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Chapter 1

Notation

Let us fix some useful notation.

Definition 1.0.1. Let f : RY — R be any function, let h be any vector in RY. We
define 7, f : R? — R as follows:

f(x) = f(x = h).

Definition 1.0.2. Let f : R — R be any function, let § be any positive real number.
We define o5f : R? — R as follows:



Chapter 2

Measure and integration

2.1 Introduction to measure theory

2.1.1 Definition and main properties

Definition 2.1.1 (algebra of sets).
Let E be a set. Let & any collection in PP (E) with the following properties:

e )isin &;

e Aisin & if and only if A¢is in &;

e if Ay, Ay are sets in &7, then A; U A, is in 7.
We say that &7 is finite-additive algebra of sets over E.

Definition 2.1.2 (finite-additive measure).
Let E be a set with a finite-additive algebra o/. Let m : &/ — [0; +o0] be any function
with the following properties:

o m(0) =0;
o if Ay, Ay are disjoint sets in &7, then m(A; U Ay) = m(A;) + m(A,).
We say that m is a finite-additive measure.

Definition 2.1.3 (c-algebra).
Let E be a set. Let & any collection in P (E) with the following properties:

e ()isin &;
e Aisin & if and only if A€ isin &;
e let {A, }en be a sequence of sets in &. If we define
A=A,
neN

then A is in &.

We say that & is a o-algebra (or a countable-additive algebra) over E and (E; &’; u) is
called measurable space.



2.1. Introduction to measure theory

Remark 2.1.4. By definition 2.1.3 it immediately follows that if & is a o-algebra in E,
then E is in & and it is closed under countable intersection.

Definition 2.1.5 (generated o-algebra).
Let E be a set; let 4 be any collection of sets in P(E). We denote as o(¥) the
intersection of the o-algebras in E that contain ¥.

Remark 2.1.6. In the setting of definition 2.1.5, it’s immediate to see that o(¥) is a
o-algebra and it is the smallest one that contains ¢ .

Definition 2.1.7 (o-additive measure).
Let E be a set with a o-algebra &. Let u : & — [0;4+00] be any function with the
following properties:

o 1(0) =0;
e if {A,} is a sequence in & of pairwise disjoint set, then

m (U An) = u(Ay).

neN neN

We say that p is a o-additive measure.

Definition 2.1.8. Let (E; &; 1) be a measurable space with a measure . We say that
a property P holds true for almost every x in E if the set for which the property is not
valid is completely contained in a measurable set D and pu(D) = 0.

Proposition 2.1.9. Let (E; &; 1) be a measurable space with a measure . The following
conclusions hold true:

o if E, F are measurable sets such that E contains F, then p(E) > u(F).

o If {E,}nen is an increasing sequence of measurable sets, i. e. for all n in N it
holds that E, is contained in E, 1, then

7 <U En> = sup ().
neN

We say that the measure is continuous from below.

o If {E,}nen is a decreasing sequence of measurable sets, i. e. for all n in N it
holds that E,, contains E, .1, and u(Ey) is finite then

f (ﬂ En) = inf u(E,).

neN

We say that the measure is continuous from above.

Proof. As for the first statement, it is enough to consider the decomposition F =
FU(FE\ F) and the fact that the measure is additive.

3



Chapter 2. Measure and integration

As for the second statement, for all n in N* we define F), := E,, \ E,_1; we denote
Fy = Ey. If we denote
X = U E,,

neN

it’s easy to see that {F, },en is a pairwise disjoint sequence of sets such that
xX=JF.
neN
If we recall that p is o-additive, we obtain that

— Z“(F = sup (ZM > = sup{pu(En)}-

neN neN neN

As for the third statement, if we define

X = () En,

we notice that
u(Eo \ X) (Eo \(E ) (U (Eo \ En)> = sup {yu(Eo \ En)} .

Since p(Ep) is finite, we can take the complementary and the following identities hold
true:

(Eo) — p(X) = p(Eo \ X) = Sup {n(Eo \ En)} = u(Eo) — mf {p(E,)} .

2.1.2 Carathéodory’s extension theorem

Let (E; @7;m) be a set with a finite-additive algebra &/ and a finite-additive measure
m. The aim of this subsection is to show that there exists a o-algebra & such that &7 is
completely contained in & and a o-additive measure p : & — [0; +00] that extends m.

Definition 2.1.10 (Outer measure).
Let E be any set and ¢ : P (E) — [0; +oc] any function with the following properties:

e o(0) =0;
e if A B are in P(E) such that B contains A, then ¢(A) < ¢(B);
e if {A,},en is any sequence of sets (pairwise disjoint or not) in P (E), then it holds

that
@ (U An) <D p(A

neN neN

We say that ¢ is an outer measure over &.



2.1. Introduction to measure theory

Proposition 2.1.11. Let E be any set; let &/ be a finite-additive algebra of sets; let
m : o — [0;400] be any finite-additive measure on E. For all A in P (E) we define

m*(A) == inf {Z m(A,) ‘ AC U A, {Antnen C 42%} )

neN neN

If we assume that the inf{(Q} = 400, the function m* is well-defined and it is an outer
measure over [E.

Definition 2.1.12 (pre-measure).

Let E be any set; let o7 be a finite-additive algebra of sets; let m : &/ — [0; +00] be
any finite-additive measure on E. Let us assume that if {A,},en is any sequence of
pairwise disjoint set in &7 such that

A:UAn

neN

is in 7, then it holds that

> m(A) =m (U An> .

neN neN

We say that m is a pre-measure.

Definition 2.1.13 (Carathéodory’s criterion).
Let E be any set; let ¢ be an outer measure over E. Let A be any subset of E. We say
that A satisfies the Carathéodory’s criterion if the following property holds for all C' in
P(E):

P(A) = (AN C) + p(ANCY).

Theorem 2.1.14 (Carathéodory’s extension theorem).

Let E be a set; let o7 be a finite-additive algebra of sets in P (E); let m : o — [0; +0o0]
be a finite-additive measure. Let us assume that m is also a pre-measure. Let us define
the outer measure m* as in 2.1.11; let us denote with & the collection of the sets that
satisfy the Carathéodory’s criterion. Then, the following conclusions hold true:

e & is a o-algebra that contains < ;

e the restriction of the outer measure m* to & defines a o-additive measure u that
extends m. In other words, we define u : & — [0;+00] such that if A is in &,
then p(A) = m*(A); moreover, if A is in <f, it holds that p(A) = m(A).

Lebesgue measure in R”

The aim of this subsection is to show how the construction of the Lebesgue measure
in R follows from the Carathéodory’s extension theorem. We will introduce the main
definitions and we will state the most important results.

Definition 2.1.15 (Borel o-algebra).
We define B” as the smallest o-algebra (with respect to the inclusion) that contains the
open sets in R”.



Chapter 2. Measure and integration

Definition 2.1.16. We define .&7? the collection of the boxes in R
Remark 2.1.17. It’s easy to see that 27 is a finite-additive algebra of sets.

Definition 2.1.18 (Lebesgue measure in R").
Let I be a box in R”, namely
=1 x---x1I,,

where I; is a interval in R. For all interval J in R we define
P = supJ — inf J,

assuming that the sum is well defined in R. We define

with the assumption that 0 - (+00) equals 0.

Proposition 2.1.19. The function 2" : /™ — [0;400| is well define and it is a finite-
additive measure; moreover, it is a pre-measure. It is called Peano-Jordan measure in
R"™.

Corollary 2.1.20. We define the outer measure P™ associated to the pre-measure
P as in 2.1.11. Let us denote with .#" the collection of the sets that satisfy the
Carathéodory’s criterion. Then, the following conclusions hols true:

o N is a g-algebra that contains B™, also know as the collection of the Lebesque
measurable sets;

e the restriction of the outer measure 2™ to A" defines a o-additive measure L
that extends 2P ; it is called Lebesque measure in R™.

Proof. Tt is an immediate consequence of theorem 2.1.14. m

Remark 2.1.21. Unless otherwise specified, we will always consider R" equipped with
the g-algebra .#™ and the o-additive measure Z".

The following approximation result can be proved.

Proposition 2.1.22. Let M be a measurable set in R"™; let € be a positive real number.
There exist an open set A and a closed set C' such that

CCMCA ZLA\C)<e.

Remark 2.1.23. Let F be a measurable subset in R? such that Z*(F) = 0. We claim
that if A is completely contained in FE, then A is a measurable subset and £%(A) = 0.
Thanks to 2.1.22, we have to show that for all positive real number ¢ there exists an
open set A, such that A is completely contained in A, and .Z%(A.) < €. As a matter of
fact, there exists an open set A, such that & d(AE) < ¢ and FE is completely contained
in A.. So A is measurable; having said that, it holds that Z%(A) = 0 obviously. We
say that the Lebesgue Measure is complete.

6



2.1. Introduction to measure theory

Ezample 2.1.24. Let us define the following sequence of subset in [0; 1]:

(g[) = [O ]_]
C =56, U (3+36,).

For all n in N we notice that %, is a closed set and

L) = ggl(%) _ <_>n+l.

We define the Cantor set

%:zﬂ%.

neN

It’s immediate to see that € is a closed set; in particular, it is measurable and & 1(%) = 0.
It is easy to see that € is in bijection with the set of the binary sequences. Hence, the
cardinality of € is ¢ and the cardinality of P (%) is 2°. Thanks to 2.1.23, we can state
that the cardinality .#! is exactly 2¢. It can be also shown that the cardinality of the
Borel o-algebra is exactly ¢; this is enough to conclude that ' is strictly contained in
A, As a matter of fact, we can similarly define a Cantor set in [0; 1]” and we obtain
that A" is strictly contained in .#™ for all n in N.

Proposition 2.1.25. Let A be a measurable set in RY. Let us assume that L*(A) is
finite. For allt in [0; L% (A)] there exists a measurable set By in A such that L*(E,) = t.

Proof. Let us define the function ¢ : R — [0;.2%(A)] such that
Y(x) = LUAN{(21;.. . ;24) €RY | 2y < 7))

It’s immediate to see that ¢ is a well defined increasing function. As .Z¢ is continuous
from below, we have that

lim (z) = L4A).

r—r-+00

As A is a finite measure set, £ is continuous from above and we have that
lim ¢(z) = 240) = 0.
T——00

If we show that v is a continuous function, the thesis follows immediately. Let x be
any point in R; let {y, }nen be a sequence that approaches toward n. We claim that

ngrfoow(yn) = ().

Let us assume that {y, },en is monotonically increasing. As 2% is continuous from
below, we have that

Jim g(yn) = Tim LYAN{(21;. .5 7a) €RT | 21 <y)})
= LYNAN{(zy;...;2q9) ERY | 21 < 2)}).
As L(An{(zy;...;24) €RY| 2y = 2)}) is equal to 0, we can easily conclude that
lim Y(yn) = L (AN{(x1;...;2q) €R? | 2y < 2)})

n—+00
= LUNAN{(zy;...;2q) €RY | 21 < 1)})
= ().
If {x, }nen is monotonically decreasing, the proof is completely similar. ]

7



Chapter 2. Measure and integration

Example 2.1.26. If we assume the choice axiom, we show that if p is a measure invariant
by translation in R such that the measure of any non-empty interval is well-defined and
it is a positive real number, then p cannot be defined in P (R). Let x,y be points in R.
We say that = and y are equivalent if and only if x — y is in Q. Thanks to the choice
axiom, there exists a set ¥ completely contained in [0; 1] such that for all real number
r there exists exactly an element x in ¥ such that x — r is in Q. We notice that if ¢
and ¢, are rational numbers, then it holds that

(@ +7)N (g2 +7) =10
It’s immediate to see that

o1c | 7+ c-12.

q€QN[-1;1]

Let us assume that 7 is a measurable set, i. e. ¥ is in the domain of u. Let us denote
m = pu(¥). Since p is invariant under translation, we obtain that for all ¢ in Q it holds
that pu(q + 7)) = m. Let us assume that m is 0. By definition of measure, it holds that

vl U +a ) =0

qeQN[-1;1]

by monotonicity, we obtain that p([0;1]) = 0. If m is a positive real number, we obtain
similarly that p([—1;2]) = +o0o. Hence, we find the absurd. 7 is called the Vitali set.

