert’s basis of L2
C((0;π)).

Proof. It’s immediate to see that S is an orthonormal set. We claim that S is complete.
Let f be any function in L2

C((0;π)). We define f̃ : [−π; π]→ C the odd extension of f ,
i.e. f̃(x) = f(x) if x in [0;π] and f̃(x) = −f(−x) if x is in [−π; 0). Let us define the
sequences {an}n∈N and {bn}n∈N∗ as in 5.2.3 and the sequence of the real Fourier partial
sum {Gnf̃}n∈N∗ as in 5.2.4. Since f̃ is odd, the following conclusions hold true:

• a0(f̃) =
1

2π

∫ π

−π
f̃(x)dx = 0;

• for all n in N∗ we have that

an(f̃) =
1

π

∫ π

−π
f̃(x) cos(nx)dx = 0;

• for all n in N∗ we have that

bn(f̃) =
1

π

∫ π

−π
f̃(x) sin(nx)dx =

2

π

∫ π

0

f(x) sin(nx)dx = βn(f).

For all n in N∗ we define Jnf : [0;π]→ C such that

Jnf(x) :=
n∑
k=1

βk(f) sin(kx).

Since {Gnf̃}n∈N∗ converges toward f̃ with respect to L2 norm in (−π; π), we have that
{Jnf}n∈N∗ is a sequence in Span(S ) that converges toward f with respect to L2 norm
in (0;π).
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Lemma 5.2.8. Let k be any positive integer. Let f be any function in C2k([0; π])
such that for all integer i in {0; . . . ; k − 1} it holds that f (2i)(0) = f (2i)(π) = 0. Let
ϕ be a function in C∞([0; π]) such that for all integer i in {0; . . . ; k − 1} it holds that
ϕ(2i)(0) = ϕ(2i)(π) = 0. Then, the following identity holds true:∫ π

0

f (2k)(x)ϕ(x)dx =

∫ π

0

f(x)ϕ(2k)(x)dx.

Proof. The statement can be easily proved by induction on k. Let us assume that k
equals 1. If we integrate twice by parts and we use the boundary conditions, we obtain
that ∫ π

0

f ′′(x)ϕ(x)dx = f ′(π)ϕ(π)− f ′(0)ϕ(0)−
∫ π

0

f ′(x)ϕ′(x)dx

= −
∫ π

0

f ′(x)ϕ′(x)dx

= −f(π)ϕ′(π) + f(0)ϕ′(0) +

∫ π

0

f(x)ϕ′′(x)dx

=

∫ π

0

f(x)ϕ′′(x)dx.

The inductive step is completely similar to the basis.

5.2.3 Decomposition in cosines

Definition 5.2.9. Let f be any function in L2
C((0;π)). Let n be any positive integer.

We define
αn(f) :=

2

π

∫ π

0

f(x) cos(nx)dx.

We also define
α0(f) :=

1

π

∫ π

0

f(x)dx.

Theorem 5.2.10. Let us define

C :=

{
1√
π

}
∪

{√
2

π
cos(nx)

∣∣∣∣ n ∈ N∗
}
.

Then C is an Hilbert’s basis of L2
C((0;π)).

Proof. It’s immediate to see that C is an orthonormal set. We claim that C is complete.
Let f be any function in L2

C((0;π)). We define f̃ : [−π; π]→ C the even extension of
f , i.e. f̃(x) = f(x) if x in [0;π] and f̃(x) = f(−x) if x is in [−π; 0). Let us define the
sequences {an}n∈N and {bn}n∈N∗ as in 5.2.3 and the sequence of the real Fourier partial
sum {Gnf̃}n∈N∗ as in 5.2.4. Since f̃ is even, the following conclusions hold true:

• for all n in N∗ we have that

bn(f̃) =
1

π

∫ π

−π
f̃(x) sin(nx)dx = 0;
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• a0(f̃) =
1

2π

∫ π

−π
f̃(x)dx =

1

π

∫ π

0

f(x)dx = α0(f);

• for all n in N∗ we have that

an(f̃) =
1

π

∫ π

−π
f̃(x) cos(nx)dx =

2

π

∫ π

0

f(x) cos(nx)dx = αn(f).

For all n in N∗ we define Hnf : [0;π]→ C such that

Hnf(x) := α0(f) +
n∑
k=1

αk(f) cos(kx).

Since {Gnf̃}n∈N∗ converges toward f̃ with respect to L2 norm in (−π; π), we have that
{Hnf}n∈N∗ is a sequence in Span(C ) that converges toward f with respect to L2 norm
in (0;π).

Lemma 5.2.11. Let k be any positive integer. Let f be any function in C2k([0;π]) such
that for all integer i in {0; . . . ; k − 1} it holds that f (2i+1)(0) = f (2i+1)(π) = 0. Let ϕ
be any function in C∞([0;π]) such that for all integer i in {0; . . . ; k − 1} it holds that
ϕ(2i+1)(0) = ϕ(2i+1)(π) = 0. Then, the following identity holds true:∫ π

0

f (2k)(x)ϕ(x)dx =

∫ π

0

f(x)ϕ(2k)(x)dx.

Proof. The statement can be easily proved by induction on k. Let us assume that k
equals 1. If we integrate twice by parts and we use the boundary conditions, we obtain
that ∫ π

0

f ′′(x)ϕ(x)dx = f ′(π)ϕ(π)− f ′(0)ϕ(0)−
∫ π

0

f ′(x)ϕ′(x)dx

= −
∫ π

0

f ′(x)ϕ′(x)dx

= −f(π)ϕ′(π) + f(0)ϕ′(0) +

∫ π

0

f(x)ϕ′′(x)dx

=

∫ π

0

f(x)ϕ′′(x)dx.

The inductive step is completely similar to the basis.

5.2.4 Application of the real Fourier series to PDE

Heat equation with homogeneous Dirichlet boundary conditions

Definition 5.2.12. Let u0 : [0; π]→ C be any function. Let us consider the following
partial derivative equation

∂u

∂t
(t;x) =

∂2u

∂x2
(t;x) if (t;x) ∈ (0;T )× [0; π]

u(t; π) = u(t;−π) = 0 if t ∈ (0;T )

u(0;x) = u0(x) if x ∈ [0;π]

(5.5)

We say that (5.5) is the heat equation in [0;π] with homogeneous Dirichlet boundary
conditions.
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Definition 5.2.13. Let u0 : [0;π] → C be any function; let T be any positive real
number. We say that u : [0;T )× [0;π]→ C is a solution of (5.5) if it has the following
properties:

• u is continuous in [0;T )× [0; π];

• for all (t;x) in (0;T )× [0; π], there exists

∂2u

∂x2
(t;x)

and it is continuous in (0;T )× [0; π];

• for all (t;x) in (0;T )× [0; π], there exists

∂u

∂t
(t;x)

and it is continuous in (0;T )× [0; π];

• for all (t;x) in (0;T )× [0; π] the following identity holds true:

∂2u

∂x2
(t;x) =

∂u

∂t
(t;x);

• for all t in (0;T ) it holds that

u(t; π) = u(t;−π) = 0;

• for all x in [0;π] it holds that

u(0;x) = u0(x).

We are looking for reasonable hypothesis on u0 to make sure that there exists a time
T in (0; +∞) and a function u : [0;T ) × [0;π] → C that is a solution of (5.5) in the
sense of definition 5.2.13.

Theorem 5.2.14 (Existence and uniqueness of the solution for heat equation with
homogeneous Dirichlet boundary conditions).
Let u0 : [0; π]→ C be any function in L2

C((0; π)); let us define the real Fourier coefficient
{β0

n}n∈N∗ as in 5.2.6. Let us assume that∑
n∈N∗

∣∣β0
n

∣∣ < +∞.

Let u : [0; +∞)× [0; π]→ C such that

u(t;x) :=
∑
n∈N∗

β0
ne
−n2t sin(nx).

Then the following conclusions hold true:

• u is a well defined complex-valued function in [0; +∞)× [0; π];
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• u is in C∞((0; +∞)× [0; π]);

• u is a solution of (5.5) in the sense of definition 5.2.13;

• if u0 is a real-valued function, then u is a real-valued function;

• if v is a solution of (5.5) in the sense of 5.2.13, then v is equal to u.

Proof. Step 1: If we slightly modify the procedure described in many details in the
first step of theorem 5.1.26, we immediately obtain the following statements:

• u is a well defined complex-valued function in [0; +∞)× [0; π];

• u is in C∞((0; +∞)× [0; π]);

• u is a solution of (5.5) in the sense of definition 5.2.13;

• if u0 is a real-valued function, then u is a real-valued function.

Step 2: Let v be any solution of (5.5) in the sense of definition 5.2.13. Let n be
any positive integer. Let t be any real number in [0;T ). We define

βn(v(t; ·)) :=
2

π

∫ π

0

v(t;x) sin(nx)dx.

Let n be any positive integer. Let t be any real number in (0;T ). We define

βn

(
∂v

∂t
(t; ·)

)
:=

2

π

∫ π

0

∂v

∂t
(t;x) sin(nx)dx.

Since v is continuous in [0;T )× [0; π], we can apply theorem 2.3.1 and we have that for
all n in N∗ the function βn(v(−; ·)) : [0;T )→ C is continuous. Since ∂v

∂t
is continuous in

(0;T )× [0;π], we can apply theorem 2.3.2 and we have that if n is any positive integer,
then βn(v(t; ·)) is in C1((0;T )) and for all t in (0;T ) it holds that

βn

(
∂v

∂t
(t; ·)

)
=

2

π

∫ π

0

∂v

∂t
(t;x) sin(nx)dx = βn(v(t; ·))′.

We recall that v is such that for all t in (0;T ) it holds that

v(t; π) = v(t;−π) = 0.

Let n be any positive integer; we define

βn

(
∂2v

∂2x
(t; ·)

)
:=

2

π

∫ π

0

∂2v

∂2x
(t;x) sin(nx)dx.

Thanks to lemma 5.2.8, for all integer n it holds that

βn

(
∂2v

∂2x
(t; ·)

)
=

2

π

∫ π

0

∂2v

∂x2
(t;x) sin(nx)dx

=
−2n2

π

∫ π

0

v(t;x) sin(nx)dx

= −n2βn(v(t; ·)).
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We recall that v is such that for all (t;x) in (0;T )× [0; π] it holds that

∂v

∂t
(t;x) =

∂2v

∂x2
(t;x).

Hence, for all positive integer n for all t in (0;T ), we have that

βn

(
∂v

∂t
(t; ·)

)
= βn

(
∂2v

∂x2
(t; ·)

)
.

In other words, for all positive integer n for all t in (0;T ) it holds that

βn(v(t; ·))′ = −n2βn(v(t; ·)).

Since v(0;x) = u0(x) for all x in [0; π], we can state that

βn(v(0; ·)) = β0
n.

We have that βn(v(t; ·)) is a solution of the following differential problem{
y′(t) = −n2y(t) if t > 0,

y(0) = 0,

and it is continuous in 0; this is equivalent to state that βn(v(t; ·)) is a solution of the
following Cauchy’s problem: {

y′(t) = −n2y(t) if t ≥ 0,

y(0) = 0.

Hence, we have that for all t in [0; +∞) it holds that

βn(v(t; ·)) = β0
ne
−n2t.

Hence, for all t in [0; +∞) the function v∣∣{t}×[0;π]
coincides with the function u∣∣{t}×[0;π]

,

i.e. for all (t;x) in [0; +∞)× [0; π] it holds that v(t;x) = u(t;x).