Remark 2.1.27. By definition 2.1.18 it’s immediate to see that the Lebesgue measure
is invariant under translation. As shown in the 2.1.26, the collection of the Lebesgue
measurable sets in R is strictly contained in P (R).

2.2 Introduction to integration theory

2.2.1 Measurable functions

Definition 2.2.1 (Measurable function).
Let (E; &) and (F;.%) be measurable spaces. Let f : E — F be any function such that
for all A in .Z it holds that f~1(A) is in &. We say that f is a measurable function.

Remark 2.2.2. In the setting of definition 2.2.1, let ¢ be a collection of subsets in P (F)
such that . Z# = 0(¥¢). Let f be a function between E and F. It’s easy to see that f is
measurable if and only if for all A in G, then f~'(A) is in &.

Ezample 2.2.3. Let (Eq; &), (Eg; &), (Es; &3) be measurable spaces; let f: E; — E,
and g : E; — E3 be measurable functions. Then go f : E; — E3 is a measurable
function.

Definition 2.2.4. Let (E; &) be a measurable space. Let f L& = R be a function.
Let us assume that f71(ANR) is in & for all A contained in R such that A NR is in
M. We will say that it f is measurable.
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Ezample 2.2.5. Let (E;&) be a measurable space. Let f,g : & — R be measurable
functions. It’s easy to see that the pointwise maximum f V g, the pointwise minimum
f A g, the sum f + g, the product f - ¢ and the quotient f/g are measurable functions
between E and R (defined where they make sense).

Let {fn}nen be a sequence of real-valued measurable function. It’s immediate to see

that the pointwise supremum sup f,,, the pointwise infimum ing fn, the pointwise limit

neN ne

superior lim sup f,, and the pointwise limit inferior lim inf f,, are well defined measurable
n—+o00 n—+00

functions between E and R.

2.2.2 Integration of nonnegative measurable functions

We will always assume that 0 - (+00) = 0, for all a in R it holds that a + (+00) = +00
and for all positive real number b it holds that b - (+00) = +00.

Definition 2.2.6 (Step function).
Let (E; &) be a measurable space. Let {Ej;...; E,} be pairwise disjoint measurable
sets in & such that .

i=1

Let {ai;...;a,} be in [0; +00]. Let us define f : E — [0; +00] such that

f) = > il (o).
i=1
We say that f is a step function. We denote as .(E) the set of the step functions
between E and [0; +00).

Remark 2.2.7. It’s immediate to see if f is a step function, then it is a measurable
function.

Definition 2.2.8 (Integration of positive step function).

Let (E;&; ) be a measurable space with a measure p. Let f : E — [0;400] be a
step function, i.e. there exist {E£1;...; E,} pairwise disjoint measurable sets in & and
{ov;...;,} in [0; +00] such that

f=> ailg,
i=1
We define the integral of f with respect to the measure u as follows:
[ F@uta) = 3 ().
i=1

Remark 2.2.9. The definition 2.2.8 is well posed, in the sense that it does not depend
on the specific representation of the step function. Let us assume that there exists
{Ey;...; E,} measurable pairwise disjoint sets, { F1; . .. ; F;} measurable pairwise disjoint
set, {ai;...;a,} and {B1;...; Ba} sets contained in [0; +o0] such that

n d
Z&i]lEi = f = Zﬂj]lpj
=1 Jj=1

9



Chapter 2. Measure and integration

Let ¢ be an integer in {1;...;n}, let j be an integer in {1;...;d}. If E; N Fj is not
empty, it holds that oy = 3;. However, for all 4 in {1;...;n} for all j in {1;...;d}, it
holds that

aip(E; N Fy) = Bipu(E; N F)).

By definition of measure, the following identities hold true:

Z%M Zaz (Z w(E; ﬂFj)>

i=1 j=1
n d
= > (BN Fj))
i=1 \j=1
n d
= Z Bin(E; N FJ))
i=1 \j=1
d n
= > Bip(En Fj))
7=1 =1
d
= Z Bin(Fy)
j=1

Definition 2.2.10 (Integration of nonnegative measurable function).
Let (E; &; 1) be a measurable space with a measure u. Let f :— [0; +00] be a measurable
function. We define the integral of f with respect to the measure i as follows:

[ 1@t = s { [ gteriuta) \ s€S(E), Vo gla) < )}

Definition 2.2.11 (Generalized step function).
Let (E;&) be a measurable space. Let {F,},en be a sequence of pairwise disjoint
measurable set such that

E=|]E.

neN
Let {an }nen be a sequence in [0; +00]. Let us define f : E — [0; +00] such that

= Z a,lg, (JJ)
neN

We say that f is a generalized step function. We also denote as .#/(E) the set of the
generalized step functions between E and [0; +00].

Remark 2.2.12. In the setting of definition 2.2.11, let f be in .’(E) such that

f= Z a,lp, .
neN
By definition 2.2.10, it immediately follows that

/f Ydp(z) =Y anp(E,

neN

10



2.2. Introduction to integration theory

Lemma 2.2.13. Let (E;&; 1) be a measurable space with a measure . Let f:E —
[0; +00] be a measurable function. Then, the following conclusions hold true:

/f )dp(z lnf{/ (z)du(z) | g € S(E), Yz € & g(x) > f(x)};

[ 1@aut) = s { [ steriuta) \ y€ S (E), W€ 8 ola) < f(o) |

Proof. By definition 2.2.10, it follows that if f, g : E — [0; +00] are measurable functions
such that f(z) < g(z) for all z in E, then

/E f(@)du(z) < / g(@)du(x).

This is enough to conclude that

| F@duta) < int { [ st)inte)

[ @t = s { [o@auto) | g€ 7'®), v € & 9(0) < f<x>} |
By definition 2.2.10, it immediately follows that
[ reint) < sup { [s@ante) | g€ #®), o e 5 gla) < f(fr)} |

We complete the proof assuming that p(E) is a real number. We notice that it is not
restrictive to assume that

g€ S(E), Voebgle)> f<x>} ,

: f(z)dp(z) < +oo,

otherwise the conclusion is trivial. Let d be a positive real number; for all n in N we define
E, = f~Y([nd; (n + 1)d); we also define E, = f~'({+0o0}). Under our assumption,
wa have that p(FE) = 0. Since f is measurable, the sets {E,, | n € NU {4+00}} are
measurable. We define the generalized step function gs as follows:

gs ‘= (Z n515n> ‘f‘OO]lEOO

neN
We notice that for all z in E it holds that gs(z) < f(x) < gs(+) + 6. Hence, we obtain

that
/E g5(2)dp(z) < / f(@)dp(z) < / l98(x) + Sld(x).

We notice that

/E[g(s(x) +0ldp(x) = (Z(n + 1)5M(En)> + (00 + 0)u( Exc)

=> (n+1)u(E
(o) )
_ ( / ga(x)du(x)) T Su(E).

11



Chapter 2. Measure and integration

In other words, for all § in [0; +o00] there exists gs in .”(E) such that for all x in E it
holds that gs(z) < f(x) and

Amwww—émwwu>

This is enough to conclude that
/f@mmwznﬂ{/gummm
E E

Proposition 2.2.14. Let (E;&;pu) be a measurable space with a measure . Let
f1, f2 : E — [0; +00] be measurable functions. Let o be a real number in [0;+00). The
following conclusions hold true:

-A@mmmm:a/ﬁ@mmm
-/E[fl()+f2 /fl e /fz )y

Proof. The first statement is an immediate consequence of definition 2.2.10. As for the
second one, let us suppose that f; and f; are in .#/(E), namely

fl = Z OKn]lEna

neN

f2 = Zﬁn]an

neN

< Su(E).

gefﬂwa65Mszwﬁ.

O

We notice that
fitfa= > (0n+Bu)le,nr,-

(n;m)€EN?

Then, it holds that

[(R@)+ h@duta) = 3 [+ Bul(E, 0 Fr)

(n;m)€EN2

=y (Z (B N Fm)) +> <Z Bnpt(En N Fm)>
neN \meN meN \neN
neN meM

/fl Jdp(z /f2 Jdp(z

Let fi1, fo be measurable functions between E and [0; +o¢]; let g1, g2 be step functions
such that for all z in E it holds that fi(z) > ¢1(x) and fo(z) > g2(x). Hence, we obtain
that

AM@+§@WM@ZAM@+@@WM@=AM@W@+ém@@@)

12



2.2. Introduction to integration theory

By definition 2.2.10, if we take the supremum, we obtain that

[150)+ f@ldn(o) > [ fi@dno) + [ fodduta

Let g1, g2 be generalized step functions such that for all z in E it holds that fi(x) < g;(zx)
and fo(z) < go(z). Hence, we obtain that

AM@+&@WM@SAM@+@@WM@=AM@W@+A@@W@)

Thanks to lemma 2.2.13, if we take the infimum, we obtain that

/E[fl( )+ falz /fl )du(z /f2 Jdp(z

Theorem 2.2.15 (Beppo Levi’s theorem).
Let (E; &; 1) be a measurable space with a measure . Let {f,}nen be a sequence of
measurable functions with the following properties:

]

e for alln in N for almost every x in E it holds that f,(x) > 0;
o for alln in N for almost every x in E it holds that f,(x) < fni1(2).

Let us define the pointwise supremum f = sup{fn} f is a measurable function and

/Ef(l‘)du _ilég{/fn )dp(x }

Proof. We have already discussed the measurability of f. Let n be a positive integer.
Since f,(z) < f(x) for almost every z in E, we have that

/fn )dp(x /f )dp(x
et} < [ vt

If the right hand side is equal to 0, the conclusion is trivial. Hence, we can assume that

Af@MM@>0

and that there exists a positive real number M such that for all n in N it holds that

Hence, we obtain that

AE@W@SM-

Let m be any positive real number such that

m<4ﬂ@@@)
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We claim that there exists ng in N such that if n is a positive integer greater than ny,
then it holds that

/fn(a:)d,u(x) > m.
E
Let g be a step function such that g(x) < f(z) for almost every z in E and
[ sta)duta) > m
E

In other words, as declared in definitions 2.2.6 and 2.2.8, we are assuming that

d
g = Z o; g
i=1

d
[ o@inte) = Y aun(E),

with the convention that 0-oco = 0. For all 7 in {1;...;d} we define ¢; with the following
properties:

e if o; =0, then ¢; = 0;

e if a; > 0, then ¢; is a real number in (0; ;) such that

We notice that the choice is possible: if

/E g(@)du(z) = +o0

the choice is trivial; if
[ sta)duta) < +x.
E

we notice that if u(E;) = 400, then «o; = 0; hence, we can choose {e1;...;¢e4} as
declared. Let us denote g the step function such that

g = i(ai —&i)lg,.
i=1
We have that §(z) < f(x) for almost every z such that f(z) # 0 and
[ at@)into) > m.
For all positive integer n we define

D, ={zx €k fu(x) > g(x)}.

14



2.2. Introduction to integration theory

Under our hypothesis on { f;, }nen, it’s easy to see that {D,, },en is a increasing sequence
of measurable set such that
L (ﬂ DZ) =0.
neN
For all n in N we have that
[ F@auta) = [ fule)tp, @nto)

zé%@mﬂwwm
Z w(E; N D,,).

We claim that for all 7 in {1;...;d} it holds that

uW(E) = lim p(E;ND,).

n—-+0o0o

This is a consequence of the fact that

)

= lim p(E;ND,)+ u(Em (U Dn> )

neN
= lim w(E;ND,).

n—-+o00

Hence, we have shown that

lim /fn Jdp(x) > lim (o —e))pu(E; N Dy,)

n—+4o0o

Then, the theorem is completely proved. O

Lemma 2.2.16 (Fatou’s lemma).

Let (E; &; 1) be a measurable space with a measure pn. Let { fn}nen be a sequence of
measurable functions such that for all n in N for almost every x in E it holds that
fn(x) > 0. Then, the pointwise limit inferior is measurable and it holds that

. )<
/E (1113 inf fn(x)) dp(w) < lim inf / fn(z)dp(x

15



Chapter 2. Measure and integration

Proof. We have already discussed the measurability of both the pointwise limit inferior
and the infimum. Let n, m be positive integers such that n > m. We notice that

[ fwidute) = [ int (f(a))dnt)

hence, we can state that

inf { / fn<:c>du<x>} > [ it {£@0)dn(o)

If we join the definition of limit inferior and theorem 2.2.15, we obtain that

lim inf /}E fn(@)dp(w) = sup {égﬁz{ /Ef"(x)d“ ($)}}
> ilé%{/ﬁnmffn{fn( )}du(fﬁ)}
= [ { int (0} duto

- /E {grﬁg fn(:c)}du(:v>-

2.2.3 Integration of variable sign measurable functions

Definition 2.2.17 (Integration of variable sign measurable function).