Heat equation with homogeneous Neumann boundary conditions

Definition 5.2.15. Let u0 : [0;π]→ C be any function. Let us consider the following
partial derivative equation

∂u

∂t
(t;x) =

∂2u

∂x2
(t;x) if (t;x) ∈ (0;T )× [0; π]

∂u

∂x
(t; π) =

∂u

∂x
(t;−π) = 0 if t ∈ (0;T )

u(0;x) = u0(x) if x ∈ [0; π]

(5.6)

We say that (5.6) is the heat equation in [0; π] with homogeneous Neumann boundary
conditions.

Definition 5.2.16. Let u0 : [0;π] → C be any function; let T be any positive real
number. We say that u : [0;T )× [0;π]→ C is a solution of (5.6) if it has the following
properties:
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• u is continuous in [0;T )× [0;π];

• for all (t;x) in (0;T )× [0; π], there exists

∂2u

∂x2
(t;x)

and it is continuous in (0;T )× [0; π];

• for all (t;x) in (0;T )× [0; π], there exists

∂u

∂t
(t;x)

and it is continuous in (0;T )× [0; π];

• for all (t;x) in (0;T )× [0; π] the following identity holds true:

∂2u

∂x2
(t;x) =

∂u

∂t
(t;x);

• for all t in (0;T ) it holds that

∂u

∂x
(t; π) =

∂u

∂x
(t;−π) = 0;

• for all x in [0;π] it holds that

u(0;x) = u0(x).

We are looking for reasonable hypothesis on u0 to make sure that there exists a time
T in (0; +∞) and a function u : [0;T ) × [0;π] → C that is a solution of (5.6) in the
sense of definition 5.2.16.

Theorem 5.2.17 (Existence and uniqueness of the solution for heat equation with
homogeneous Neumann boundary conditions).
Let u0 : [0; π]→ C be any function in L2

C((0; π)); let us define the real Fourier coefficient
{α0

n}n∈N as in 5.2.9. Let us assume that∑
n∈N

∣∣α0
n

∣∣ < +∞.

Let u : [0; +∞)× [0; π]→ C such that

u(t;x) :=
∑
n∈N

α0
ne
−n2t cos(nx).

Then the following conclusions hold true:

• u is a well defined complex-valued function in [0; +∞)× [0; π];

• u is in C∞((0; +∞)× [0; π]);

• u is a solution of (5.6) in the sense of definition 5.2.16;
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• if u0 is a real-valued function, then u is a real-valued function;

• if v is a solution of (5.6) in the sense of 5.2.16, then v is equal to u.

Proof. Step 1: If we slightly modify the procedure described in many details in the
first step of theorem 5.1.26, we immediately obtain the following statements:

• u is a well defined complex-valued function in [0; +∞)× [0;π];

• u is in C∞((0; +∞)× [0; π]);

• u is a solution of (5.6) in the sense of definition 5.2.16;

• if u0 is a real-valued function, then u is a real-valued function.

Step 2: Let v be any function of (5.6) in the sense of definition 5.2.16. Let n be a
positive integer. Let t be any real number in [0;T ). We define

αn(v(t; ·)) :=
2

π

∫ π

0

v(t;x) cos(nx)dx.

Let n be a positive integer. Let t be any real number in (0;T ). We define

αn

(
∂v

∂t
(t; ·)

)
:=

2

π

∫ π

0

∂v

∂t
(t;x) cos(nx)dx.

Similarly, for all t in [0;T ) we define

α0(v(t; ·)) :=
1

π

∫ π

0

v(t;x)dx;

for all t in (0;T ) we define

α0

(
∂v

∂t
(t; ·)

)
:=

1

π

∫ π

0

∂v

∂t
(t;x)dx.

Since v is continuous in [0;T )× [0;π], we can apply theorem 2.3.1 and we have that for
all n in N the function αn(v(−; ·)) : [0;T )→ C is continuous. Since ∂v

∂t
is continuous in

(0;T )× [0;π], we can apply theorem 2.3.2 and we have that if n is any positive integer,
then αn(v(t; ·)) is in C1((0;T )) and for all t in (0;T ) it holds that

αn

(
∂v

∂t
(t; ·)

)
=

2

π

∫ π

0

∂v

∂t
(t;x) cos(nx)dx = αn(v(t; ·))′.

Similarly, we can also state that α0(v(t; ·)) is in C1((0;T )) and for all t in (0;T ) it holds
that

α0

(
∂v

∂t
(t; ·)

)
=

1

π

∫ π

0

∂v

∂t
(t;x)dx = αn(v(t; ·))′.

We recall that v is such that for all t in (0;T ) it holds that

∂v

∂x
(t; π) =

∂v

∂x
(t;−π) = 0.
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Let n be any positive integer; we define

αn

(
∂2v

∂2x
(t; ·)

)
:=

2

π

∫ π

0

∂2v

∂2x
(t;x) cos(nx)dx.

Thanks to lemma 5.2.11, for all positive integer n it holds that

αn

(
∂2v

∂2x
(t; ·)

)
=

2

π

∫ π

0

∂2v

∂x2
(t;x) cos(nx)dx

=
−2n2

π

∫ π

0

v(t;x) cos(nx)dx

= −n2αn(v(t; ·)).

Similarly, we define

α0

(
∂2v

∂2x
(t; ·)

)
:=

1

π

∫ π

0

∂2v

∂2x
(t;x)dx;

thanks to the fundamental theorem of calculus and our assumption on v, we can state
that for all t in (0;T ) it holds that

α0

(
∂2v

∂2x
(t; ·)

)
=
∂v

∂x
(t; π)− ∂v

∂x
(t; 0) = 0.

We recall that v is such that for all (t;x) in (0;T )× [0; π] it holds that

∂v

∂t
(t;x) =

∂2v

∂x2
(t;x).

Hence, for all n in N for all t in (0;T ), we have that

αn

(
∂v

∂t
(t; ·)

)
= αn

(
∂2v

∂x2
(t; ·)

)
.

In other words, for all n in N for all t in (0;T ) it holds that

αn(v(t; ·))′ = −n2αn(v(t; ·)).

Since v(0;x) = u0(x) for all x in [0; π], we can state that

αn(v(0; ·)) = α0
n.

We have that αn(v(t; ·)) is a solution of the following differential problem{
y′(t) = −n2y(t) if t > 0,

y(0) = 0,

and it is continuous in 0; this is equivalent to state that αn(v(t; ·)) is a solution of the
following Cauchy’s problem: {

y′(t) = −n2y(t) if t ≥ 0,

y(0) = 0.

Hence, we have that for all n in N for all t in [0; +∞) it holds that

βn(v(t; ·)) = β0
ne
−n2t.

So, for all t in [0; +∞) the function v{
t}×[0;π]

coincides with the function u{
t}×[0;π]

, i.e.

for all (t;x) in [0; +∞)× [0; π] it holds that v(t;x) = u(t;x).
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5.3 Appendix

5.3.1 Stone-Weierstrass theorem

Definition 5.3.1. Let X a topological space. We denote as C(X;R) the set of the
continuous functions among X and R; we denote as C(X;C) the set of the continuous
functions among X and C.

Definition 5.3.2. Let X be a topological space. Let A be any subset of C(X;R) or
C(X;C). We say that A is an algebra if it is vector space closed under multiplication.

Let us assume that for all x1, x2 in K such that x1 6= x2, there exists a continuous
function in A between X and R (or C) such that f(x1) 6= f(x2). We say that A
separates points.

Let us assume that A is a subset of C(X;C). We say that A is closed under
complex conjunction if f in A if and only if f is in A, where f : X→ C is such that
f(x) := f(x).

Remark 5.3.3. Let X be a topological space. It’s immediate to see that if there exists an
algebra of complex-valued or real-valued continuous functions, then X is an Hausdorff
space.

First of all, we state and prove some useful lemmas.

Lemma 5.3.4. Let M be a positive real number. There exists a sequence of polynomials
{pn}n∈N that converges toward f(t) :=

√
t uniformly in [0;M ] and such that pn(0) = 0

for all n in N.

Proof. We notice that if {qn}n∈N is a sequence of polynomials that converges toward
f uniformly in [0;M ], then {qn − qn(0)}n∈N satisfies all the requests. Let qn be the
Taylor polynomial of degree n. We claim that {qn}n∈N converges toward f uniformly in
[ε; 2M − ε] for all ε greater that 0. Let g : C \ R≤0 → C be the holomorphic function
such that g(z) :=

√
z. Let ε be a positive real number. Since g is holomorphic, there

exists a power series centered in M that converges toward f totally in B(M ;M − ε), i.
e.

g(z) =
∑
n∈N

g(n)(M)

n!
(z −M)n,

where the right hand side series converges totally toward g in B(M ;M − ε). However,
it’s easy to see that g(n)(M) = f (n)(M) for all n in N; in other words, g(n)(M) is a real
number for all n in N. So, for all n in N we can define qn : R→ R such that

qn(t) :=
n∑
i=0

g(n)(M)

n!
(t−M)n.

By restriction, {qn}n∈N is a sequence of real-valued polynomials that converges uniformly
toward f in [ε; 2M − ε] for all ε greater than 0. For all k in N there exists nk in N such
that

sup
2−k;2M−2−k

{∣∣∣qnk(t)−√t∣∣∣} ≤ 2−k.

Obviously, we can assume that the sequence {nk}k∈N is strictly monotonically increasing.
For all k in N we define pk : R→ R such that

pk(t) := qnk(t+ 2−k).
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The sequence {pk}k∈N converges toward f uniformly in [0;M ]. In fact, if k is such that
2−k ≤M , for all t in [0;M ] we have that∣∣∣pk(t)−√t∣∣∣ ≤ ∣∣∣qnk(t+ 2−k)−

√
t+ 2−k

∣∣∣+
∣∣∣√t+ 2−k −

√
t
∣∣∣ ≤ 2−k +

√
2−k.

Lemma 5.3.5. Let A be an algebra closed in C(K;R). Then, f belongs to A implies
that |f | belongs to A . In particular, if f, g are functions in A , then the pointwise
maximum max{f ; g} and the pointwise minimum min{f ; g} are in A .

Proof. Since f is continuous and K is a compact space, there exists a real number M
such that

M := max
K
{f(x)2}.

Let {pn}n∈N be a sequence of polynomials that converges toward g(t) :=
√
t uniformly

in [0;M ] and such that pn(0) = 0 for all n in N (see lemma 5.3.4). Since A is an algebra
and pn does not have the term of degree 0, we have that {pn(f)}n∈N is a sequence in
A that converges uniformly in K toward

√
f 2 = |f |. Since A is closed under uniform

convergence, we can conclude that |f | is in A .
In conclusion, we notice that, if f1, f2 are functions in A , then

max{f1; f2} =
f1 + f2 + |f1 + f2|

2
,

min{f1; f2} =
f1 + f2 − |f1 − f2|

2
.

So, the pointwise maximum and the pointwise minimum belongs to A .

Lemma 5.3.6. Step 2: Let A be a set in C(K;R) with the following properties:

• if f, g are in A , then the pointwise maximum and the pointwise minimum are in
A ;

• for all x1, x2 in K such that x1 6= x2, for all y1, y2 in R (they can also coincide)
there exists a function g in A such that g(x1) = y1 and g(x2) = y2.

So A is dense in C(K;R).

Proof. Let f be a function in C(K;R); let ε be a positive real number. We are looking
for a function h in A such that for all x in K it holds that

f(x)− ε ≤ h(x) ≤ f(x) + ε.

We notice that for all x, x′ in K there e exists a function gx;x′ in A such that gx;x′(x) =
f(x) and gx;x′(x

′) = f(x′). Let us fix x in K. For all x′ in K, let us consider gx;x′ such
that gx;x′(x

′) = f(x′) < f(x′) + ε. Since gx;x′ and f are continuous functions, there
exists an open set Ux′ such that x′ belongs to Ux′ and gx;x′(y) < f(y) + ε for all y in
Ux′ . The collection {Ux′ | x′ ∈ K} covers K; since K is a compact space, there exists a
positive integer n and {x′1; . . . ;x′n} in K such that

K =
n⋃
i=1

Ux′i .
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We denote
hx := min{gx;x′1

; . . . ; gx;x′n}.

Thanks to our hypothesis, hx is a function in A . By definition of hx it immediately
follows that hx(x) = f(x) and hx(y) ≤ f(y) + ε for all y in K. Since hx and f
are continuous functions, there exists an open set Vx such that x belongs to Vx and
hx(y) > f(y) − ε for all y in Vx. The collection {Vx | x ∈ K} covers K; since K is a
compact space, there exists a positive integer m and {x1; . . . ;xm} in K such that

K =
m⋃
i=1

Vxi .

We define
h := max{hx1 ; . . . ;hxm}.

Thanks to our hypothesis, h is a function in A . In conclusion, the following inequalities
are an immediate consequence of the definitions given:

f(x)− ε ≤ h(x) ≤ f(x) + ε.

Theorem 5.3.7 (Stone-Weierstrass theorem).
Let K be a compact Hausdorff topological space. Let A be an algebra of real-valued
continuous function that separates points and such that the constant functions belong to
A . Then, A is dense in C(K;R) with respect to the norm of the uniform convergence.

Let A is an algebra of complex-valued continuous functions that separates point, it
is closed under complex conjunction and it is such that the constant functions belong to
A , then A is dense in C(K;C) with respect to the norm of the uniform convergence.

Proof. Step 1: Let us assume that A is in C(K;R). Let A ′ the closure of A in
C(K;R). Thanks to the algebraic properties of the uniform limit, A ′ is an algebra in
C(K;R) that separates points and such that the constant functions are in A ′. Thanks
to lemma 5.3.5, is f, g are in A ′, then the pointwise maximum and the pointwise
minimum are in A . Let x1, x2 be in K such that x1 6= x2; let y1, y2 be real numbers.
Under our hypothesis, there exists a function f in A such that f(x1) 6= f(x2). So, there
exist real numbers α, β such that α + βf(x1) = y1 and α + βf(x2) = y2. We notice
that the function g := α + βf belongs to A . So, we can apply lemma 5.3.6 and we can
conclude that A ′ is dense in C(K;R). In particular, A is dense in C(K;R).

Step 2: Let us assume that A is in C(K;C). Let A ′′ be the set of the real-valued
functions in A . Obviously, A ′′ is an algebra that contains the real-valued constant
functions. We claim that A ′′ separates points. Let x1, x2 be in K such that x1 6= x2.
Let f be a complex valued function in A such that f(x1) 6= f(x2). In particular, we
have that <f(x1) 6= <f(x2) or =f(x1) 6= =f(x2). We recall that A is closed under
complex conjunction and the following identities hold true:

<f =
f + f

2
,

=f =
f − f

2i
.
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So, <f and =f are real-valued functions in A ; in particular, they belongs to A ′′. This
is enough to conclude that A ′′ separates points. Thanks to the previous step, A ′′ is
dense in C(K;R). To conclude, for all f in C(K;C) it holds that f = <f + i=f . So,
A is dense in C(K;C).

Corollary 5.3.8 (Weierstrass theorem).
Let K be a compact subset in R. Then, the collection of the real polynomials between K
and R is dense in C(K;R).

Let K be a compact subset in C. Then, the collection of the complex polynomials
between K and C is dense in C(K;C).

Proof. The proof is an immediate consequence of theorem 5.3.7.

Remark 5.3.9. In conclusion, we notice that Weierstrass proved theorem 5.3.8 in 1885
and Stone showed its most general version (see 5.3.7) in 1937.

5.3.2 Isoperimetric inequality in dimension 2

We recall the Gauss-Green formula.

Theorem 5.3.10 (Gauss-Green formula).
Let A be a bounded open set in R2 such that there exists a closed path γ : [a; b]→ R2

with the following properties:

• γ is in C1([a; b]);

• γ(a) = γ(b);

• γ is a counter-clockwise parameterization of the boundary of A.

Let ω be a differential form in any open neighborhood D of A, i. e. there exist functions
P,Q : D → R in C1(D) such that

ω(x; y) := P (x; y)dx+Q(x; y)dy.

Then, the following identity holds true:∫
γ

ω =

∫
A

(
∂Q

∂x
(x; y)− ∂P

∂y
(x; y)

)
dxdy.

Remark 5.3.11. In the hypothesis of theorem 5.3.10, we recall that

L 1(A) =

∫
A

1dxdy.

We define the differential form ω in R2 such that

ω(x; y) := −1

2
(ydx− xdy).

Thanks to the Gauss-Green formula (see 5.3.10), the following inequalities hold true:∫
γ

ω =

∫
A

1dxdy = L 1(A).
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Definition 5.3.12. Let A be a bounded open set in R2 such that there exists a closed
path γ : [a; b]→ R2 with the following properties:

• γ is in C1([a; b]);

• γ(a) = γ(b);

• γ is a counter-clockwise parameterization of the boundary of A.

If we define the perimeter of A as

per (A) =

∫ b

a

|γ′(t)| dt.

Remark 5.3.13. It can be proved that the perimeter of A does not depend on the specific
parameterization.

Proposition 5.3.14. Let A be a bounded open set in R2 such that there exists a closed
path γ : [π; π]→ R2 with the following properties:

• γ is in C1([−π; π]);

• γ(−π) = γ(π);

• γ is a counter-clockwise parameterization of the boundary of A.

Let us define the perimeter of A as in 5.3.12. Then, the following inequality holds true:

4πL 1(A) ≤ per (A)2 .

Moreover, it holds that
4πL 1(A) = per (A)2

if and only if A is the circle.

Proof. We recall that per (A) does not depend on the specific parameterization. We
will prove the statement under the further assumption that |γ′| is a constant function.
In other words, we are assuming that for all t in [−π; π] it holds that

|γ′(t)| = per (A)

2π
.

Moreover, we can identify R2 with the complex plane; hence γ is a complex-valued
function in C1([−π; π]). We define the sequence of the Fourier coefficients {cn(γ)}n∈Z as
in 5.1.1; thanks to 5.1.10, for all integer n it holds that cn(γ′) = incn(γ). Be definition
of perimeter, we have that

per (A)2 =
1

2π

∫ π

−π
per (A)2 dt = 2π

∫ π

−π
|γ′(t)|2 dt = 2π ‖γ′‖2

L2((−π;π)) .

If we use the Parseval’s identity, we obtain that

per (A)2 = 4π2
∑
n∈Z

n2 |cn(γ)|2 .
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Since the xdx+ ydy is an exact differential form (the potential is dx2
2

+ dy
2

2
), we have

that ∫
γ

xdx+ ydy = 0.

Hence, the following identities hold true:∫ π

−π
γ(t)γ′(t)dt =

∫
γ

zdz =

∫
γ

xdx+ ydy + i(xdy − ydx) = i

∫
γ

xdx− ydy.

We also know that

L 1(A) = −1

2

∫
γ

ydx− xdy

= − i
2

∫ π

−π
γ(t)γ′(t)dt

= − i
2

2π
∑
n∈Z

(incn(γ))cn(γ)

= π
∑
n∈Z

n |cn(γ)|2 .

We have shown that

4πL 1(A) = π
∑
n∈Z

n |cn(γ)|2 ≤ π
∑
n∈Z

n2 |cn(γ)|2 = per (A)2 .

It’s immediate to see that
4πL 1(A) = per (A)2

if and only if cn(γ) = 0 for all integer n in Z \ {0; 1}, that is equivalent to require that

γ(t) = c0(γ) + c1(γ)eit,

that is the counter-clockwise parameterization of a circumference.

5.3.3 Fourier series in L2
C((−π; π)d)

Let us denote as F the real field or the complex field.

Definition 5.3.15. For all n in Zd we define en : [−π; π]d → C such that

en(x) :=
1

(2π)
d
2

e−i<n,x>.

We also denote
F d := {en | n ∈ Zd}.

Theorem 5.3.16. Let us define F d as in 5.3.15. Then F d is an Hilbert’s basis of
L2
C((−π; π)d).

Proof. Thanks to Fubini’s theorem, it’s immediate to see that F d is an orthonormal
set. As a for the maximality, it can be proved via Stone-Weierstrass theorem (see 5.3.7):
the proof is completely similar to theorem 5.1.4.
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Remark 5.3.17. Thanks to theorem 5.3.16, the theory developed in this chapter can be
easily generalized in any dimension.
Remark 5.3.18. Theorem 5.3.16 is not surprising. In fact, for all n in Zd, it’s immediate
to see that

1

(2π)
d
2

e−i<n,x> =
d∏
j=1

1√
2π
e−injxj .

As a matter of facts, the maximality of F d can be an immediate consequence of the
following theorem.

Theorem 5.3.19. Let (E1; E1;µ1), (E2; E2;µ2) be measurable spaces with measures
µ1, µ2. Let us define the tensor product σ-algebra and the product measure as in
2.2.20, i.e.

E := E1 ⊗ E2,

µ := µ1 ⊗ µ2.

Let F1,F2 be respectively Hilbert’s basis of L2(E1) and L2(E2). We denote

F1 := {fj | j ∈J },

F2 := {gi | i ∈ }.
For all (j; i) in J ×I , we denote hj;i : E1 × E2 → C as

hj;i(x) := fj(x)gi(y).

If we denote
F := {hi;j | (j; i) ∈J ×I },

it is an Hilbert’s basis of L2(E1 × E2).

Proof. Thanks to Fubini’s theorem, it’s immediate to see that F is an orthonormal set.
We recall that the step function are dense in L2(E1×E2) (see 3.1.34). Thanks to 3.1.33,
it is enough to show that Span(F ) contains all the indicator functions of measurable
sets in E1 × E2. We define

K :=
{
E ∈ E | 1E ∈ Span(F )

}
.

We have to show that K is equal to E . Let E1, E2 be measurable sets respectively in
E1 and E2. Let us denote E := E1 × E2. We claim that E in in K . Let {gn}n∈N a
sequence in Span(F1) that converges toward 1E1 with respect to L2 norm. Let {fn}n∈N
be a sequence in Span(F2) that converges toward 1E2 with respect to L2 norm. For all
n in N, we define hn : E1 × E2 :→ C such that

hn(x; y) := gn(x)fn(y).

We notice that {hn}n∈N is a sequence in Span(F ); we claim that {hn}n∈N converges
toward 1E with respect to L2 norm. For all n in N we define pn : E1 × E2 → C such
that

pn(x; y) := gn(x)1E2(y).

We notice that
1E1×E2(x; y) = 1E1(x)1E2(y).
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Thanks to triangular inequality, for all n in N it holds that

‖hn − 1E‖L2(E1×E2) ≤ ‖hn − pn‖L2(E1×E2) + ‖pn − 1E‖L2(E1×E2) .