Let (E;&; ) be a measurable space with a measure p. Let f :— [—o00;4+00] be a
measurable function. Let us consider the usual decomposition in of f in positive part
f* and negative part f~,i. e. f= fT — f~. Let us assume that

/E f (@)dp(z) < +oo

/Ef_(a:)du(:v) < 400.

We define the integral of f with respect to the measure u as follows:

/f )y /f+ )y /f 2)du(s

Proposition 2.2.18. Let (E;&;u) be a measurable space with a measure . Let
f1, fo :— R be a measurable functions such that

/\fl )| du(z /fl )dp(z /f1 )dp(x) < 400,
/\f2 )| dp(z /f2 \eme: /f2 )du(z) < +o0.

Then, we can define the integral of fi + fo as in definition 2.2.17 and it holds that

/E[fl( z) + fo(x /f1 )dp(x /f2 Ydp(z
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If f1 is such that
[ £ @nto) < 400
E

or

/E F~(@)dp() < +oc

and « is any real number, then we can define the integral for af as in definition 2.2.17

and it holds that
[ an@auta) =a [ fiw)duta).
E E

Proof. As for the second part of the statement, it is an immediate consequence of
definition 2.2.17.
As for the first statement, we notice that

i+ fol < Al + | fals

hence, it holds that

[15)+ @l dute) < [ 1@ dute) + [ 1ale)] duta

Therefore, we can define the integral of f; + fo with respect to the measure p as in
2.2.17. We notice that

(f+9) —(f+9) =f+g=f"—f"+g" -9,

namely
(f+a) "+ +g =+g9) +f +g".

If we integrate both sides and we use 2.2.14, we obtain that

/}E(fﬂy)+ du+/]Ef‘ dwr/Eg‘ duz/E(erg)‘ d/mL/Ef+ du+/Eg+ dys;

if we rearrange terms and use the definition 2.2.17, the conclusion is immediate. [

Theorem 2.2.19 (Dominated convergence theorem).

Let (E; &; 1) be a measurable space with a measure . Let {f,}nen be a sequence of
measurable functions between E and R. Let us assume that there exists a measurable
function g : E — R (usually called domination) with the following properties:

o for alln in N for almost every x in E it holds that |f,(z)] < g(x);
e [ lote)] duta) < +x.
E

Let us assume that there exists a function f : E — R such that for almost every x in E

it holds that

Then, f is a measurable function and

lim /fn )dp(x /f )du(x

17



Chapter 2. Measure and integration

Proof. We have already discussed the measurability of f; obviously, |f(x)| < g(x) for
almost every x in E; hence, we have that

/Ef(a:)d,u(x) < 400.

Under our hypothesis, we can apply lemma 2.2.16 to the sequence {g — f,}nen. We
obtain that

fimint [ (o) = fu(o)dute) > [

n—-+o0o E

{imint(ate) - 1,(2) f duto)

n—-+00

Since ¢ has finite integral, we can split the integral; hence, we obtain that

[ ste)inte) = timsup g @)in(e) > | gl - |

n—-+o0o E

{imsup 1,(0)f (o)

n——+oo

In other words, we have that

i sup )t < [ {tmsun £ (0) | o)

n—-+4o0o n—-+4o0o

If we apply the Fatou’s lemma to {f, + g}nen, we obtain that

1mm4ﬁ@@mzébmmhmkwﬁ

n—-+4o0o n—-+4o0o

Since f is the pointwise limit for almost every x in [E, the thesis follows immediately. [J

2.2.4 Product measure

Definition 2.2.20. Let (Eq;&)),...(E,; &,) be measurable spaces. We define E the
Cartesian product of Eq,...[E,, namely

Let A be any subset in E. We define the tensor product o-algebra & as the o-algebra
generated by the subset of the form B; x --- x B,,, where B; is &; for all integer i in
{1;...;n}. We denote the tensor-product c-algebra as

& = é &,
i=1

In particular, (E; &) is a measurable space called product measurable space.

Remark 2.2.21. We immediately notice that the construction of the tensor product
o-algebra is associative, namely

(L1R&)RE =6 (&R E).

Hence, the theory will be developed for two measurable spaces: the generalization to
finite measurable spaces is an immediate consequence of the induction principle.

18



2.2. Introduction to integration theory

Lemma 2.2.22. Let (Eq; &), (Eq; &) be measurable spaces. Let C' be in & & &. For
all x in Eq, we define

C'z) ={y €Ey | (m;y) € C}.
Then, C*(z) is in &. Similarly, for all y in Ey we define

C*(y) = {z € Ky | (z;y) € C}.
Then C*(y) is in &.

Proposition 2.2.23. Let (Eqi; &1 11), (Eo; &3; pu2) be measurable spaces with measure
pi, po. Let f:Ey x By — [0;400] any & ® &-measurable function. For all x in E; we
define the function f, : Es — [0;400] such that f.(y) = f(x;y); then, the following
conclusions hold true:

o f. is &-measurable;

o the function ¢y : E; — [0;+00] such that

801(‘/1» = . f:c(y)dlja

s well defined and it is & -measurable.

Similarly, For all y in Ey we define the function f, : E; — [0;+00] such that f,(x) =
f(z;y); then, the following conclusions hold true:

e f, is &1-measurable;

o the function @y : Ey — [0; +00| such that

Pa(y) = : fy(@)dps

s well defined and it is & -measurable.

Theorem 2.2.24 (Fubini-Tonelli’ theorem). Let (Eq1; &1; 1), (Ea; &»; u2) be measurable
spaces with measure iy, ps. Let C be in & ® &. We define

1 ® 1s(C) = / 12(C () dpa ().

Eq

The function 3 @ ps : & ® & — [0;400] is a measure on the measurable space
(B x Eg; & ® &) with the following properties:

e for all Ay in &, for all Ay in & it holds that
1 @ pa(Ar x Ag) = p1(Ar)pz(Az);
o if f:Ey X Ey — [0;400] is a measurable function, it holds that
/ f(@3y)d(p @ po) (5 y) =/ ( f(fv;y)dua(y)) dp ().
Eq xEo Ey E2

19



Chapter 2. Measure and integration

Corollary 2.2.25. Let (Ey; &35 p11), (Eo; 62; p2) be measurable spaces with measure puy, jia.
Let f :Eqy x E5 — R be a measurable function such that

/ |f(@;9)| d(p1 @ po) (w5 y) < +00.
Eq1xEo

For all x in By we define f, : By — R such that f.(y) = f(z;y). Then the following
conclustons hold true:

e the function f, is &-measurable;

e the function ¢1 : E; — R such that

p1(z) = i fo(y)dpa(y)

1s well defined for almost every x in Eq and it is &-measurable;

o it holds that

/ fmdn @ p)(r) = /

Eq

([ s ) anw.
Eg
Remark 2.2.26. It’s easy to see that the for all C' in &1 ® &5 it holds that

Cl<5€)d/i1(5€) = C2(y)du2(y).

Eq Eo

Let f:E; x Eo — [0;+00] be a measurable function; then, it holds that

[ st e mn - [

E>

< f(; y)dul(l’)) dpia(y)-
E1
Similarly, if f : E; x E; — R is a measurable function such that

[E . | f(z;9)] d(pn @ pa)(2;y) < +oo,

it holds that

/  fdn @ p)(es) = /

Es

( 5 f(z; y)dul(ﬂf)) dpa2(y).

Lebesgue measure in R? as product measure

Proposition 2.2.27. Let d be a positive integer. Let M be the o-algebra of the Lebesque
measurable set in R; we denote as .#? the product o-algebra, i.e.

d
M= Q) M.

i=1
There exists a measure L% on (R %) with the following property: if A is a bo,
namely there exists {Iy;...; 15} measurable sets in R such that

d

A= H ]i7
i=1
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then it holds that ]
24A) =[] <L 1)
i=1
Moreover, if f : R? — [0; +00] is a measurable function, the following conclusions hold
true:
e for all x in R the function fq: R — [0; +o0] such that
fa(zy; .o xqr) = fag; .. 52415 7)
18 measurable;

o the function ¢4 : R — [0;+00] such that

pa(x) = fa(wy; .. sxg-1)day - drg
Rd-1

18 measurable;

e it holds that

df(xl;...xd)dxl'--dxd:/< ) f(xl;...;a:d_l)dx1~~~dxd_1> dxg.
R R \JRi-1

Proof. Tt is an immediate consequence of Fubini-Tonelli’s theorem (see 2.2.24). O

Corollary 2.2.28. Let d be a positive integer. Let f : RY — R be a measurable function
such that

» |f(z1;. . xq)| day - - dzg < 400.
Then, the following conclusions hold true:
e for all x in R the function f;:R¥" = R such that
fa(zy; .. sxgr) = fay; .. 520215 2)
18 measurable;

e the function pg: R — R such that

pa(r) = . fa(wy; .. sxg)day - drg
Rd—1

15 well defined for almost every x in R and it is measurable;

e it holds that

df(xl;...xd)dxl---dxd:/< ) 1f(a:l;...;a:d_l)dazl---dxd_l) dxg.
R R \JRd-

Proof. Tt is an immediate consequence of 2.2.25. O
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Chapter 2. Measure and integration

2.2.5 Lebesgue integral vs Riemann integral

Let A in R be a closed interval; let f : A — R be a continuous function. In particular,
if we extend f at 0 out of A, we have that f is a measurable function between R? and
R. We can define the Lebesgue integral and the Riemann integral. As a matter of facts,
they coincide.

In deed the following theorem holds true.

Theorem 2.2.29 (Vitali-Lebesgue).

Let f : [a,b] = R be a bounded function. Then it is Riemann-integrable if and only if
1t is measurable, Lebesque-integrable and the set of discontinuity points has Lebesque
measure 0. Moreover, the two integral coincide.

Ezample 2.2.30. The function f(z) = w is continuous and bounded in (0, +00); it
can be proved that

n o +oo L:
lim sin(x) dx:/ sin(x) dx:g,
0

n—-+o0o 0 X X

namely the sequence of the Riemann integrals converges to T; unfortunately it is also

2
true that N .
/ [sin(z)| dr = +0o
0 |$|

and it is not possible to define the Lebesgue integral of f in (0, +00).

We state the change of variable formula.

Theorem 2.2.31 (Change of variable).
Let A, B be bounded open sets in R"; let f : A — B be a diffeomorphism (namely a
bijective C'-function such that f=1 is a C'-function). For all x € A we define

Jmmzdﬁq%mr[%mD,
of

where 5 (x) is the jacobian of f at the point x (it is an n X n-matriz). Assume that J;

is bounded in A. For all Borel function h : A — R (measurable function in R™ equipped
with the Borel sets o-algebra) it holds that ho f~' : B — R is measurable and

[ m@ste) do = [ w7 w) ay

B

2.3 Appendix

Theorem 2.3.1 (Continuity of integral).
Let Q be any open set in RL. Let f: [a;b] x Q — R be any function with the following
properties:

o for almost every x in Q for all t in [a;b] it holds that
lim f(t + h;z) — f(z) = 0;
h—0
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o for allt in [a;b] the function ¢, : Q@ — R such that p(z) = f(t;x) is measurable;

e there exists a function o in L'(R?) such that for all (t; ) in [a;b] x Q it holds that
[f(t2)] < alz).

For all t in [a;b], we denote
F(t) = / flt; x)d.
Q
Then, F : [a;b] — R is well defined and it is continuous.

Proof. Under our hypothesis, F' is well defined, obviously. Let t, be any point in [a; b];
we claim that

lim/ f(to+ h;x)dx = / f(to; x)dzx.
We notice that for almost every x in {2 it holds that
lim f(to + h;x) = f(to; );
h—0
moreover, « is a suitable domination in L'(Q2). Hence, the conclusion is an immediate
consequence of the dominated convergence theorem. O]

Theorem 2.3.2 (Derivation under integral).
Let Q be any open set in RL. Let f: [a;b] x Q — R be any function with the following
properties:

o for allt in [a;b] the function ¢, : Q@ — R such that p(z) = f(t;x) is measurable;

o for allt in [a;b] for almost every x in Q) there exists ﬁ(t; x);

ot

o for all t in [a;b] there exists a measurable function 1y : Q@ — R such that for
almost every x in S it holds that

i) = X,

o for allt in [a;b] for almost every x in Q it holds that

}llig(l) 7»Z’thrh(ZU) = ¢t($)§

e there exists a function o in LY(R?) such that for all t in [a;b] for almost every

in €2 it holds that 5
/ } < a(z).