Thanks to Fubini’s theorem, we have that

lim
n→+∞

∫
E1×E2

|gn(x)fn(y)− gn(x)1E2(y)|2 d(µ1 ⊗ µ2)(x; y)∫
E1

|gn(x)|2
(∫

E2

|fn(y)− 1E2(y)|2 dµ2(y)

)
dµ1(x)

= lim
n→+∞

‖gn‖2
L2(E1) ‖fn − 1E2‖

2
L2(E2) = 0.

The last identity is an consequence of the fact that
{
‖gn‖L2(E1)

}
n∈N

is a bounded
sequence. Similarly, it can be shown that

lim
n→+∞

‖pn − 1E‖L2(E1×E2) = 0.

We have shown that the measurable boxes belong to K . Moreover, it can be easily
proved that K is a σ-algebra. Since E is the σ-algebra generated by the collection of
the measurable boxes, then K is equal to E .
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Chapter 6

Fourier transform

6.1 Fourier transform in L1

6.1.1 Definition and main properties

Definition 6.1.1. Let f be any measurable function in L1
C(Rd). We define the Fourier

transform Ff : Rd → R as follows:

Ff(y) =

∫
Rd
f(x)e−i<x;y>dx.

Remark 6.1.2. It’s easy to see that definition 6.1.1 is well posed, namely the right hand
side is finite for every y in Rd. Moreover, Ff is continuous function: if y is any vector
in Rd and {yn}n∈N is any sequence in Rd that converges toward y, then

lim
n→+∞

∫
Rd
f(x)(e−i<x;yn> − e−i<x;y>)dx = 0.

Since the point-wise convergence is obvious and 2 |f | is a suitable domination in L1
C(Rd),

the statement in an immediate consequence of dominated convergence theorem.

Lemma 6.1.3 (Riemann-Lebesgue’ lemma).
Let f be any measurable function in L1

C(Rd); then, it holds that

lim
|y|→+∞

Ff(y) = 0,

namely Ff is in C0(Rd). In particular Ff is uniformly continuous.

Proof. First of all, we notice that any function in C0(Rd) is uniformly continuous.
Step 1: Let us assume that f is in Cc(Rd), namely there exists a positive real

number M such that f is supported in B(0;M). Let y be any vector in Rd; if we denote
t := x− π y

|y|2 , then it holds that

Ff(y) =

∫
Rd
f(x)e−i<x;y>dx

=

∫
Rd
f

(
t+ π

y

|y2|

)
e−i<t;y>e

−iπ<y;y>
|y|2 dt

= −
∫
Rd
f

(
t+ π

y

|y2|

)
e−i<t;y>dt
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If y is any vector in Rd such that π
|y| ≤ 1, we notice that τ−π y

|y|2
f is supported in

B(0;M + 1); hence, the following identities hold true:

Ff(y) =
1

2

[∫
Rd
f(x)e−i<x;y>dx−

∫
Rd
f

(
x+ π

y

|y2|

)
e−i<x;y>dx

]
=

1

2

∫
Rd

[
f(x)− f

(
x+ π

y

|y2|

)]
e−i<y;x>dx

=
1

2

∫
B(0;M+1)

[
f(x)− f

(
x+ π

y

|y2|

)]
e−i<y;x>dx.

Since f is continuous and supported in a compact subset, we notice that

• for all x in Rd it holds that

lim
y→+∞

[
f(x)− f

(
x+ π

y

|y2|

)]
e−i<y;x> = 0;

• f is bounded, so 2 ‖f‖L∞(Rd) 1B(0;M+1) is a suitable domination.

Having said that, the thesis is an immediate consequence of the dominated convergence
theorem.

Step 2: Let f be any function in L1(Rd); let ε be any positive real number. Thanks
to 3.2.17, there exists fε in Cc(Rd) such that ‖f − fε‖L1(Rd) ≤

ε
2
. There exists a positive

real number M such that if |y| is greater than M , then Ffε(y) ≤ ε
2
. Hence, if y is any

vector in Rd such that |y| > M , then

|Ff(y)| =
∣∣∣∣∫

Rd
f(x)e−i<x;y>dx

∣∣∣∣
≤
∣∣∣∣∫

Rd
[f(x)− fε(x)]e−i<x;y>dx

∣∣∣∣+

∣∣∣∣∫
Rd
fε(x)e−i<x;y>dx

∣∣∣∣
≤ ε

2
+
ε

2
= ε.

So, the thesis follows immediately.

Remark 6.1.4. If we consider C0(Rd) with the norm of the uniform convergence, then
we notice that F : L1

C(Rd)→ C0(R) is a continuous operator between Banach spaces.
If f is any function in L1

C(Rd), it holds that

sup
{
|Ff(y)| | y ∈ Rd

}
= sup

{∣∣∣∣∫
Rd
f(x)e−i<x;y>dx

∣∣∣∣ ∣∣∣∣ y ∈ Rd

}
≤ ‖f‖L1(Rd) ;

thanks to 3.1.12, F is a 1-Lipschitz operator.

6.1.2 Examples of Fourier transform

Example 6.1.5. Let f be any function in L1
C(Rd); let h be any vector in Rd; let τhf be

define as in 1.0.1. Then, for all y in Rd the following identity holds true:

[Fτhf ](y) = e−i<h;y>Ff(y).
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If we denote t := x− h, we have that

[Fτhf ](y) =

∫
Rd
f(x− h)e−i<x;y>dx

=

∫
Rd
f(t)e−i<t+h;y>dt

= e−i<h;y>

∫
Rd
f(t)e−i<t;y>dt

= e−i<h;y>Ff(y).

Example 6.1.6. Let f be any function in L1
C(Rd); let δ be any positive real number; let

σδf be as in 1.0.2. Then, for all y in Rd the following identity holds true:

[Fσδf ](y) = Ff(δy).

If we denote t := x
δ
, then dt = 1

δd
dx; hence, we have that

[Fσδf ](y) =

∫
Rd

1

δd
f
(x
δ

)
e−i<y;x>dx

=

∫
Rd
f(t)e−i<y;δt>dt

=

∫
Rd
f(t)e−i<δy;t>dt

= Ff(δy).

Example 6.1.7. Let f be any function in L1
C(Rd); let A be any matrix in M(n;R) such

that det(A) 6= 0. Then, for all y in Rd the following identity holds true:

[Ff ◦ A](y) =
1

|det(A)|
Ff([A−1]ty).

If we denote t := Ax, then dt = |det(A)| dx; hence, we have that

[Ff ◦ A](y) =

∫
Rd
f(Ax)e−i<y;x>dx

=
1

|det(A)|

∫
Rd
f(t)e−i<y;A−1t>dt

=
1

det(A)

∫
Rd
f(t)e−i<[A−1]ty;t>dt

=
1

|det(A)|
Ff([A−1]ty).

Example 6.1.8. Let us consider f(x) := e−|x|. Since f is in L1(R), we can compute the
Fourier transform. For all y in R it holds that

Ff(y) =

∫
R
e−|x|−ixydx

=

∫ 0

−∞
ex(1−iy)dx+

∫ +∞

0

ex(−1−iy)dx

=
1

1− iy
− 1

−1− iy
=

2

1 + y2
.
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Example 6.1.9. Let us consider f(x) := 1[−1;1]. Since f is in L1(R), we can compute the
Fourier transform. For all y in R \ {0} it holds that

Ff(y) =

∫ 1

−1

e−ixydx =

[
1

−iy
e−ixy

]x=1

x=−1

=
eiy − e−iy

iy
=

2 sin y

y
.

Since Ff is continuous, it holds that Ff(0) = 2.

Example 6.1.10. Let us consider

f(x) :=
e−

x2

2

√
2π
.

Since f is in L1(R), we can compute the Fourier transform. For all y in R it holds that

Ff(y) =
1√
2π

∫
R
e−

x2

2
−ixydx

=
e−

y2

2

√
2π

∫
R
e−

1
2

(x+iy)2dx.

Let n be any natural number; let us consider the following paths in the complex plane:

• γ1;n is the path that joins the the points −n and n, namely for all t in [−n;n]

γ1;n(t) := t;

• γ2;n is the path that joins the the points n and n+ iy, namely for all t in [0; 1]

γ2;n(t) := n+ iyt;

• γ3;n is the path that joins the the points n+ iy and −n+ iy, namely for all t in
[−n;n]

γ3;n(t) := −t+ iy;

• γ4;n is the path that joins the the points −n+ iy and −n, namely for all t in [0; 1]

γ4;n(t) := −n+ iy(1− t).

Let γn denote the junction of those paths. We define g : C→ C such that g(z) := e−
z2

2 .
Since γn is a closed loop and f is an holomorphic function, it holds that

0 =

∫
γn

g(z)dz

=

∫
γ1;n

g(z)dz +

∫
γ2;n

g(z)dz +

∫
γ3;n

g(z)dz +

∫
γ4;n

g(z)dz.

We consider the limits as n approaches +∞ and we have that:

• it is well known that

lim
n→+∞

∫
γ1;n

g(z)dz = lim
n→+∞

∫ n

−n
e−

t2

2 dt =
√

2π;
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• as for γ3;n, it holds that

lim
n→+∞

∫
γ3;n

g(z)dz = − lim
n→+∞

∫ n

−n
e−

(t+iy)2

2 dt = −
∫
R
e−

(t+iy)2

2 dt;

• as for γ2;n, it holds that

lim
n→+∞

∣∣∣∣∣
∫
γ2;n

g(z)dz

∣∣∣∣∣ ≤ |iy| lim
n→+∞

∫ 1

0

∣∣∣∣e− (n+iyt)2

2

∣∣∣∣ dt
= |y| lim

n→+∞

∫ 1

0

e−
n2−y2t2

2 dt

= |y|
(∫ 1

0

e
y2t2

2 dt

)
lim

n→+∞
e−

n2

2 = 0;

• similarly, we can prove that

lim
n→+∞

∣∣∣∣∣
∫
γ4;n

g(z)dz

∣∣∣∣∣ = 0.

Hence, we can state that

0 =
√

2π −
∫
R
e−

(t+iy)2

2 dt;

In particular, we have shown that for all y in R, the following identity holds true:

Ff(y) = e−
y2

2 .

Example 6.1.11. Let us consider

f(x) :=
1

x2 + 1
.

Since f is in L1(R), we can compute the Fourier transform. For all y in R it holds that

Ff(y) =

∫
R

e−ixy

x2 + 1
dx.

Let us define D := C \ {i;−i} and g : D → C such that for all z in D if holds that

g(z) :=
e−izy

z2 + 1
.

We notice that g is an holomorphic function in the open set D. Let n be any integer
greater than 2. Let us consider the following paths in the complex plane:

• γ1;n is the path that joins the points −n and n, namely for all t in [−n;n]

γ1;n(t) := t;

• γ2;n is the semicircle that joins the points n and −n, namely for all t in [0; π]

γ2;n(t) := neit.
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Let γn be the junction of those paths. We also denote as Res(i; g) the residue of the
complex variable function g in i. Moreover, γn is the counter-clockwise parameterization
of a closed loop in D that surrounds the point i, where the function g has a polar
singularity. So, we can apply the residue theorem and for all n greater than 2 it holds
that

2πiRes(i; g) =

∫
γ1;n

g(z)dz +

∫
γ2;n

g(z)dz.

Let us assume that y is a negative number. It’s easy to see that

2πiRes(i; g) = πey.