=L (¢
at ( 7$)
o F:la;b] 5 R and G : [a;b] — R are well defined;

masc {0521

Then, the following conclusions hold true:

o G is continuous in |a;bl;

e I isin C'((a;b)) and for all t in (a;b) it holds that F'(t) = G(t).
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Chapter 2. Measure and integration

Proof. We notice that the function F' is well defined, obviously. Thanks to theorem
2.3.1, the function G is well defined and continuous. Let ¢y be any point in [a; b]; if we
show that

Fi) - o) = [ co

then the thesis follows immediately from the fundamental theorem of calculus. By
definition of G, we have that

/a " Gyt = / v ( i %(t;x}daz) dt. (2.1)

dtdx < / a(z)dtdz = [|al| i q) (to — a).
QxJa;to]

We notice that

\/§'2>< [a;to]

Having said that, we can use Fubini’s theorem and switch the order of integration at
the right hand side of (2.1); thanks to the fundamental theorem of calculus, we obtain

that
/ " Gt — / ( tog—{(t;m)dt) o
a Q a

=Aw%mw¢mme

of .,
a—(t,l’)

To conclude, since « is a suitable domination for ¢; in L'(Q), we notice that we can
split the integral and the following identity holds true:

/atOG(t)dt:/Qf(to;x)dx—/ﬂf(a;m)dx,

that is equivalent to the thesis. O
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Chapter 3

LP space

3.1 Definitions and main properties

Definition 3.1.1. Let (E; &’ 1) be a measurable space with a measure p. Let p be a
real number in [1;+00). Let f : E — R be a measurable function. We denote

ey = ( [ |f<x>\pdu<x>);’.

1/l Lo gy = inf {ceR|c>|f(z)| for almost every z € E}.

We denote

Remark 3.1.2. Let (E;&; 1) be a measurable space with a measure . Let f: E — R
be a measurable function. We claim that the infimum in the definition of || f| g,
is actually a minimum. We have to show that for almost every = in E it holds that
|f(@)] < I fll oo (). We notice that [f(z)| > || f|| =@, if and only if there exists n in N
such that

1
|f(z)| > - 11| oo g -
For all n in N we define

1 1 ‘
o= 1 ([ R Wi 2 4 1w ).

This is enough to state that
17 ([ ey Il ) = U An
neN

Hence, we can conclude that
i (1 ([~ 1oy 31Ny )) < (U An) <> (A =0.
neN neN

Remark 3.1.3. In the setting of definition 3.1.1, if || f{| ;o g) is a real number, then f is
finite for almost every = in E. Let p be a real number in [1;400); let us assume that
Il 70 (g) 1s a real number. Then f is finite for almost every x in &. In fact, if we denote

A= fH({—00;+00}),
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Chapter 3. LP space

then A is measurable and we have that

/E F@)Pde > pa - (+00).

Therefore, it must be that p(A) is equal to 0.

Definition 3.1.4 (L? space).

Let (E; &; 1) be a measurable space with a measure x. Let f : E — R be a measurable
function. Let p be in [1;400]. Let us denote DP the collection of the measurable
functions between E and R such that || f|| ro(r) 1S a real number. We introduce the
following relation of equivalence in DP: we say that f and g are equivalent if and only
if f(z) = g(x) for almost every z in E; we will write f ~ g. We define LP(E) as the
quotient set DP/ ~.

Remark 3.1.5. In the setting of definition 3.1.1, it is immediate to see that if f, g are
measurable functions such that f(x) = g(z) for almost every x in E, then it holds that

A1 2oy = N9l oy -

So, if [f] is an element in LP(E), i.e. [f] is a set of functions that coincide almost
everywhere, we can well define

I 2oy = N9l oy »

where g is any function in [f]. As a matter of facts, we will always refer to the classes
of functions coinciding almost everywhere as functions.

3.1.1 Integral inequalities

We show the most famous integral inequalities. However, the aim of this subsection is
to give LP the structure of normed vector space.

Proposition 3.1.6 (Jensen’s inequality).
Let (E; &; 1) be a measurable space with a measure . Let f:E — R be a measurable
function that is p-integrable. Let us assume that u(E) is a real number. Let o : R — R
be a convex function. Then, it holds that

0 (@ / f(w)du<x)> < 5 | erante)

Proof. Let us denote

= [ 1))

Since ¢ is a convex function, there exists a real number m such that for all y in R it

holds that
e(y) = o(yo) + m(y — yo)-
In particular, for all x in E it holds that

e(f(x)) > ¢(yo) + m(f(x) — yo)-
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If we integrate, we obtain the following inequalities:

/E o(f(2))du(z) > / [o(vo) + m(f(z) — yo)ldu(z)

E

= u(E)p (ﬁéf(x)du(w)) +m [/Ef(if)dﬂ(l") — w(E)yo

— w(EB)p (ﬁ / f(x)du(x)> |

Definition 3.1.7 (Conjugate indices). Let p be in [1;4+00]. We say that p* is it’s
conjugate index of p if it holds that

]

1 1
__|__:1’
p p

with the convention that é = 0.

Proposition 3.1.8 (Young’s inequality).
Let p, p* be real conjugate indices in (1;+00). Let a,b be real numbers in [0; +00); then
the following inequality holds true:
a? b
ab < — + —.
p p

More precisely, the equal holds true if and only if a? = bP" .

Proof. 1f a equals 0 or b equals 0, the conclusion is trivial. So, it is not restrictive to
assume that either a and b are positive real numbers. Since log(z) is a concave function
and p, p* are conjugate indices, we can state that

1 1 . P
—log(a’) + — log(b” ) < log (a_ + —*) :
p p p p
We notice that the left hand side equals log(ab). Since log(z) is an increasing function,
we obtain that .

a? bP

ab < — + —.

p p

Since log(x) is a strictly concave function, equal holds true if and only if a? =09. O

Proposition 3.1.9 (Holder’s inequality).
Let (E; &; 1) be a measurable space with a measure . Let f,g: E — R be measurable
functions. Let p,p* be conjugate indices in [1;4+00]. Then, the following inequality holds
true:

19l ey < Wl pogey N9l Lo gy -
Moreover, if p,p* are real numbers in (1;+00) and || f|| 1)+ 9l 1o @) are positive real
numbers, it holds that

1F 9l ey = 0oy 191l o
if and only if

|fH12p(E)

g

p*

[f (@) = lg(x)

p*
Lr*(E)
for almost every x in E.
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Proof. Let us assume that p = +00 and p* = 1. Then, for almost every x in E it holds
that

1f(@)] < A1f 1l oo gy -

Hence, we have that
19l p0ce) = / F(@)g(x)| du(x)
< / 1l l9(2) | ()

= ||f”L°°(IE) HgHLl(IE) :

If p =1 and p* = 400, the proof is completely similar. So, we can assume that p, p*
are real numbers in (1;4+00). If || f|[ g is 0, then f(z) equals 0 for almost every z in
E; then f(z)g(z) is 0 for almost every x in E and the conclusion is trivial. If ||g||;,~ (E)
is 0, the conclusion is trivial. Hence, we can assume that both || f|| ;g and [|g]|.- (E)
are in (0; +oo]. We notice that if || f||;,g) = +o0 or ||g]| 14+ g = +00, the conclusion is
trivial. Having said that, it is not restrictive to assume that p, p* are real numbers in
(1;400) and || f|[ 1ogy + |9/l 1o ) are real numbers in (0; +00). In particular, both f(x)
and g(z) are real numbers for almost every z in E. Thanks to Young’s inequality (see
3.1.8), for almost every z in E it holds that

[f@g@)  _ _f@)I 9@
Mo 9l — 21T 7 Il
If we integrate, we obtain that
f(@)g(2)] L f@)ff L[ lg(@)”
Pl 19T "7 = 5 e M ™ T 5 JeNgl o
E e (®) 191l Lr* (m) D Je LP(E) p* Je g Lr* (E)
1 1
=—-+4+—=1.
p P

The thesis follows rearranging terms. Moreover, we notice that the equal holds true if
and only for almost every x in E it holds that

f@e@)| @ lg(x)
1 ey 19 ey P IS ILoy  2* Nl

p*

p* :
Lr"(E)
As shown in 3.1.8, this is equivalent to require that for almost every x in E it holds that

F@F _ lg@)”
[T

p* ’
LP™ (E)
]

Proposition 3.1.10 (Minkowski’s inequality).
Let (E; &; 1) be a measurable space with a measure . Let f,g:E — R be measurable
functions. Let p be in [1;+00]. The following inequality holds true:

1f+ 9l oy < N fll Loy + 119l poge) -
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Proof. 1If p is equal to 1, the thesis is an immediate consequence of the triangular
inequality.

If p is equal to +o0, for almost every x in E it holds that |f(z)| < [|f|| ) and
19(x)] < [|g]l poo (). Hence, for almost every x in E it holds that

[f (@) +g(@)| < [f(2)] + g(2)] < [ f]lpoem) + 9]l gy

So, the conclusion is immediate.

Let us assume that p is a real number in (1;+00). If || f|[ 1, g equals +-00 or [|g| o)
equals +00, the conclusion is trivial. So, we can assume that both || f|| o), [19]] o)
are real numbers. In particular, f(x) and g(z) are real numbers for almost every = in E.
Since p is greater that 1, the function ¢,(z) = |z|” is convex. For all z in E, it holds
that

)+ g < 2 (LN <o o+ giop).

If we integrate, we obtain that

1 + 9wy <27 (1 ooy + 19l ogey ) < oo

Let p* be the conjugate index of p; by definition 3.1.7, we have that

po P
p—1

Thanks to Holder’s inequality (see 3.1.9), we obtain that

/|f T g(@) du(z) /|f 9@ f(@) + 9(o)] du(z)
< / F(@) + g@)P | f(2)] dpa(z)
+ / (@) + g@)P " g(@) du(w)

We have shown that
1+ 0lngey < 15 + 01ty (171 ogey + N9l ey ) -

We notice that if || f + g||7, ) is 0, the conclusion is trivial; otherwise we can divide both

sides by the real positive real number || f + gHg;(l]E) and the thesis follows immediately. [
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Theorem 3.1.11. Let (E; &; ) be a measurable space with a measure p. Let p be in
[1; +00]. The function
Nl Loy = LP(B) = [0; +00)

defined in 3.1.5 is a norm. In particular, LP(E) is a metric space with the distance
induced by the norm.

Proof. The well definition of the function
ey : L(E) = [05-+5)
has already bee discussed in 3.1.5. We claim that it is a norm.
e Obviously, for all f in LP(E), it holds that || f|| 1o(g) 18 @ real number in [0; +00).

e We notice that [|f|| g = 0 if and only if f(z) = 0 for almost every z in E, i.e. f
is the null function in the quotient set.

e If )\ is any real number, it holds that
AN oy = IAF Nl o ey -

e As for the triangular inequality, it is an immediate consequence of the Minkowski’s
inequality (see 3.1.10).

]

LP vs L4

Proposition 3.1.12. Let X, Y be normed vector spaces. Let T : X — Y a linear map.
The following facts are equivalent:

1. T is continuous;
2. T s continuous in 0;

3. T is bounded, i. e. there exists C' in R such that for all x in X it holds that

1T (@)lly < Cllllx;

4. there exists D in R such that T' 1s D-Lipschitz.

Proof. 1t is obvious that 3) implies 4), that implies 1) that implies 2). As for the the 2)
implies 3), by definition of continuity in 0, there exists a positive real number § such
that if ||z||y < 0 then ||T'(x)||y < 1. If = is any vector in X \ {0}, it holds that

It = | (1 ) " (1)

|5
Proposition 3.1.13. Let (E;&; 1) be a measurable space with a measure p. Let us
assume that p(E) is finite. Let p,q such that 1 < p < q < +oo. Let us consider the
inclusion map i : LY(E) — LP(E). Then, it is well defined and continuous.