Moreover, since f is in L1(R), we have that

lim
n→+∞

∫
γ1;n

g(z)dz = lim
n→+∞

∫ n

−n

e−ity

1 + t2
dt = Ff(y).

It is also true that∣∣∣∣∣
∫
γ2;n

g(z)dz

∣∣∣∣∣ =

∣∣∣∣∣
∫ 1

0

e−iyne
it
neit

1 + n2e2it
dt

∣∣∣∣∣ ≤ n

n2 − 1

∫ 1

0

eyn sin tdt.

Since y is a negative number, it’s easy to see that the right hand side is infinitesimal.
So, we have shown that for all y < 0

Ff(y) = πey.

Since f is even, it’s easy to see that Ff is even. Moreover, it is continuous; so, we can
conclude that

Ff(y) = πe−|y|.

6.1.3 On the regularity of the Fourier transform

The theory will be developed for one variable functions. As a matter of facts, all the
statements can be adapt to the case of several variable functions.

Lemma 6.1.12. Let f be any function in L1
C(R) ∩ C1(R). If we assume that f ′ is in

L1
C(R), then it holds that

[Ff ′](y) = iyFf(y).

In particular, we have that

lim
|y|→+∞

Ffy
|y|

= 0.

Proof. Step 1: Under our hypothesis, we claim that f is in C0(R). Since f is in L1
C(R),

if we show that there exists a real number l such that

l = lim
x→+∞

f(x),

then l must be 0. Since f ′ is in L1
C(R), the dominated convergence theorem implies

that f admits a limit as x approaches +∞ and it holds that

lim
x→+∞

f(x) = f(0) + lim
x→+∞

∫ x

0

f ′(t)dt = f(0) +

∫ +∞

0

f ′(t)dt.
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Step 2: Since f ′ is in L1
C(R), for all y in R the following identity is an immediate

consequence of the dominated convergence theorem:

Ff ′(y) = lim
n→+∞

∫ n

−n
f ′(x)e−iyxdx.

Integrating by parts the right hand side, for all natural number n we obtain that∫ n

−n
f ′(x)e−iyxdx = f(n)e−iny − f(−n)einy + iy

∫ n

−n
f(x)e−ixydx.

If we recall that f is in L1
C(R), we can take the limit as n approaches to +∞ and the

thesis follows from the dominated convergence theorem and the first step.
As for the second part of the statement, it is an immediate consequence of the fact

that Ff ′ is in C0(R) as shown in lemma 6.1.3.

Corollary 6.1.13. Let f be any function in L1
C(R) ∩ Ck(R). If we assume that for all

integer i in {1; . . . ; k} it holds that f (i) is in L1
C(R), then the following identity holds

true:
[Ff (k)](y) = (iy)kFf(y).

In particular, we have that

lim
|y|→+∞

Ff(y)

|y|k
= 0.

Proof. The proof is consist of the iterated application of lemma 6.1.12.

Lemma 6.1.14. Let f be any function in L1
C(R). We define f̃ : R → C such that

f̃(x) := −ixf(x) for all x in R. If we assume that f̃ is in L1
C(R), then Ff is in C1(R)

and for all y in R the following identity holds:

[Ff ]′(y) = F f̃(y).

Proof. Since f̃ is in L1
C(R), lemma 6.1.3 implies that F f̃ is a uniformly continuous

function. If we show that for all y in R it holds that

Ff(y)−Ff(0) =

∫ y

0

F f̃(t)dt,

then thesis is an immediate consequence of the fundamental theorem of calculus.
Without loss of generality, we can assume that y is a positive real number. We notice
that ∫

R×[0;y]

∣∣∣f̃(x)e−itx
∣∣∣ dxdt ≤ |y| ∥∥∥f̃∥∥∥

L1(R)
.

Therefore, we can use Fubini’s theorem and switch the order of integration:∫ y

0

F f̃(t)dt =

∫ y

0

(∫
R
−ixf(x)e−itxdx

)
dt

=

∫
R

(∫ y

0

−ixf(x)e−itxdt

)
dx

=

∫
R
−ixf(x)

[
− 1

ix
e−iyx +

1

ix

]
dx

=

∫
R
f(x)[e−iyx − 1]dx.
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Since f is in L1
C(R), we can split the integral and the we find that∫ y

0

F f̃(t)dt =

∫
R
f(x)e−iyxdx−

∫
R
f(x)dx = Ff(y)−Ff(0).

Corollary 6.1.15. Let f be any function in L1
C(R). We define f̃k : R→ C such that

for all x in R it holds that f̃k(x) = (−ix)kf(x). If we assume that f̃k is in L1
C(R), then

Ff is in Ck(R) and the following identity holds for all y in R:

[Ff ](k)(y) = F f̃k(y).

In particular, if f is supported by a compact subset, then Ff is a smooth function in R.

Proof. We notice that if j is any integer in {1; . . . ; k}, for all x in R it holds that
|x|j ≤ 1 + |x|k. In particular, we have that∫

R
|x|j |f(x)| dx ≤

∥∥∥f̃k∥∥∥
L1(R)

+ ‖f‖L1(R) .

Having said that, the proof is consist of the iterated application of lemma 6.1.14. As
for the second statement, it obviously follows by the fact that f̃k is in L1

C(R) for all k
in N.

Proposition 6.1.16. Let f be a function in L1
C(R) supported by a compact subset.

Then, there exists a function g : C→ C that is analytic in the complex plane and such
that Ff is the restriction to R of g. In particular, Ff is an analytic function.

Proof. Let us define g : C→ C such that

g(z) :=

∫
R
f(x)e−ixzdx.

We claim that the function g is well defined. Let M be a positive real number such that
f is supported by [−M ;M ]. For all z in C the function hz(x) := e−ixz is continuous; in
other words, hz is in L∞C ((−M ;M)). Since f is in L1

C((−M ;M)), it is immediate to see
that g is well defined. Moreover, the dominated convergence theorem implies that g is
a continuous function.

We claim that g(z)dz is a exact differential form. Let γ : [a; b]→ C be a close path.
We have that∫

γ

g(z)dz =

∫ b

a

g(γ(t))γ′(t)dt =

∫ b

a

(∫ M

−M
f(x)e−ixγ(t)γ′(t)dx

)
dt.

Since the function f(x)e−ixγ(t)γ′(t) is continuous and [−M ;M ]× [a; b] is a compact set,
we can apply Fubini’s theorem to switch the order of integration. Hence, we have that∫

γ

g(z)dz =

∫ M

−M
f(x)

(∫ b

a

e−ixγ(t)γ′(t)dt

)
dx =

∫ M

−M
f(x)

(∫
γ

e−ixzdz

)
dx.

Let x be any point in [−M ;M ]. Since the function jx(z) := e−ixz is holomorphic in the
complex plane, jx(z)dz is an exact differential form, i. e.∫

γ

e−ixzdz = 0.
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So, we can conclude that ∫
γ

g(z)dz = 0;

in other words, g(z)dz is an exact differential form. Morera’s theorem implies that g is
an holomorphic function. So, g is an analytic function in the complex plane.

Example 6.1.17. We show another way to compute the Fourier transform of the function

f(x) :=
e−

x2

2

√
2π
.

We notice that

f ′(x) = −xe
−x

2

2

√
2π

= −xf(x).

Since f and f ′ are in L1(R), we can consider the Fourier transform at left hand side
and right hand side; joining 6.1.12 and 6.1.14, for all y in R the following identity holds
true:

[Ff ]′(y) = yFf(y). (6.1)

Since we know that the space of the solutions of (6.1) is a one dimensional vector space
and f is a solution of (6.1), we can conclude that there exists a real number c such that

Ff ≡ cf.

To conclude, we notice that

c√
2π

= Ff(0) =
1√
2π

∫
R
e−

x2

2 dx = 1.

6.1.4 Inversion Fourier theorem

Lemma 6.1.18. Let f, g be functions in L1
C(R). Then f ∗ g is in L1

C(R) and for all y
in R it holds that

[Ff ∗ g](y) = [Ff(y)][Fg(y)].

Proof. We have shown in 3.2.7 that f ∗ g is in L1
C(R). If y is any real number, it holds

that

[Ff(y)][Fg(y)] =

(∫
R
f(x)e−iyxdx

)(∫
R
g(t)e−iytdt

)
=

∫
R
f(x)e−ixy

(∫
R
g(t)e−iytdt

)
dx

=

∫
R
f(x)

(∫
R
g(t)e−iy(t+x)dt

)
dx.

If we denote s := t+ x, we have that

[Ff(y)][Fg(y)] =

∫
R
f(x)

(∫
R
g(s− x)e−iysds

)
dx.
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We notice that∫
R2

∣∣f(x)g(s− x)e−iys
∣∣ dxds = ‖|f | ∗ |g|‖L1(R) ≤ ‖f‖L1(R) ‖g‖L1(R) .

So, we can use Fubini’s theorem and switch the order of integration; we obtain that

[Ff(y)][Fg(y)] =

∫
R
f(x)

(∫
R
g(s− x)e−iysdx

)
ds

=

∫
R

(∫
R
f(x)g(s− x)dx

)
e−iysds

=

∫
R
f ∗ g(s)e−iysds

= [Ff ∗ g](y).

Definition 6.1.19 (Fourier anti-transform).
Let g be any function in L1

C(Rd). For all x in Rd, we define

F∗f(x) :=

∫
R
g(x)ei<x;y>dx.

Remark 6.1.20. If g is any function in L1
C(R), we notice that F∗g(y) = Fg(−y) for all

y in R. Hence, F∗ : L1
C(Rd)→ C0(Rd) is a linear and continuous operator with same

properties of F .

Theorem 6.1.21 (Inversion Fourier theorem).
Let f be any function in L1

C(R); if Ff is in L1
C(R), then for almost every x in R the

following identity holds true:

f(x) =
1

2π

∫
R
Ff(y)eixydy =

1

2π
[F∗Ff ](x).

Proof. Let g : R→ R be any function with the following properties:

• g is in C(R) ∩ L∞C (R) ∩ L1
C(R);

• F∗g is in L1
C(R);

• g(0) = 1.

Step 1: We claim that

lim
δ→0

∫
R
g(δy)Ff(y)eixydy =

∫
R
Ff(y)eixydy. (6.2)

We notice that the following statements hold true:

• since g is continuous and g(0) = 1, for all x in R, for almost every y in R we have
that

lim
δ→0

g(δy)Ff(y)eixy = Ff(y)eixy;
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6.1. Fourier transform in L1

• for all x in R for all y in R, for all positive real number δ, we have that∣∣g(δy)Ff(y)eixy
∣∣ ≤ ‖g‖L∞(R) |Ff(y)| ,

that is a suitable domination in L1(R).

Hence, (6.2) is an immediate consequence of the dominated convergence theorem.
Step 2: Let δ be a positive real number and x any point in R. We have that∫

R
g(δy)Ff(y)eixydy =

∫
R
g(δy)

(∫
R
f(t)e−itydt

)
eixydy.

We notice that∫
R2

∣∣g(δy)f(t)eiy(x−t)∣∣ dxdt =

(∫
R
|f(t)| dt

)(∫
R
|g(δy)| dy

)
= ‖f‖L1(R)

‖g‖L1(R)

δ
.