]l

TS

—lzllx -
Y y O

]
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Proof. If q equals +00 and f is any function in L*°(E), then it is bounded almost
everywhere; in particular, it is in LP(E) and the following inequality holds true:

1l ze < s(E) [N oo iy 5

so, the conclusion follows by proposition 3.1.12. .
Let us assume that p, ¢ are real numbers. We notice that the function ¢(x) = |z|»
is convex. Thanks to Jensen’s inequality (see 3.1.6), it holds that

0 (@ / !f!”du(l’)) < [els@Pnuto)

In other words, we obtain that

(/] \f(x)\”du(a:))’l” < (-5 | \f(x)\qdm:c))é.

If we rearrange terms, we obtain that

1.1
1 1l oy < B> 1 F1l 1oy
and the thesis is an immediate consequence of 3.1.12. n

Remark 3.1.14. The statement of the proposition 3.1.13 is generally false if x(E) is not
finite. In R? with the Lebesgue measure, we can consider the function f, : R? = R

such that 1

fo(®) = —51s0,0)-
|x| 0;1)

Let p be a real number in [1;+00); it’s easy to see that f, is in LP(RY) if and only if
ap < d; if we consider the function g, : R — R such that

1
Ja (-1') = W]IB(O;I)%

it’s easy to see that g, is in LP(R?) if and only if ap > d. Then, we obtain all the
counterexamples requested.

3.1.2 Completeness

The aim of this subsection is to show that LT () is a complete metric space with respect
to the distance induced by the norm. In other words, (LP(E; [|-|| ,» ) is a Banach space.
However, we have to show some preliminary lemmas.

Lemma 3.1.15 (Chebyshev’s inequality).
Let (E; &; ) be a measurable space with a measure u. Let g : E — [0;+00] be a
measurable function. Let § be any positive real number. If we define

Es :={xz | g(z) = 0},
then, the following inequality holds true:

n(Es) < 5 / g()du(z).
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Proof. We notice that for all z in E it holds that §1g,(z) < g(z). If we integrate, we
obtain that

(D) = [ e @du(o) < [ gla)duta)
E E
[l
Lemma 3.1.16 (Borel-Cantelli’ lemma).

Let (E; &; 1) be a measurable space with a measure . Let {A,}nen be a sequence of
measurable sets. We define

A={ze€E | zeA, forinfinite indices n} .

Let us assume that

> u(A,) < +oo.

neN
Then, A is a measurable set and j(A) = 0.

Proof. Let m be any positive integer. We define
E, = U A,
n>m
We notice that
A= (U An> = () En
meN \n>m meN
So, A is measurable. It’s easy to see that
pu(A) < inf p(E,,) < inf (Z M(An)> :

meN meN
n>m

in conclusion, we notice that the right hand side is 0 because we are assuming that

Zu(An) < +o00.

neN

]

Lemma 3.1.17. Let (X;d) be a metric space; let {x,}nen be a sequence in X. Let us
assume that

Z d(xp; Tpgr) < +00.

neN
Then {xp, nen is a Cauchy’s sequence with respect to the distance in X.

Proof. Let € be any positive real number; let ng in N such that
Z d(xp; Tpe1) < €.
n>ng

If n,m are positive integer such that m > n > ng, we can use the triangular inequality
and we obtain that:

A(Tm;x0) < d(@r;opn) < Y d(wgizpm) < e

n k>ng

3

i
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Lemma 3.1.18. Let (X;d) be a metric space; let {x, }nen be a Cauchy’s sequence in
X. Let {0k }ken be any infinitesimal sequence of positive real numbers. There exists a
subsequence {xy, }, oy such that for all k in N it holds that d(x,,; Tn,,,) < O

Proof. The sequence {n}ren can be defined by recursion. Thanks to our hypothesis,
there exists a natural number ny such that for all n greater than or equal to ng it
holds that d(z,,;x,) < d. Hence, we have defined z,,. Let k any positive integer.
Let us assume that {x,,;...;z,, } have already been defined. There exists an integer
nky1 greater than ny such that for all n greater than or equal to ng,; it holds that
d(Zn,,,,;Tn) < Op41. Hence, we have defined z,, . O

Theorem 3.1.19. Let (E; &;p) be a measurable space with a measure . Let p be in
[1; +00]. Then (LP(IE); H'HLP(IE)) is a complete metric space.

Proof. Let {f.}nen be a Cauchy’s sequence in LP(E). Let us denote {fn}neN the
correspondent sequence of functions in DP. If we show that there exists a measurable
function f : E — R such that f is in DP and

lim
n—-+00

f-f

=0
Lr(E)

and we denote f the corresponding class of f in LP (E), it is immediate to see that
{fn}nen converges toward f with respect to the L” norm in the quotient set. In other
words, we can assume that {f,},en is a well defined sequence of functions.

Step 1: Let us assume that p is +0o. By definition of Cauchy’s sequence, if ¢ is a
positive real number, there exists a positive integer ng such that for all integer n, m
greater than or equal to ng it holds that

an - meLOO(E) <é&

Be definition 3.1.1, there exists a measurable set C' in E such that p(C¢) = 0 and for all
z in C' we have that {f,(x)}nen is a Cauchy’s sequence. Hence, for all z in C' we define
f(z) as the pointwise limit of { f, () }nen; if 2 is in C°, we define f(x) := 0. Hence, f is
a well defined function between E and R. Moreover, we can also assume that for all
nin N for all z in C'it holds that [f.(z)| < || fall oo () Since {f}nen is a Cauchy’s
sequence in L (), it’s easy to see that there exists a positive real number M such
that for all n in N it holds that ||fn||L°°(IE) < M. In particular, for all z in C, we have
that |f(x)] < M. As f is the pointwise limit of {f, }nen in C and fis 0 in C°, it is a
measurable function. Hence, f in L>(E). Let £ be any positive real number; let ng be a
positive integer such that for all integers n, m greater than or equal to ng it holds that

[ = frnll Loy < €

By definition of C', we have that for all x in C for all integers n, m greater than or equal
to ng it holds that |f,(z) — f.(x)| < e. In particular, we can state that

[fu(z) = f(z)| = lim |fu(z) = fm(z)] <e.

m—-+00

In other words, {f, }nen converges toward f with respect to L™ norm.
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Step 2: Let us assume that p is a real number in [1; +00). Thanks to lemma 3.1.18,
there exists a subsequence {f,, },y such that for all k£ in N it holds that

ankﬂ - f”kHLP(E) < 47k,

For all £ in N we define
k= |fnk+1 - fnk|>

It’s immediate to see that g, is a measurable function between E and R and A, is a
measurable set. Thanks to Chebyshev’s inequality (see 3.1.15), we obtain that

wAr) = u({z € E | gi(a)" > 277}) < QL gu()Pdu(z) < 27,

We define the measurable set
A= {z € E| x € Ay for infinite indices k}.

Thanks to Borel-Cantelli’ lemma (see 3.1.16), we obtain that p(A) = 0. Hence, for all =
in A° we have that {f,, (7)},.y is a Cauchy’s sequence (see lemma 3.1.17). For all z in
A° we define f(z) the pointwise limit of {fy, ()}, y; for all z in A we define f(x) = 0.
As shown in the previous step, we have that f is a well defined measurable function
between E and R. As described in the previous step, there exists a positive real number
M such that for all n in N it holds that || f,|] ey < M; thanks to Fatou’s lemma, we
have that

J1@F dutw) < tmint [ 1ol duta) < 217

In particular, f is in LP(E). Let k be any positive integer. Thanks to Fatou’s lemma,
we have that

1= by = [ Vo) = F@P duto)

B /]E (hgr—‘?oo [ fri (@) = fnh(ﬂf)|p> du(x)

<timint [ 1£, () = fo, @F duto)

< 47Fp,

Hence, {fn, }yey converges toward f with respect to L” norm. To conclude, we notice
that the whole sequence {f, }nen converges toward f with respect to LP norm, because
it is a Cauchy’s sequence. m

Ezample 3.1.20 ({7 space).

Let u be the measure in N that counts point, i.e. if A is any subset in N we define u(A)
as it’s cardinality. We notice that (N; P (N); u) is a measurable space with a measure f.
We define [P := LP(N). In other words, if p is a real number, [? is the collection of the
function f : N — R such that

/N F@)? du(n) < +oo.
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More explicitly, we notice that
/ )P dutn) = 1 F )
N neN

Obviously, if we define ||-||,, : ¢ — [0; 4+00) such that

1l = <Z|f(n)|p>p,

neN

then |||, is a norm and (¢;]-||,,) is a a complete metric space. We claim that ¢ is
separable. If n is any positive integer, we define f,, : N — R such that f,(n) =1 and
fn(k) = 0 for all natural number k # n. It’s easy to see that Spang {f, | n € N} is a
countable dense subset in /7.

If p is equal to +oo, we define ¢> := L>*(N). In other words, ¢*° is the collection of
the bounded-valued function between N and R. We notice that

|71l = sup{l £ (m)]}

and it is always denoted as || || o). Obviously, (£ |-[|s) is a complete metric space.

3.1.3 Convergence of measurable functions

Definition 3.1.21 (Convergence in measure).

Let (E; &; ) be a measurable space with a measure u. Let {f,}.en be a sequence of
measurable functions between E and R; let f be a measurable function between E and
R. Let us assume that if € is any positive real number it holds that

lim_j({x € B| |f,() = )] = <} =0

n
We say that {f,},en converges toward f in measure.

Proposition 3.1.22. Let (E; &; 1) be a measurable space with a measure . Let us
assume that p(E) < 4+o00. Let {fn}nen be a sequence of measurable functions between E
and R; let f be a measurable function between E and R. If { f,(x) }nen converges toward
f(z) for almost every x in E, then { f,}nen converges toward f in measure.

Proof. Let € be any positive real number. For all n in N we define

B, ={z cE|3m=>n: [fun(r) - f(z)] = c}.

B = () B;,

neN

liminf | f,,(x) — f(z)| > 0} ,

If we define

n—-+o0o

B::{xEE

we notice that B¢ is completely contained in B. We know that u(B) = 0; since E is a
finite measure space, we have that

lim p(B;) = u(B%) < u(B) =0.

n—-+oo
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If we notice that for all » in N it holds that
{zeE| |fulx) - f(z)| = €} € By,
the conclusion follows immediately. O

Example 3.1.23. In 3.1.22, it is necessary to assume that [E is a finite measure space. In
fact, if E = R with the Lebesgue measure, we notice that {1, o) }nen is a sequence of
measurable functions whose pointwise limit is the null function; however, it does not
converge toward 0 in measure.

Proposition 3.1.24. Let (E; &; 1) be a measurable space with a measure p. Let { fn}nen
be a sequence of measurable functions between E and R; let f be a measurable function
between E and R. Let p be a real number in [1;+00). If {fn}nen converges toward f
with respect to LP norm, then { f,}nen converges toward f in measure.

Proof. Let us fix a positive real number . Thanks to Chebyshev’s inequality (see
3.1.15), we have that

iz €E| |fule) ~ f(z) 2 £) < lim —/!fn ) du(z) = 0.

n—+oo P
]

Proposition 3.1.25. Let (E; &; 1) be a measurable space with a measure pi. Let { fn}nen
be a sequence of measurable functions between E and R; let f be a measurable function
between B and R. Let us assume that { f,}nen converges toward f in measure. There
exists a subsequence { fu, }, oy such that {fn, (z)},oy converges toward f(x) for almost
every x in E.

Proof. For all € in (0;4+00) for all n in N we define

A, ={z eE| |fulz) — f(2)] = €}
Under our hypothesis, it holds that

lim p(AS) =0.

n—-+oo

If we apply a diagonal procedure, we can find a subsequence {f,, },oy such that for

all £ in N it holds that p <A§k> < 27%. Thanks to lemma Borel-Cantelli’ lemma (see
3.1.16), if we define

A= {x €eE|xe€ A,%k for infinite indices k} ,

we obtain that p(A) = 0. In particular, for all  in E\ A, there exists ko in N such that
for all k greater than ko it holds that |f,, (z) — f(z)] < £ O

Example 3.1.26. For all n in N we define



3.1. Definitions and main properties

In [0;1) with the Lebesgue measure, for all n in N we define the measurable set
A, ={zxel0;1) |k e€Z v+ k€ (6n;0nt1]}-
Let {f.}nen be the sequence of measurable functions such that
fo=14,.

It’s easy to see that {f, }nen converges toward the zero function in measure. Since the
sequence {0, }nen is not bounded and the sequence {9,411 — 0, }nen is infinitesimal, for
all z in [0;1) for all n in N there exists an integer m greater than n such that z is in
Ap,. This is enough to conclude that the sequence {f, }nen does not converge pointwise
toward zero function in any point.

Theorem 3.1.27 (Severini-Egorov’s theorem).

Let (E;&; ) be a measurable space with a measure . Let us assume that u(E) is
finite. Let { f,}nen be a sequence of measurable functions between E and R; let f be a
measurable function between E and R. Let us suppose that { f,,(x)}nen converges toward
f(z) for almost every x in E. For all positive real number ¢, there exists a measurable
set E. such that p(E.) < e and { fn}nen converge toward f uniformly in E\ E..

Proof. Let n, k be positive integers. We define

Bk = {xEE|3m2n:|fm(x)—f(x)]2%}.

Since E is a finite measure space, if we define

1
BF — {x eE | |fu(z) = f(z)] > z for infinite indices n} = m Bk,

neN
it holds that
im pu(Bp) = p(B").

n—+oo
Since {f,(x)}nen converges toward f(x) for almost every z in E, we obtain that
u(B*) =0.
Let us fix a positive real number e. We can state that there exists a subsequence
{By,:k tren such that for k£ in N it holds that

€
W Brsk) < gt
We define
E.:= | Bus
kEN
and we obtain that .
keN keN

If z is in E, for all k£ in N for all integer m greater than ny it holds that

1
o) — F@)] < .
Hence, { f,}nen converges toward f uniformly in E¢. O

Ezample 3.1.28. In theorem 3.1.27, it is necessary to assume that p(E) is finite. Other-
wise, we can consider £ = R with the Lebesgue measure and {]l[n;Jroo) }neN. It’s easy
to see that the sequence converge toward zero function pointwise; unfortunately, if B is
any finite measure subset, the convergence is not uniform in B°.
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3.1.4 Density in L

The aim of this subsection is to show the density of some collections of functions with
respect to L” norm.

Proposition 3.1.29. Let (E; &; 1) be a measurable space with a measure pi. Let p be
n [1;4+00]. Let us define

BP(E)={feLP(E)|IMeR: |f(x)] <M for almost every v € E}.
Then BP(E) is dense in LP(E) with respect to the LP norm.

Proof. If p equals +00 the conclusion is trivial. Let us assume that p is a real number
n [1;400). Let f be any function in LP(E). Let N be any positive integer. We define
the function T f : E — R such that

Inf(x) = (f(x) An)V (=n).

We say that Ty f is the truncation of f between —N and N. We notice that {Tn f}nen
is a sequence in BP(E) that converges pointwise toward f almost everywhere and
|Tnf(x) — f(x)]” <2]|f(x)]” for almost every x in E. Since |f|” is a suitable domination
in L'(E), the dominated convergence theorem implies that

lim [ (Tnf(z) = f(2))" du(z) = 0.

N—+4o00 E
]

Proposition 3.1.30. Let & be a o-algebra in R that contains the open balls; let ju be
any measure over (R%; &). Let p be a real number in [1;+00). We define

AP(RY) = {f € LP(RY) | IM € R : f(z) =0 for almost every x € B(0; M)} .
Then AP(R) is dense in LP(R) with respect to the LP norm.

Proof. Let f be any function in LP(E). For all positive integer n, we define f,, : R? — R
such that

fn(x) = f(2)1p0m)-

It’s immediate to see that the sequence {f, }nen is in AP(R?), it converges pointwise
toward f for almost every x in R and | f,,(z) — f(z)|" < 2|f(z)[" for almost every z in
R? for all n in N. Since |f[” is in L!'(R?), the dominated convergence theorem implies
that

lim [ (fu(z) = f(2))" du(z) = 0.

N—+400 E

]

Example 3.1.31. In proposition 3.1.30 it is necessary to assume that p is a real number.
If p equals +o0, in (R; #; Z) we notice that the function 1 is in L>(R), but it cannot
be approximated by a sequence of function supported in bounded subsets with respect
to L°° norm.
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Proposition 3.1.32. Let & be a o-algebra in R that contains the open balls; let ju be
any measure over (R% &). Let p be a real number in [1;+00). We define

CP(RY) == AP(R%) N B2(RY).
Then CP(R) is dense in LP(R) with respect to the LP norm.

Proof. Let f be a function in LP(R?). Let n be any positive integer. We denote as T}, f
the truncation of f between —n and n (see 3.1.29). We define f,, : R — R such that

fulz) = T f(2)Lp0m).

If we slightly modify the procedure described in 3.1.30, we obtain that {f,}.en is a
sequence of measurable function in CP(R?) that converges toward f with respect to LP
norm. [

Remark 3.1.33. Let (X;7) be a topological space. Let A, B subsets in X. Let us assume
that B is dense in X and A contains B. It’s immediate to see that A = X; in other
words, A is dense in X.

Proposition 3.1.34. Let (E; &; ) be a measurable space with a measure pi. Let p be
n [1;+o0]. We define .7 (E) as the set of the step functions (see 2.2.6). Then #(E) is
dense in LP(E) with respect to LP norm.

Proof. Let f be any function in LP(E). We claim that there exists a sequence of step
functions that converges toward f with respect to L” norm. If we join 3.1.29 and 3.1.33,
we can assume that f is a bounded-valued function. Let n be a positive integer. If k is

a positive integer, we define
k k+1
Ap = [ ([—; - )) :
n.n

if k is a negative integer, we define

tm o ([E215)).

Then, we define f,, : E — R such that

fule) = 37 M (o).

kez*

Since f is a bounded-valued function, f,, is defined by a finite sum; hence, {f,},ecn is a
sequence in .7 (E). It’s easy to see that for all n in N for all z in E it holds that

|[fn(@) = f2)] <

S

In other words, we obtain that
ngffw | fn — f”LOO(E) =0;

so, if p is 400, the thesis is proved. Let us assume that p is a real number in [1; +00). We
have already shown that {f, },en converges pointwise toward f for almost every z in E.
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It’s easy to see that for all n in N for all z in E it holds that |f,(z) — f(2)]” < 2|f(2)|";
since | f|” is a suitable domination in L!'(E), the dominated convergence theorem implies
that

lim [ (fu(z) = f(2))" du(z) = 0.

N—+oo E

]

Proposition 3.1.35. Let p be a real number in [1;+00). Then, the set C.(RY) of the
continuous functions supported in a bounded subsets is dense in LP(R®) with respect to
the LP norm.

Proof. Let f be a function in LP(RY). If we join 3.1.32, 3.1.34 and 3.1.33, we can assume
that f is the indicator function of a bounded measurable subset E. Let us fix a positive
real number €. Thanks to 2.1.22, there exist an open set A and a close set C' such that

CCECA

and .Z%(A\ C) < e. We recall that if X is any subset in R, the function dist(-; X) :
R? — R such that
dist(y; X) = inf{|ly — z| | z € X}

has the following properties:

e it is well defined and continuous;

e dist(y; X) = 0 if and only if y is in X.
If we define g. : R — [0; 1] such that

(2) = dist(x; A°)
Je\T) = dist(x; A¢) + dist(x; C)’

we notice that g. is well defined and continuous and it holds that

Lo —tewpPde= [ o) - 1s@pdr < £4ar0) <o

]

Proposition 3.1.36. Let p be a real number in [1;+00). Then, LP(R?) is a separable
metric space.

Proof. We will complete the proof under the further assumption that d equals 1. Let
us define B as the collection of indicator functions of intervals whose boundary value is
rational. B is countable. We define

D = Spang(B).

It’s immediate to see that D is countable. We claim that it is dense in LP(R?) with
respect to LP norm. Let f be any function in LP(R?). We have to show that if € is any
real number, there exists a function f. in D such that || f — f.|| prray < € If we join
3.1.32 and 3.1.34, we can assume that f = cl g, where ¢ is a real number and F is a
measurable bounded set in R. Since Q is dense in R, we can also assume that ¢ is a
equal to 1. Let € be any positive real number. Thanks to 2.1.22, there exists an open
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set A such that E is contained in A and £ (A\ E) < £. In other words, we can assume
that A is an open bounded set. We know that there exists a finite of countable collection
of pairwise disjoint intervals that cover A; without loss of generality, we assume that

A= U (an; by)

neN

and

> (bn — an) < +oc.

neN

In other words, we can assume that the sum is finite, namely

N
A= U(an; by).
n=1

For all n in N there exist ¢, and d,, in Q such that (c,;d,) is contained in (a,;b,) and

L (0 b) \ (enidn)) < 17
It’s immediate to see that

N
fo= ) Lo
=1

isin D and
er - fHLp(R) < e
O

Remark 3.1.37. The statement of proposition 3.1.36 is false if p equals +o00. In fact,
L*(R) is not separable. It’s enough to consider the collection of functions {1 (3;100)}zer:
it is more than countable and if z; # x5 it holds that

H]1[$1;+00 - ]1[12;+00)HL°°(R) =1

Hence, L>(R) is a metric space that admits a more than countable subset {f, |z € R}

such that the open balls
1
s (12) [se]

are pairwise disjoint. This is enough to conclude that L>(R) is not separable. By
contradiction, let us assume that L*°(R) is a separable metric space, namely there
exists a countable dense subset D. Thanks to the choice axiom, there exists a function
Y B — D such that for all B (fm; %) in A it holds that 1 (B (fx; %)) isin B (fx; %) ND.
Since the open balls are pairwise disjoint, the function v is injective. As % is more
than countable and D is countable, the absurd follows immediately.

Theorem 3.1.38 (Lusin’s theorem).

Let E be a measurable subset in R?. Let f : E — R be a measurable function. Let us
assume that ZL%(E) is finite. For all positive real number € there exists a closed set E.
with the following properties:

e [ is completely contained in F;
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o ZYE\E.)<c¢;
o flg. is continuous.

Proof. Step 1: Let us assume that f is a bounded-valued function. Then f is in L'(E);
thanks to 3.1.35, there exists a sequence of continuous functions { f, }nen that converges
toward f with respect to L' norm. Up to further subsequences, not relabelled, we
can assume that the convergence is pointwise for almost every x in E. Let us fix a
positive real number . Thanks to Severini-Egorov’ theorem (see 3.1.27), there exists a
measurable subset E! such that

e £’ is completely contained in E}

o ZUE\E) <3
o {fu}nen converges toward f uniformly in E.

If E! is closed, the theorem is proved; otherwise, thanks to 2.1.22, there exists a closed set
E. contained in E! such that £*(E.\ E.) < £. Hence, we obtain that Z*(E\ E.) < e.

Step 2: Let f be any real-valued measurable function. It is enough to show that for
all positive real number ¢ there exists a measurable set A. in E such that Z(E\ A.) <e¢
and f is bounded in A.. For all positive integer n we define

Az = [ ([=n;n]).

Since f is a real-valued function, {A1 },cn is a decreasing sequence of measurable sets
and it holds that
()AL =0.

neN
Since FE is a finite measure set, this is enough to conclude that

lim Z(A.1)=0.

n——+oo n

3.2 Convolution

Let f,g : R — R be measurable functions, the function f * g is called convolution
between f and g. We will give reasonable hypothesis to make sure that the function is
well defined and we will study the its main properties. However, the convolution plays
a fundamental role to show the density of smooth functions in LP, for p in [0; 4+00).
Qualitatively, fxg(x) is a kind of weighted average of the value of f in the neighborhood
of x with respect to the value of g. Hence, it is not surprising that the convolution
makes functions more regular.

3.2.1 Definition and main properties

Definition 3.2.1 (Convolution for nonnegative functions).
Let f,g: RY — [0; +00] be measurable functions; let z be any point in R?. We define

(fxg)(x) = » flz —y)g(y)dy.
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3.2. Convolution

Remark 3.2.2. Since the integral make sense for nonnegative functions, we notice that
definition 3.2.1 is always well posed, i. e. f * g(x) is in [0; +00].