In particular, we can use Fubini’s theorem and switch the order of integration. If we
recall definition 1.0.2, we obtain that∫

R
g(δy)Ff(y)eixydy =

∫
R
f(t)

(∫
R
g(δy)eiy(x−t)dy

)
dt

=

∫
R
f(t)

1

δ

[
F∗σ 1

δ
g
]

(x− t)dt.

If we join 6.1.6 and 6.1.20, we have that

1

δ

[
F∗σ 1

δ
g
]

(x− t) =
1

δ
F∗g

(
x− t
δ

)
= [σδ(F∗g)](x− t);

therefore, we obtain that∫
R
g(δy)Ff(y)eixydy =

∫
R
f(t)σδ(F∗g)(x− t)dt = [f ∗ σδg](x).

As shown in 3.2.16, {f ∗ σδ(F∗g)}δ>0 converges toward ‖F∗g‖L1(R) f with respect to L1

norm. In particular, there exists an infinitesimal sequence {δn}n∈N such that for almost
every x in R it holds that

lim
n→+∞

[f ∗ σδn(F∗g)](x) = ‖F∗g‖L1(R) f(x).

Then, for almost every x in R the following identity holds true:∫
R
Ff(y)eixydy = ‖F∗g‖L1(R) f(x).

If we consider g(y) := e−
y2

2 , joining 6.1.20 and 6.1.10, we have that

F∗g(x) = e−
x2

2

√
2π;

so, ‖F∗g‖L1(R) equals 2π and the theorem is completely proved.

Remark 6.1.22. As shown in 6.1.9, f if L1
C(R) does not imply that Ff is in L1

C(R).
However, in order F∗Ff make sense, it has to be assumed in theorem 6.1.21.
Remark 6.1.23. We can easily show that the Fourier transform is a linear, injective
operator between L1

C((−π;π)) and C0(R). Since the F is obviously linear, it is enough
to show that if f is in L1

C(R) is such that Ff(y) = 0 for almost every y in R, then f(x)
is equal to 0 for almost every x in R. Actually, since we can apply the inversion Fourier
theorem (see 6.1.21), the conclusion is trivial.
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6.2 Fourier transform in L2

Our purpose is to find a suitable definition of Fourier transform for all f in L2
C(R).

Lemma 6.2.1. Let f be any function in L1
C(R) ∩ L2

C(R). Then, it holds that

‖Ff‖L2(R) =
√

2π ‖f‖L2(R) ;

in particular, Ff is in L2
C(R) and F : L1

C(R)∩L2
C(R)→ L2

C(R) is a linear
√

2π-Lipschitz
operator.

Proof. Let g be any function with the following properties:

• g is in C(R) ∩ L∞C (R) ∩ L1
C(R);

• F∗g is in L2
C(R);

• g(0) = 1;

• g is even, nonnegative and monotonously decreasing in [0; +∞).

We notice that if y is any point in R and δ1, δ2 are positive real number such that δ2 is
greater than δ1, then we have that

g(yδ1) ≥ g(yδ2),

lim
δ→0+

g(δy) = g(0) = 1.

Thanks to Beppo Levi’s theorem and our assumption on g, we have that

lim
δ→0+

∫
R
g(δy)[Ff(y)][Ff(y)]dy =

∫
R
[Ff(y)]Ff(y)dy = ‖Ff‖2

L2(R) .

Let δ be any positive real number; it holds that∫
R
g(δy) |Ff(y)|2 dy =

∫
R
g(δy)

(∫
R
f(x)e−ixydx

)(∫
R
f(t)e−itydt

)
dy

=

∫
R
g(δy)

(∫
R
f(x)e−ixydx

)(∫
R
f(t)eitydt

)
dy

=

∫
R

[∫
R

(∫
R
g(δy)f(x)f(t)ei(t−x)ydt

)
dx

]
dy

We notice that∫
R3

|g(δy)| |f(x)|
∣∣∣f(t)

∣∣∣ dydxdt =

(∫
R
|f(x)| dx

)2(∫
R
|g(δy)| dy

)
= ‖f‖2

L1(R)

‖g‖L1(R)

δ
.

Then, we can switch the order of integration and, if we recall definition 1.0.2, we obtain
that ∫

R
g(δy) |Ff(y)|2 dy =

∫
R2

f(x)f(t)

(∫
R
g(δy)ei(t−x)ydy

)
dxdt

=
1

δ

∫
R2

f(x)f(t)[F∗σ 1
δ
g](t− x)dxdt.
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If we join 6.1.6 and 6.1.20, we have that∫
R
g(δy) |Ff(y)|2 dy =

∫
R2

f(x)f(t)[σδF∗g](t− x)dxdt

=

∫
R
f(t)(f ∗ σδ(F∗g))(t)dt.

As shown in 3.2.16, we have that {f ∗ σδ(F∗g)}δ>0 converges toward f ‖F∗g‖L1(R) with
respect to L2 norm. Hence, if we use Hölder’s inequality, we notice that

lim
δ→0

∣∣∣∣∫
R
g(δy) |Ff(y)|2 dy − ‖F∗g‖L1(R)

∫
R
f(y)f(y)dy

∣∣∣∣
= lim

δ→0

∣∣∣∣∫
R
f(y)

[
(f ∗ (σδF∗g))(y)− ‖F∗g‖L1(R) f(y)

]
dy

∣∣∣∣
≤ lim

δ→0
‖f‖L2(R)

∥∥∥f ∗ (σδF∗g)− ‖F∗g‖L1(R) f
∥∥∥
L2(R)

= 0.

This is enough to state that

‖Ff‖2
L2(R) = ‖F∗g‖L1(R) ‖f‖

2
L2(R)2 .

To conclude, if we consider g(x) := e−
x2

2 , then we have that F∗g(y) =
√

2πe−
x2

2 ; in
particular, it holds that ‖F∗g‖L1(R) = 2π.

Theorem 6.2.2. There exists a linear and continuous operator denoted also with
F : L2

C(R)→ L2
C(R) that extends the Fourier transform defined in L2

C(R) ∩ L1
C(R) and

such that if f in any function in L2
C(R) it holds that

‖Ff‖L2(R) =
√

2π ‖f‖L2(R)2 .

In other words, F can be extended to an isometry on L2
C(R) (up the factor

√
2π).

Proof. It’s easy to see that L1
C(R)∩L2

C(R) is dense in L1
C(R). In fact, if f is any function

in L2
C(R), for all n in N we define

fn(x) := f(x)1[−n;n](x).

Then {fn}n∈N is a sequence in L1
C(R) ∩ L2

C(R) that converges toward f with respect to
L2 norm. In lemma 6.2.1, we have shown that

F : L1
C(R) ∩ L2

C(R)→ L2
C(R)

is a linear
√

2π-Lipschitz operator. Since it is uniformly continuous and L1
C(R) ∩ L2

C(R)
is dense in L2

C(R), F can be extended by continuity to a linear operator that we will
also denote with F on L2

C(R). Hence, if f is any function in L2
C(R) it holds that

‖Ff‖L2(R) =
√

2π ‖f‖L2(R)2 .
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Remark 6.2.3. We can slightly modify lemma 6.2.1 and corollary 6.2.2 to show that F∗
admits a linear

√
2π-Lipschitz extension to L2

C(R), denote also with F∗, such that if f
is any function in L2

C(R) it holds that

‖F∗f‖L2(R) =
√

2π ‖f‖L2(R) .

Remark 6.2.4. It’s immediate to see that both F and F∗ are injective operators on
L2
C(R).

Lemma 6.2.5. Let f be any function in L2
C(R). Let us assume that for almost every y

in R there exists L(y) in C such that

L(y) = lim
n→+∞

∫ n

−n
f(x)e−ixydx.

Then, it holds that L(y) = Ff(y) for almost every y in R.

Proof. Let n be any natural number. We define

fn(x) := f(x)1[−n;n].

Since fn is in L2
C((−n;n)), it holds that {fn}n∈N is a sequence in L1

C(R). We notice
that for all natural number n, for all y in R it holds that

Ffn(y) =

∫
R
fn(x)e−ixydx =

∫ n

−n
f(x)e−ixy.

We know that {fn}n∈N converges toward f with respect to L2 norm. As shown in
6.2.2, we have that {Ffn}n∈N converges toward Ff with respect to L2 norm. Up to
subsequences, not relabelled, we can assume that the convergence is pointwise for almost
every y in R. This is enough to conclude that L(y) = Ff(y) for almost every y in
R.

Lemma 6.2.6. Let f be any function in C1(R) ∩ L1
C(R); if f ′ is in L2

C(R) ∩ L1
C(R),

then Ff is in L1
C(R).

Proof. Thanks to lemma 6.1.12, if y is any point in R it holds that

[Ff ′](y) = iyFf(y).

Since f ′ is in L1
C(R) ∩ L2

C(R), lemma 6.2.1 implies that Ff ′ is in L2
C(R). If we define

g(y) := (1 + |y|) |Ff(y)| ,

we have that g is in L2
C(R). If we use Hölder’s inequality, we obtain that

∫
R
|Ff(y)| dy ≤

(∫
R
|g(y)|2 dy

) 1
2

(∫
R

∣∣∣∣ 1

1 + |y|

∣∣∣∣2 dy
) 1

2

that is finite.

Theorem 6.2.7. Let f be any function in L2
C(R); then, for almost every x in R the

following identity holds true:

[F∗Ff ](x) = 2πf(x). (6.3)
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Proof. Thanks to 6.1.21 and lemma 6.2.6, we know that formula (6.3) holds for all
f in C1

c (R). If IdL2 denotes the identity of L2
C(R), we have shown that F∗ ◦ F is a

2π-Lipschitz operator on L2
C(R) that coincides with 2πIdL2 on C1

c (R), that is a dense
subset of L2

C(R); so, they coincide on L2
C(R).

Proposition 6.2.8. Let f, g be functions in L2
C(R); then, f · g is in L1

C(R) and for
almost every x in R it holds that

[Ff · g](x) =
1

2π
[Ff ∗ Fg](x).

Proof. First of all we notice that, if f, g are in L2
C(R), then Ff and Fg are both in

L2
C(R); so, Ff ∗ Fg is well defined and it is in L1

C(R), as shown in 3.2.11.
Let f, g be any functions in Cc(R); if we use 6.1.21 and we generalize 6.1.18 with

the operator F∗, we obtain that for almost every x in R it holds that

f(x) · g(x) =
1

(2π)2
[F∗Ff ](x) · [F∗Fg](x) =

1

(2π)2
[F∗(Ff ∗ Fg)](x).

Hence, for almost every x in R the following identity holds true:

[Ff · g](x) =
1

(2π)2
[F(F∗(Ff ∗ Fg))](x).

Since Ff ∗ Fg is in L1
C(R), we can use theorem 6.1.21 and we obtain that the following

inequality holds for almost every x in R:

[Ff · g](x) =
1

2π
[Ff ∗ Fg](x).

Let us consider the operator H1 : L2
C(R)× L2

C(R)→ C0(R) such that

H1(f ; g) := Ff · g.

As shown in 6.1.2, we can state that it is well defined; if we join Hölder’s inequality
and 6.1.4, we obtain that H1 is continuous. Similarly, we can consider the operator
H2 : L2

C(R)× L2
C(R)→ C(R) such that

H2(f ; g) :=
1

2π
Ff ∗ Fg.

Thanks to proposition 3.2.13, we can state that Ff ∗ Fg is uniformly continuous; in
particular, H2 is well defined. As for the continuity, it follows immediately from 6.2.2
and 3.2.11. Since Cc(R)× Cc(R) is a dense subset in L2

C(R)× L2
C(R) where H1 and H2

coincide, they coincide everywhere.

6.3 Application of Fourier transform to PDE
Definition 6.3.1. Let u0 : R → C be any function. Let us consider the following
partial derivative equation:

∂u

∂t
(t;x) =

∂2u

∂x2
(t;x) if (t;x) ∈ (0;T )× R

u(0;x) = u0(x) if x ∈ R
(6.4)

We say that (6.4) is the heat equation in R.
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Definition 6.3.2. Let u0 : R→ C be any function; let T be any positive real number.
We say that u : [0;T )× R→ C is a solution of (6.4) if it has the following properties:

• u is continuous in [0;T )× R;

• for all (t;x) in (0;T )× R, there exists

∂2u

∂x2
(t;x)

and it is continuous in (0;T )× R;

• for all (t;x) in (0;T )× R, there exists

∂u

∂t
(t;x)

and it is continuous in (0;T )× R;

• for all (t;x) in (0;T )× R the following identity holds true:

∂2u

∂x2
(t;x) =

∂u

∂t
(t;x);

• for all x in R it holds that
u(0;x) = u0(x).

The purpose of this section is to find reasonable hypothesis on u0 to make sure that
there exist a time T and a solution u for equation (6.4) in [0;T ) × R. Then, we will
study the regularity of u of the solution.

Definition 6.3.3 (Heat kernel).
Let us define the function g1 : R→ R such that

g1(x) :=
e−

x2

4

√
4π
.

Let t be any positive real number; for all x in R we define

gt(x) := σ√tg1(x) =
e−

x2

4t

√
4πt

.

The function ψ : (0; +∞)× R→ R such that ψ(t;x) := gt(x) is called heat kernel.

Remark 6.3.4. The Fourier transform can be used to solve formally the problem (6.4).
Let us consider the equation

∂2u

∂x2
(t;x) =

∂u

∂t
(t;x).

If we denote as Fu the Fourier transform in x and we apply the formulas described in
6.1.12 and 2.3.2, we find that

−y2Fu(t; y) = F ∂
2u

∂x2
(t; y) = F ∂u

∂t
(t; y) =

∂Fu
∂t

(t; y).
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Since we are looking for a function u that is continuous in [0;T )× R, we have that for
all y in R, the function Fu is a solution of the following Cauchy problem:

∂Fu
∂t

(t; y) = −y2Fu(t; y);

Fu(0; y) = Fu0(y).
(6.5)

Therefore, for all (t; y) in (0; +∞)× R we obtain that

Fu(t; y) = Fu0(y)e−y
2t.

Let gt : R → R be as in definition 6.3.3 for all t in (0; +∞). Let us denote Fgt the
Fourier transform in x. If we join 6.1.10 and 6.1.6, for all (t; y) in (0; +∞)×R we have
that

Fu(t; y) = Fu0(y)e−y
2t = [Fu0(y)][Fgt(y)].

If we use the formula described in 6.1.18, for all (t; y) ∈ (0; +∞)× R we obtain that

Fu(t; y) = [Fu0(y)][Fgt(y)] = [Fu0 ∗ gt](y).

Since the Fourier transform in injective, for all (t; y) ∈ (0; +∞)× R we have that

u(t; y) = u0 ∗ gt(y).

Despite the resolution described in 6.3.4 is only formal, it suggests a formula for the
solution. The aim of the next theorem is to give reasonable hypothesis that make the
procedure described in 6.3.4 a rigorous proof.

Theorem 6.3.5 (Existence of a solution for heat equation in R).
Let u0 : R → R be any continuous function such that u0 is in L∞(R). Let t be any
positive real number; let gt be as in 6.3.3. Let us define the function u : (0; +∞)×R→ R
such that

u(t;x) :=

{
u0(x) if (t;x) ∈ {0} × R;

[u0 ∗ gt](x) if (t;x) ∈ (0; +∞)× R.

Then, u is well defined and it is a solution of (6.4) in the sense of definition 6.3.2.
Moreover, u is a smooth function in (0; +∞)× R.

Proof. Step 1: Let g1 be as in definition 6.4. We notice that ‖g1‖L1(R) = 1; hence, it’s
easy to see that if t is any positive real number, then it holds that

‖gt‖L1(R) = 1.

If we join the fact that u0 is in L∞(R) and proposition 3.2.11, we can state that u0 ∗ gt
is well defined for all positive real number t.

Step 2: If (t;x) is any point in (0; +∞) × R, the continuity of u in (t;x) is an
immediate consequence of theorem 2.3.1. If we join the fact that u0 is a continuous
function and corollary 3.2.20, we obtain that for all x in R the function u is continuous
in (0;x).

Step 3: Let k be any positive integer. We notice that there exists a polynomial pk
of degree k such that for all x in R for all t in (0; +∞) it holds that

∂kgt
∂xk

(t;x) = pk

(
x;

1

t

)
gt(x);
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in particular, we have that
∂kgt
∂xk

is in L1(R) for all t in (0; +∞) for all k in N. Thanks
to corollary 3.2.15, we have that for all t in (0; +∞) it holds that u0 ∗ gt is in C∞(R)
and for all k in N for all x in R the following identity holds true:

∂k(u0 ∗ gt)
∂xk

(x) =

[
u0 ∗

∂kgt
∂xk

]
(x).

In particular, for all (t;x) in 0; +∞)× R we have that

∂2(u0 ∗ gt)
∂x2

(x) =

∫
R
u0(x− y)

y2 − 2t

8
√
πt

5
2

dy. (6.6)

Step 4: Let x be any point in R. Let k be any nonnegative integer. We notice that
there exists a polynomial qk such that for all t in (0; +∞) for all y in R it holds that

u0(x− y)
∂kgt
∂tk

(t; y) = u0(x− y)qk

(
x;

1√
t

)
e−

y2

4t

√
4π
.

It’s easy to see that there for all t0 in (0; +∞) there exist a polynomial αk;t0 and a real
number ε greater than t0 such that for all y in R for all t in (t0 − ε; t0 + ε) it holds that∣∣∣∣u0(x− y)

∂kgt
∂tk

(t; y)

∣∣∣∣ ≤ |u0(x− y)|

∣∣∣∣∣∣αk;t0(y)
e
− y2

2t0

√
4π

∣∣∣∣∣∣ .
We define βk;t0 : R→ R such that

βk;t0(y) :=

∣∣∣∣∣∣αk;t0(y)
e
− y2

2t0

√
4π

∣∣∣∣∣∣ .
We define γk;t0 : R→ R such that

γk;t0(y) :=
k∑
i=0

βi;t0(y).

We notice that if i is any integer in {0; . . . ; k}, then γk;t0 is domination for ∂igt
∂ti

in
L1((t0 − ε; t0 + ε)×R). Since u0 is in L∞(R), we can use theorem 2.3.2. Hence, we can
state that for all k in N, for all x in R, for all t in (0; +∞) there exists ∂ku

∂tk
(t;x) and it

is equal to
∂ku

∂tk
(t;x) =

∫
R
u0(x− y)

∂kgt
∂tk

(t, y)dy.

In particular, for all (t;x) in (0; +∞)× R it holds that

∂u

∂t
(t;x) =

∫
R
u0(x− y)

y2 − 2t

8
√
πt

5
2

dy. (6.7)

Step 5: If we join (6.6) and (6.7), the following identity holds for all (t;x) in
(0; +∞)× R:

∂u

∂t
(t;x) =

∫
R
u0(x− y)

y2 − 2t

8
√
πt

5
2

dy =
∂2u

∂x2
(t;x).

Therefore, we can state that u is a solution of (6.4) in the sense of definition 6.3.2.
Step 6: As for the regularity, we can slightly modify the procedure shown in details

in step 3 and in step 4 to prove that u is in C∞((0; +∞)× R).
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Harmonic functions

7.1 Definitions and main properties
Definition 7.1.1 (Laplace operator).
Let A be any open set in Rd; let f : A→ R be any function in C2(A). We define the
Laplacian of f as the function ∆f : A→ R such that

∆f(x) :=
d∑
i=1

∂2f

∂x2
i

(x).

Remark 7.1.2. We recall that

∆f =
d∑
i=1

∂2f

∂x2
i

= div(∇f).

Definition 7.1.3 (Harmonic function).
Let A be any open set in Rd; let f : A→ R be any function in C2(A). We say that f is
an harmonic function if ∆f(x) = 0 for all x in A.

Definition 7.1.4 (Mean value properties).
Let A be any open set in Rd; let f : A→ R be any continuous function. We say that f
has the mean value property on the spheres if the following identity holds for all closed
balls B(x0; r) completely contained in A:

f(x0) =
1

Area (∂B(x0; r))

∫
∂B(x0;r)

f(x)dσ(x).

We say that f has the mean value property on the balls if the following identity holds
for all closed balls B(x0; r) completely contained in A:

f(x0) =
1

Vol (B(x0; r))

∫
B(x0;r)

f(x)dx.

Lemma 7.1.5. Let r be any positive real number; let x0 be any point in Rd. Let
f : B(x0; r)→ R be a continuous function. Then, the following identity holds true:∫

B(x0;r)

f(x)dx =

∫ r

0

(∫
∂B(x0;ρ)

f(x)dσ(x)

)
dρ.
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Proof. It can be proved by considering polar coordinates in Rd; as a matter of facts, it
is a consequence of the Coarea formula.

Proposition 7.1.6. Let A be any open set in Rd; let f : A → R be any continuous
function. f has the mean value property on the spheres if and only if it has the mean
value property on the balls.

Proof. Let us assume that f has the mean value property on the spheres. Let B(x0; r)
a closed balls completely contained in A. Then, it holds that∫

B(x0;r)

f(x)dx =

∫ r

0

(∫
∂B(x0;ρ)

f(x)dσ(x)

)
dρ

=

∫ r

0

f(x0)Area (∂B(x0; ρ)) dρ

= f(x0)

∫ r

0

ρd−1dαddρ

= f(x0)αdr
d

= f(x0)Vol (B(x0; r)) .

Let us assume that f has the mean value property on the balls. Let B(x0; r) be a closed
balls completely contained in A. Then, it holds that

αdr
df(x0) =

∫
B(x0;r)

f(x)dx.

If we derive, we obtain that

αddr
d−1f(x0) =

∫
∂B(x0;r)

f(x)dσ(x).

To conclude, we notice that

αddr
d−1f(x0) = Area (∂B(x0; r)) f(x0).

Remark 7.1.7. From now on, we will denote the mean value property on the spheres
and the mean value property on the balls as mean value property.

Proposition 7.1.8. Let A be any open set in Rd; let f : A → R be any harmonic
function. Then f has the mean value property.

Proof. Let B(x0;R) be any closed balls completely contained in A. We define the
function g : (0;R]→ R such that

g(r) :=
1

Area (∂B(x0; r))

∫
∂B(x0;r)

f(x)dσ(x).

We claim that for all r in (0;R) it holds that g′(r) = 0. We notice that

1

Area (∂B(x0; r))

∫
∂B(x0;r)

f(x)dσ(x) =
1

Area (Sd−1)

∫
Sd−1

f(x0 + ry)dσ(y).
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If we apply theorem 2.3.2 and the theorem of the divergence, we obtain that

dg

dr
(r) =

1

Area (Sd−1)

d

dr

(∫
Sd−1

f(x0 + ry)dσ(y)

)
=

1

Area (Sd−1)

∫
Sd−1

< ∇f(x0 + ry), y > dσ(y)

=
1

Area (Sd−1)

∫
Sd−1

< ∇f(x0 + ry), ν(y) > dσ(y)

=
1

rArea (Sd−1)

∫
B(0;1)

div∇f(x0 + ry)dy

=
1

rArea (Sd−1)

∫
B(0;1)

∆f(x0 + ry)dy = 0

because f is harmonic. In particular, we have that g is a constant function; since f is
continuous in x0, then it that

lim
r→0

g(r) = f(x0).