Remark 3.2.3. Let f,g,h : RY — [0; +00] be measurable functions. The convolution has
the following properties:

e (commutative) if we define z = = — y and we change variables, the following
identities hold true:

(f*g)(z) = ” flx—y)g(y)dy = » f(2)g(z — 2)dz = (g * f)(z).

e (associative) Since the functions are nonnegative, we can use Fubini’s theorem
and we can switch the order of integration; if we define ¢ := y — 2z we obtain that

(F ) @) = [ (F+)hta = )iy
= [ ([ #1ats =23z ) e = pay
= [ s ([ o= 2nta = ay) a:
_ /R £(2) (/R 9Oz — = — t)dt) dz

= [ )@ *n) — )iz
— [/ * (g h))(@).

e (linearity in both factors) If A is any positive real number, it’s easy to see that
(Af +9g) xh=A(f*h)+ (g h);

frAg+h)=Af*g)+ (f*h)

e (measurability) The function f * g : R? — [0; +00] is measurable, as follows from
Fubini’s theorem.

Definition 3.2.4 (Convolution for variable sign functions).
Let f,g: RY — R be measurable functions; let z be any point in R?. We define

(f*g)(r) = /Rd flx —y)g(y)dy.

Remark 3.2.5. Unlike the case of definition 3.2.1, the integral the defines convolution
may not have sense. The purpose of next lemmas is to find reasonable hypothesis to
make sure that definition 3.2.4 is well posed.

Proposition 3.2.6. Let f,g: R? — [0; +00] be measurable functions. If f and g are
in L'(R?), then | f *gHLl(Rd) = ||fHL1(Rd) ||g||L1(Rd)'

43



Chapter 3. LP space

Proof. Thanks to Fubini’s theorem, we can switch the order of integration; so, the
following identities hold true:

1 % lisgany = [, £ oot

= [ ([ s —votwriy) s
B /Rd < i y)d@") g(y)dy

= ||g||L1(]Rd) HTy(f)HLI(Rd)
= ||g||L1(]Rd) Hf”Ll(Rd) :
O
Corollary 3.2.7. Let f,g : R — R measurable functions in L*(RY); then definition
3.2.4 is well posed; in other words, the integral make sense and f x g(z) is finite for
almost every x in R%. In particular, the function f x g is well defined for almost every
z in R? and it is measurable. Moreover, the following inequality holds true:
1f = gHLl(R‘i) < ”.f“Ll(]Rd) ||g||L1(Rd) :

Proof. Thanks to proposition 3.2.6, | f| x |g| is in L*(R?). In particular |f| * |g| (z) is
finite for almost every = in R%. Let z be any point in R?. If we define

[C(f, 9)](y) = flx—y)g(y),

we have already shown that (,(f,g) is in L}(R?) for almost every z in R% hence f * g
make sense and it is finite for almost every x in R?. Thanks to Fubini’s theorem, f * g
is measurable. Since we can switch the order of integration, we can slightly modify the
proof of proposition 3.2.6 to show that the following inequalities hold true:

1 0l 2 gy = / 1 *g(a)| da
Rd

=[] 1= waturay
< [ ([ ullatlay) ae

= £l ey N9l 1 ey -

dx

]

Proposition 3.2.8. Let f,g : R? — [0;+00] be measurable functions; let p be in
[1;4+00]. If f is in LP(R?) and g is in L*(RY), then || f * Il zoway < 1Nl o way 191 11 may -

Proof. 1f p equals +o00 the conclusion is immediate. If p is equal to 1, the thesis has
already been proved in proposition 3.2.6. Let us assume that p is in (1;+00). Let x be
any point in R?; thanks to Hélder’s inequality, we obtain that

frg(x)= g flxz —y)g(y)dy

= | S =g o)+ dy

< ( Rdf(:v—y)pg(y)dyy (/Rdg(y)dy)l_;-
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Integrating in x and switching the order of integrals, we find that

16 % 01z = [ [F * sl

< /Rd (/Rd fla— y)pg(y)dy) 191177 ey dx
= 1191l gy /Rdg(y) ( fle— y)”dx) dy

= 19017y N9l gy 11 17
= 912 gay £ 110 ey -
U

Corollary 3.2.9. Let f,g : R — R measurable functions; let p be in [1;+o00]. If
we assume that f is in LP(R?) and g is in L'(R?), then definition 3.2.4 is well posed,
namely the integral make sense and f * g(x) is finite for almost every x in R In
particular, the function [ * g is well defined and measurable. Moreover, the following
wmequality holds true:

1 % 9l oy < WSl Logray 1911 £y -
Proof. Thanks to proposition 3.2.8, we can slightly modify the proof of corollary 3.2.7;
then thesis follows immediately. O]
Proposition 3.2.10. Let f,g : R? — [0; +o0| measurable functions; let p be in [1;+00];
let p* be the conjugate index of p as in 3.1.7. If f is in LP(R?) and g is in LP (R%),
then || f * gHLOO(]Rd) < ||f||LP(]Rd) ”gHLP*(]Rd) :

Proof. If p equals 400, thesis follows from 3.2.8. Let us assume that p is in [1;400).
Let = be any point in R¢; thanks to Holder’s inequality, we obtain that

frg(r)= g flz —y)g(y)dx

< ( e —y)pdy); (/Rdg(y)p*dy)pl*

= “fHLP(Rd) HgHLP*(Rd) :
m

Corollary 3.2.11. Let f,g: R? — R be measurable functions; let p be in [1;+0oc]; let
p* be the conjugate index of p as in 8.1.7. If we assume that f is in LP(RY) and g is in
LP"(R?), then definition 3.2.4 is well posed, namely the integral make sense and f * g(z)
is finite for almost every x in R:. In particular, the functions f x g is measurable.
Moreover, the following inequality holds true:

”f*gHLOO(]Rd) HfHLP(]Rd g/l o *(RY) -

Proof. Thanks to proposition 3.2.10, we can slightly modify the proof of corollary 3.2.7;
then thesis follows immediately. O

Lemma 3.2.12. Let f : RY — R be a measurable function. Let p be in [1;+00). Let
us assume that f is in LP(R?). Let h be any vector in RY; let 7,f be as in 1.0.1 Then
{Thf}her converges toward f with respect to L norm, when h approaches to 0.
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Proof. Step 1: Let us assume that f is in CO(RY), namely there exists a positive
real number R such that f is supported in B(0; R). Hence, if |h| is lower than 1, the
following inequalities hold true:

170 f = fllLpgay = / |f(x—h) — f(z)] dz.

B(0;R+1)

We claim that the right hand side converges toward 0 as h approaches to 0. We have
that:

e since f is continuous, for all z in R? it holds that

lim f(z — h) = f(z) = 0;

h—0

e for all z in R? for all » in B(0;1) it holds that
[f (@ = h) = f(@)] <2 fll o ey Lso:r+1) (7).
Since f is supported in a compact subset, the left hand side is function in LP(R?).
Then the conclusion follows from dominated convergence theorem.

Step 2: Let f be any function in LP(R?). Let ¢ be any positive real number; since
p is real, there exists f in C?(R?) such that

If = g”Lp(Rd) <

Wl ™

Let h be any vector in RY. We notice that

15
178 = 7080y = 1F = 9l < 5

As shown in the first step, there exists a positive real number hg with the following
property: if h is in B(0; hg), it holds that

£
lg — Th9||LP(Rd) <3

w

Hence, if h is in B(0;1), the following inequalities hold true:

If = TthLP(Rd) <|f- gHLP(Rd) + 7 f = TthLP(Rd) + g - Thg“Lp(Rd)

<€+€+€—E
-3 3 3 7

Then, thesis follows immediately. O]

Proposition 3.2.13. Let f,g: R — R be measurable functions; let p be in [1;400];
let p* be the conjugate index of p as in 8.1.7. If we assume that f is in LP(RY) and g is
in LP"(R?), then f x g is a uniformly continuous function.
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3.2. Convolution

Proof. Let z and h be any vectors in R%. It is not restrictive to assume that p is in
[1; +00). Thanks to Holder’s inequality, we obtain that

£rgle=1) = Frg) < [ 17 —h=1) = fa =)l lotw)l dy

( e —h—y)— fla - )V"dy);( rg<yw*dy)”1*

S(/Rdw—h)— |”dy) (/ ()" dy)l*

= | f — f||Lp(Rd) ||9||Lp*(Rd) :

Thanks to lemma 3.2.12, ||73.f — f|| 1»(ga) is & continuity module that does not depend
of . Hence, thesis follows immediately. O]

3.2.2 Regularization and approximation

Proposition 3.2.14. Let p be in [1;+00|. Let us define p* the conjugate index of p as
in 8.1.7. Let f,g : R?* — R be measurable functions. Let g be in LP(R?). Let i be an
integer in {1;...;d}. Let us assume that there exists ﬂ and it s continuou& let us
8(f 9)

suppose that f and % are in L (R?). Then, there e:msts and it equals * .

Proof. Thanks to proposition 3.2.11 and 3.2.13, f x g and x g are well defined and
uniformly continuous. Without loss of generality, we can assume that ¢ equals 1. Let
(x1;...;14) be any vector in RY; if we denote y == (z2;...;24), we have to show that for
all (z;y) in R x R1, the following identity holds true (assuming that z is nonnegative):

[*glx;y) — fxg0;y) = /—*gtydt

Then, thesis follows immediately from the fundamental theorem of calculus. Let x be
any positive real number; let (¢;w;y) be any vector in [0;z] x R x R4"1. We claim that
the function ¢ : [0; 2] x R x R?"! defined as

C(t,w,y) = aafl(t—w y)g(w;y)

is in L'([0; 2] x RY). In deed, we can use Hélder’s inequality and Fubini’s theorem for
nonnegative function and we obtain that

[ etwpldeudy = [ ( /
[0;2] x R4 0 R4
[

0

= ||

9
8131

(t —w;y)g(w; y)dwdy) dt

HQHLp(Rd) dt
LP* (R4)

(9301

of
833'1

||g||LP(Rd) :
L™ (R)
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Hence, for all (z;y) in [0; +00) x R?"! the following identities hold true:

——*g | (Ly)dt = ——(t —w;y)g(w;y)dwdy | dit

[ (Gorea) wma= [ (L5 )
= /Rd (/Ogﬁg(w;y)g—]‘i(t - w;y)dt> dwdy
= /Rdg(w;y) (/Ox g—i(t - w;y)dt) dydw

= /Rdg(w;y)[f(l“ —w;y) — f(0 —w;y)]dwdy
= fxg(z;y) — f*9(0;y).

In the last identity we used the fact that f * g is finite for every (x;y) in R x R4
then we can split the integral. ]

Corollary 3.2.15. Let p be in [1;400|. Let p* be the conjugate index of p as in 3.1.7.
Let f,g : RY — R be measurable functions. Let g be in LP(R?). Let (iy;...;4,) be

in {1;...;d}". Let us assume that there exists am.angx' and it is continuous; let us
i1 - OLip

suppose that f and % are in LP"(RY) for all integer k in {1;...;n}. Then, there
iq - OTig,

exists % and it equals % x g. In particular, if f is in C(R?) then f x g is
i 0w, o0z,

in C>(RY).

Proof. 1f is an immediate consequence of proposition 3.2.14. m

Theorem 3.2.16. Let p be a real number in [1;+00). Let f, g : R — R be measurable
functions. Let g be in LY(R?); let f be in LP(RY). For all positive real number § we
define os5g as in 1.0.2. Then osg* f is in LP(R?) for all § greater that 0 and {o59%* f}s>0
converges toward f ||g|| ;1 gay with respect to LY norm as & approaches 0.

Proof. First of all, we notice that if ||g|| r1(ray = 0, the conclusion is trivial. Hence, we
can suppose that ||g|[,:ge) 7 0. We notice that it is not restrictive to assume that
191l 21 (gay is equal to 1. In fact, it’s easy to see that ||g||;1gey = 1069(11(ray for all
positive real number . Let us consider the family of functions

059
— % f .
{ ||069||L1(Rd) }5>0

If we show that it converges toward f with respect to LP norm, then thesis in the most
general case follows immediately.