This is enough to conclude that g(r) = f(x0) for all r in (0;R].

Theorem 7.1.9. Let A be any open set in Rd. Let f : A → R be any continuous
function with the mean value property. Then f is an harmonic smooth function in A.

Proof. We will carry out the proof assuming that A is Rd. Let ρ : Rd → R be any
smooth function with the following properties:

• it is supported in B(0; 1);

• there exists a smooth function g : [0; +∞)→ R such that for all y in Rd it holds
that ρ(y) = g(|y|);

•
∫
Rd
ρ(x)dx = 1.

If we join 3.2.11 and 3.2.14, we obtain that f ∗ ρ is a well defined smooth function in
Rd. Let x be any point in Rd. The following identities hold true:

f ∗ ρ(x) =

∫
Rd
f(x− y)ρ(y)dy

=

∫ 1

0

(∫
∂B(0;r)

f(x− y)ρ(y)dσ(y)

)
dr

=

∫ 1

0

g(r)

(∫
∂B(0;r)

f(x− y)dσ(y)

)
dr

=

∫ 1

0

g(r)

(∫
∂B(x;r)

f(t)dσ(t)

)
dr

=

∫ 1

0

g(r)dαdr
d−1f(x)dr

= f(x)

∫
B(0;1)

ρ(y)dy

= f(x).
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Hence, f is a smooth function. As shown in 7.1.8, we have that

d

dr

(
1

Area (∂B(x0; r))

∫
∂B(x0;r)

f(x)dσ(x)

)
=

1

Vol (B(0; 1))

∫
B(0;1)

∆f(y)dy = 0.

Since f has the mean value property, for all x0 in Rd for all r in (0; +∞) it holds that∫
B(x0;r)

∆f(x)dx = 0;

this is enough to state that f is harmonic.

Proposition 7.1.10 (Maximum principle).
Let A be any bounded open set in Rd; let f : A → R be any function such that it is
continuous in A and it is harmonic in A. Let x0 be in A any maximum or minimum
point for f . Then x0 is in ∂A. Moreover, if we also assume that A is connected and
there exist maximum or minimum points in A for f , then f is a constant function.

Proof. First of all, we notice that f admits maximum and minimum in A. Let x0 be a
maximum or minimum point for f ; let us assume that x0 is in A. If we denote as Ã the
connected component of A containing x0, we claim that f is a constant function in Ã.
Let us define

B := {x ∈ Ã | f(x) = f(x0)}.

It’s immediate to see that B is a closed non-empty set. Since f(x0) is maximum or
minimum for f and f has the mean value property, if x is any point in B there exists a
radius r such that for all y in B(x; r) ∩ Ã it holds that f(y) = f(x); in other words, B
is an open set. This is enough to state that B equals Ã.

Corollary 7.1.11. Let A be any open set in Rd; let u0;u1 : A → R be continuous
functions. Let us assume that u0 and u1 are harmonic in A. If u0(x) ≥ u1(x) for all x
in ∂A, then the inequality holds for all x in A. If we also assume that A is connected
and there exists x0 in A such that u0(x0) = u1(x0), then u0 and u1 coincide in A.

Proof. If we apply proposition 7.1.10 with u0 − u1, then thesis follows immediately.

7.2 Harmonic and holomorphic functions
Proposition 7.2.1. Let A be any open set in C. Let f : A→ C be any holomorphic
function. Then, if we identify as A the corresponding open set in R2, then <f and =f
are harmonic functions in A.

Proof. Since f is holomorphic in A, for all (x; y) in A the Cauchy-Riemann’ equations
hold true: 

∂<f
∂x

(x; y) =
∂=f
∂y

(x; y);

∂<f
∂y

(x; y) = −∂=f
∂x

(x; y).

We recall that <f and =f are smooth functions. If we derive with respect to x, we
obtain that

∂2<f
∂x2

=
∂2=f
∂y∂x

=
∂2=f
∂x∂y

= −∂
2<f
∂2y

;
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if we derive with respect to y, we obtain that

∂2=f
∂y2

=
∂2<f
∂y∂x

=
∂2<f
∂x∂y

= −∂
2=f
∂2y

.

Theorem 7.2.2. Let A be any simply connected open set in C. Let u : A→ R be an
harmonic function. There exists an holomorphic f : A→ C such that <f = u.

Proof. Let us define define g : A→ C such that

g(x; y) :=
∂u

∂x
(x; y)− i∂u

∂y
(x; y).

We claim that g is an holomorphic function. Since u is in C2(A), we can switch the
order of derivation and we obtain that

∂<g
∂y

=
∂2u

∂y∂x
=

∂2u

∂x∂y
= −∂

2=g
∂∂x

.

Since u is harmonic, we have that

∂<g
∂x

=
∂2u

∂x2
= −∂

2u

∂y2
=
∂2=g
∂y

.

Let z0 be any point in A. Since A is a simply connected open set, there exists an
holomorphic function f : A → C such that f(z0) = u(z0) and for all z in A it holds
that f ′(z) = g(z). In particular, we have that

f ′ =
∂u

∂x
− i∂u

∂y
=
∂<f
∂x
− i∂<f

∂y
.

In other words, we have that ∇<f = ∇u and <f(z0) = f(z0) = u(z0). Since A is
connected, we obtain that <f and u coincides in A.

Remark 7.2.3. In theorem 7.2.2 it is necessary to assume that A is simply connected. If
A is C \ {0} and u : A→ R is such that u(z) := log(|z|), it’s easy to see that u is an
harmonic function, but it cannot be the real part of an holomorphic function f between
A and C. In fact, u is locally the real part of a branch of the complex logarithm.

Remark 7.2.4. In theorem 7.2.2, the function =f is called harmonic conjugate of u.
Thanks to Cauchy-Riemann’ equations, we notice that

< ∇<f,∇=f >=
∂<f
∂x

∂=f
∂x

+
∂<f
∂y

∂=f
∂y

= 0.

In other words, ∇<f and ∇=f are always orthogonal.

Corollary 7.2.5. Let A be any open set in R2; let u : A→ R be an harmonic function.
Then u is analytic.
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Proof. Let z0 be any point in A; let r be any radius such that B(z0; r) is completely
contained in A. Since the open balls are simply connected, we can apply theorem 7.2.2.
Let f : B(z0; r)→ A an holomorphic function such that <f = u in B(z0; r). Then f is
analytic in B(z0; r), i. e. the power series∑

n∈N

f (n)(z0)

n!
(z − z0)n

converges toward f uniformly in B(z0; r). If we consider the real part of the series, it is
a power series that converges uniformly toward <f in B(z0; r).

Corollary 7.2.6. Let A be any open set in R2; let u, v : A→ R harmonic functions.
Let us assume that there exists a set U completely contained in A with the following
properties:

• it admits a cluster point z0 in U ;

• for all z in U , it holds that u(z) = v(z).

Let us denote as Ã the connected component of A that contains z0. Then f and g
coincide in Ã.

Proof. It is a consequence of the principle of analytic continuation for holomorphic
functions.

Definition 7.2.7. Let A be any open set in Rd; let u0 : ∂A→ C be any function. Let
us consider the following partial derivative problem:{

∆u(x) = 0 if x ∈ A;

u(x) = u0(x) if x ∈ ∂A.
(7.1)

We say that (7.1) is the Laplace equation in A with Dirichlet boundary conditions.

Definition 7.2.8 (Solution of Laplace equation with Dirichlet boundary conditions).
Let A be any open set in Rd; let u0 : ∂A→ C be any function. Let u : A→ C be any
function with the following properties:

• u is continuous in A;

• u is in C2(A) and for all x in A it holds that

∆u(x) = 0;

• for all x in ∂A it holds that u(x) = u0(x).

We say that u is a solution of the Laplace equation in A with Dirichlet boundary
conditions.

Theorem 7.2.9 (Existence and uniqueness of the solution for Laplace equation).
Let g : [−π; π) → C be any function. Let us consider the principal arguments of a
complex number Arg : C \ {0} → [−π; π). Let us define u0 : ∂B(0; 1)→ C such that

u0(z) = g(Arg(z)).
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Let us define the sequence of the Fourier coefficients {cn}n∈Z as in 5.1.1. Let us assume
that ∑

n∈Z

|cn| < +∞.

Let us define the function u : B(0; 1)→ C such that

u(z) := c0(f) +
∑
n∈N∗

[cn(f)zn + c−n(f)zn] .

The function u is well defined and it is a solution of (7.1) in the sense of 7.2.8.

Proof. Since the series at right hand side converge totally in B(0; 1), it’s immediate
to see that u is well defined and continuous in B(0; 1). We notice that the function
f+ : B(0; 1)→ C such that

f+(z) :=
∑
n∈N∗

cn(f)zn

is well defined and continuous in B(0; 1); moreover, it is holomorphic in B(0; 1). In
particular, it is harmonic. Similarly, if we define f− : B(0; 1)→ C such that

f−(z) :=
∑
n∈N∗

c−n(f)z
n,

the definition is well posed, the function is continuous in B(0; 1) and it is anti-
holomorphic in B(0; 1). In particular, it is harmonic. This is enough to state that u is
continuous in B(0; 1) and it is harmonic in B(0; 1). It’s immediate to see that for all z
in ∂B(0; 1) it holds that

u(z) = c0(f) +
∑
n∈N∗

[cn(f)zn + c−n(f)zn]

= c0(f) +
∑
n∈N∗

[
cn(f)einArg(z) + c−n(f)e−inArg(z)

]
= g(Arg(z)) = u0(z).

As for the uniqueness, it is an immediate consequence of 7.2.6.

Remark 7.2.10. Let u be as in theorem 7.2.9. Since the series converges totally in
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B(0; 1), for all z in B(0; 1) the following identities hold true:

u(z) = c0(f) +
∑
n∈N∗

[cn(f)zn + c−n(f)zn]

=
1

2π

∫ π

−π
g(t)dt+

∑
n∈N∗

(
1

2π

∫ π

−π
g(t)e−intdt

)
zn +

(
1

2π

∫ π

−π
g(t)eintdt

)
zn

=
1

2π

∫ π

−π
g(t)

[
1 +

∑
n∈N∗

(
zne−int + zneint

)]
dt

=
1

2π

∫ π

−π
g(t)

[
1 + 2<

(∑
n∈N∗

(
ze−it

)n)]
dt

=
1

2π

∫ π

−π
g(t)2<

(∑
n∈N

(
ze−it

)n)
dt

=
1

2π

∫ π

−π
g(t)2<

(
ze−it

1− ze−it

)
dt

=

∫ π

−π
g(t)

1− |z|2

2π |e−it − z|
dt.

If we define the Green function in B(0; 1) G : [−π; π]× B(0; 1)→ R such that

G(t; z) :=
1− |z|2

2π |e−it − z|
,

we have shown that the solution u of (7.1) is a kind of average of the boundary datum.
As a matter of fact, this principle holds true under reasonable hypothesis on the
regularity of the open set A.
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