Let z be any vectors in R? and § any positive real number. For all y in R?, we
denote t := ¥; hence, dt equals %. Having said that, we obtain that

fxosg(x) = » f(z — y)é—ldg (%) dy = g f(z —ot)g(t)dt,

f@)= [ oty
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Thanks to Holder’s inequality, we have that
[ st = a0) - ptoatora
Rd
» |f (= 6t) = f(@)] |g(t)]7 |g(t)["» dt

§<Rd|f<x—5t> F@)IP g \dt) </ ol |dt) -3
B (/ [ = dt) = f@) gt m)

Since we can use Fubini’s theorem with nonnegative functions, the following inequalities
hold true:

|/ * asg(x) = f(2)] =

1S * 059 = [l gy /R |f % osg(x) — f(2)]P da

< [ ([ =00 - r@platolar) a
= [ ([ a0~ st ot ax ) a

—/( (o — 6t) - <>|pdx)|g<t>|dt
/ GO 750 — £ g .

We claim that the last integral converges toward 0 as § approaches 0. Since g is in
LY(RY), g(t) is finite for almost every ¢ in R?; then, for almost every ¢ in R? lemma
3.2.12 implies that

(lsig(l) lg(®)] | Torf — fHLP(]Rd)

We notice that for almost every ¢ in R? for all § greater than 0 it holds that

9O 17otf = Floay < 19OI IS Lo ey

that is a suitable domination in L!'(R%). Hence, the thesis is an immediate consequence
of dominated convergence theorem. O

Corollary 3.2.17. Let p be any real number in [1;+00). Let f,g : R? — R be
measurable functions. Let g be in C(RY); let f be in LP(R?). For all positive real
number & we define 059 as in 1.0.2. Then osg * f is in LP(R?) N C>®(R?) for all §
greater that 0 and {osg * f}s>0 converges toward f|gl| ;1 gay with respect to LP norm as

§ approaches to 0. In particular, if p is any real number in [1;+00), then C°°(RY) and
C>(R%) are dense in LP(R?).

Proof. Let p* be the conjugate index of p. Since g is in C>°(R?), g and all its partial
derivatives are in LP"(R?); as for the density of C°°(R?) in LP(R?), it is an immediate
consequence of proposition 3.2.15 and theorem 3.2.16.

As for the density of C°(R?) in LP(R?), we notice that if g is supported in B(0; R)
and f is supported in B(0; M), then f x g is supported in B(0; M + R). Hence, the
thesis is a consequence of proposition 3.1.30, remark 3.1.33 and theorem 3.2.16. O
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Remark 3.2.18. We notice that corollary 3.2.17 is false if p equals +o00. In fact, if u
is any function in L>®(R%) and {g, }nen is any sequence of functions in C(R?) that
converges toward u with respect to L> norm, there exists another function « such that:

e ¢ and u coincide almost everywhere;

® {gn}nen converges toward @ uniformly in R%.

Hence, @ is a continuous function; in particular u coincides almost everywhere with a
continuous function. The absurd follows taking u := 1, o0\ xra-1-

On the pointwise convergence of the convolution
Proposition 3.2.19. Let {g, }nen be any sequence of functions in L*(RY) such that
e if n is any natural number, then ||gn| 11 gay = 1;

e if 0 is any positive real number, then it holds that

lim \gn(x)| dx = 0.
=400 JRd\ B(0;6)

If f: R4 — R is any function in L=(R?) and zo is any point in R such that f is
continuous in xq, then the following conclusion holds true:

lim — f*g.(zo+ h) = f(zo).

(hin)=(z0;5+00)

Proof. Let € be any positive real number. Let d be a positive real number such that if
x,y are in B(0;9), then it holds that

| (2o +h —y) — f(xo)| <

Let ng be a natural number such that if n is any integer greater that or equal to ng,

then
19
/ lgn(y)| dy < T
RA\B(0:5) 11| oo Ry

Then, if n is any integer greater that or equal to ng and h is any point in B(0;0), the
following inequalities hold true:

DO | ™

ot 1) = Jan)) = | [ S+ h= ity = [ faan(ias

< [ ) e+ h =) = Fan)l dy
[ o)l £+ h =) = Fao)]dy
B(0;8)

" / gn ()| 1 (@0 + b — ) — ()] dy
R\ B(0;5)

€

] dnldy 2l [ sl
B(0:5) RI\B(0;9)

9 £
< = —_ 2 o
=9 “gn”Ll(]Rd) + 4 ||f||Loo(Rd) ||f||L (R4)

IN

= E.

So, the thesis follows immediately. m
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Corollary 3.2.20. Let g : R — R be any function in L'(R?) such that 9l 11 Ray = 1-
Let 0 be any positive real number; let us consider osg as in 1.0.2. If f is any function
in L®(RY) and xq is any point in RY such that f is continuous in xq, then the following
conclusion holds true:

(h;51)i—r>l%o;o) [ *osg(xo +h) = f(x0).

Proof. Thanks to proposition 3.2.19, it is enough to show that if 6 is any positive real

number, then

lim o59(y)dy = 0.
60 JRd\B(0;0)

Hence, let us fix § in (0; +-00). If we denote ¢ := %, then df equals fsl—ﬁ. So, it holds that

Ly
lim o59(y)dy = lim —g (—) dy
60 JRrd\B(0;0) 320 Jra\B(0;6) 077 \0
= lim g(t)dt
6—0 Rd\B(O;%)
— 0,

as follows immediately from the dominated convergence theorem, because |g| is a
suitable domination in L*(RY). O
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Chapter 4

Hilbert space

In this chapter, we will assume that any vector space is over the fields F that denotes
either C of R.

4.1 Inner product space

4.1.1 Definition and main properties

Definition 4.1.1 (Inner product space).
Let V be a vector space over the field F; let < -,- >: VXV — F be a map with the
following properties:

e conjugate symmetry, i. e. for all z,y in V it holds that

<zy>=<1,y>;

e linearity in the first argument, i.e. for all x,y, z in V for all « in I it holds that

<TrH+oy,z>=<z,2>+a <Y,z >;

e positive-definiteness, i. e. for all z in V it holds that < z,z > is real and
nonnegative; moreover, < z,r > equals 0 if and only if z is 0.

We say that (V; < - - >) is an inner space product.

Definition 4.1.2 (Norm associated to the inner product).
Let (V;< -,- >) be an inner space product. For all x in V we define

|z]| = V< x,x>.
We say that [|-|| : V — [0; +00) is the norm associated to the inner product.

Lemma 4.1.3 (Cauchy-Schwarz inequality).
Let (V; < -,- >) be an inner space product. For all z,y in V the following inequality
holds true:

<@y > <V<ar>/<yy >
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4.1. Inner product space

Proof. Let x,y be vectors in V. If y is 0, the thesis follows immediately. Hence, we can
assume that ||y|| # 0. Let us denote

_ <zy>
Iyl

Since < -,- > is an inner product, the following inequality hold true:

0 < lz = Ay’
=<z, x> A<y, x> A<y, x>+ <y y>

2
= [l

C<zy >l
2
Iyl

So, the thesis follows immediately. O
Lemma 4.1.4. The function ||-|| : V. — R defined in 4.1.2 is actually a norm.

Proof. The only non-obvious property is the triangular inequality: as a matter of fact,
it follows immediately from Cauchy-Schwarz inequality. ]

Remark 4.1.5. Since any inner product space is a normed vector space, it has the
structure of metric space and topological space.

Remark 4.1.6. Let (V;< -, >) be an inner product space. The following identities
holds for all z,y in V:

e parallelogram identity:

2 2 2 2
lz +yl” + llz = yl” = [l=]]" + lyl";
e restitution formula for complex spaces:

<a,y>= 2 (lle+yl” = lle = yl* +ille +ayll* =il —iyll”) ;

AN

e restitution formula for real spaces:

(lz +yl* = llz = yI*) -

I,

<z, >=

Lemma 4.1.7. Let (V;< -, >) be any inner product space; if we consider the normed
space V X 'V with the product topology, the function < -,- >:'V XV — F is continuous.

Proof. We claim that the functions +: VxV -V, —:VxV—-Vand |-]: V=R
are continuous. As a matter of facts, these statements follow immediately from the
triangular inequality.

Having said that, we notice that the thesis is a consequence of restitution formula
and the fact that the composition of continuous function is a continuous function. [J
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4.1.2 Orthonormal set and Hamel’s basis

Definition 4.1.8 (Orthogonal).
Let (V;< -,- >) be an inner product space. Let X be a subset in V. We define the
orthogonal of X as the set

Xt ={veV|VreX <zv>=0}.

Definition 4.1.9 (Orthonormal set).
Let (V;< - - >) be an inner product space. Let .# be a set in V such that for all ey, ey
in .%, with e; # e it holds that |je;|| = 1 and < e;,e5 >= 0. We say that .Z is an
orthonormal set.

If % is an orthonormal set, we say that it is maximal if for all orthonormal set .#’
such that .#% C %’ it holds that . = .%#".

If % is an orthonormal set, we say that it is complete if Span(.%#) is dense in V.

Remark 4.1.10. If (V; < -,- >) is an inner product space and {vy;...;v,} is any finite
set in V on linearly independent vectors, we can use the Gram—Schmidt process to
orthonormalise them.

If we assume Zorn’s lemma, we can easily show the existence of maximal orthonormal
set. If % is any orthonormal set, we define

G ={F'| FCZF' % is an orthonormal set in V}

partially ordered with the relation of inclusion. We notice that any totally ordered set
¢ has an upper bound, i.e.
H = U K
HeH

Thanks to Zorn’s lemma, we can state that there exists at least a maximal element #.
It’s easy to see that ¢ is a maximal orthonormal set of V.

More precisely, we have shown that any orthonormal set in V can be extended to a
maximal orthonormal set.

Remark 4.1.11. Let (V;< -,- >) be an inner product space. If .# is a complete
orthonormal set, then it is maximal. Let us assume that .% is not maximal; as shown
in 4.1.10, there exists a vector x in V \ .% with the following properties:

o [lzf| =1;
e for all e in .% it holds that < z,e >= 0.

Hence, we have that z is in Span(.#)*. If {v, }.en is any sequence in Span(.Z), then
for all n in N it holds that < z,v, >= 0. If we join 4.1.7 and the fact that x # 0, the
sequence {v, tnen cannot converge toward x with respect to the norm of V.

Definition 4.1.12 (Hamel’s basis).
Let V be any vector space; let .% be a subset of V. We say that .% is an algebraic basis
(or Hamel’s basis) if it holds that

V = Span(.%).

Remark 4.1.13. If we slightly modify the procedure shown in 4.1.10, we can easily prove
that any set of linearly independent vectors can be completed to an algebraic basis of

V.
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4.2. Hilbert space

4.2 Hilbert space

4.2.1 Definition and main properties

Definition 4.2.1 (Hilbert space).
A Hilbert space H is a real or complex inner product space that is also a complete
metric space with respect to the distance function induced by the inner product.

Ezample 4.2.2. Let H be any n-dimensional real (complex) Hilbert space; there exists
an isometry ¢ between V and R" (or C"). Let us denote {vy;...;v,} an orthonormal
basis of H and {e;;...;e,} the canonical basis of R™ (or C"); if ¢ is any integer in
{1;...;n}, we can define ¥ (v;) = e;.

Ezample 4.2.3. Let (E; &; 1) be a measurable space with a measure p. We claim that
(LA(E); || 2()) is an Hilbert space. We have already shown that it is complete. We
notice that the function < -,- >: L*(E) x L*(E) — R such that

<ﬁg>:4fwamwm>

is well defined and it is the inner product that induces the L? norm. As for LZ(E), we
notice that the function < -, >: L4(E) x LZ(E) — C such that

<ﬂg>=£ﬂ@ﬂ5@@)

is well defined and it is the inner product that induces the L? norm.
In particular, 2 is an Hilbert space with the inner product < -,- >: /2 x /2 -+ R
such that for all x := {2, }nen; ¥ = {Yn nen in €2 it holds that

< T,y >= Zl‘nyn.
neN

As for (2 the function < -,- >: (2 x ¢4 — C such that for all z := {z,, }nen, ¥ = {Yn nen
in ¢? it holds that

<z,y >= any_n
neN

is the inner product that induces the (% norm.

4.2.2 Hilbert’s basis theorem

Lemma 4.2.4. Let H be an Hilbert space. Let % be any countable orthonormal set in
H, namely
F ={e, | n € N}.

Let {an }nen be any sequence in C. For all n in N, we define

n
Sn = E Q€4
=1
n
5 9
i=1
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Chapter 4. Hilbert space

Then {Sp}nen converges toward xo with respect to the norm of H if and only if {S’n}neN
converges in R. If we denote
Ty = Z pCp,

neN

the following conclusions hold true:

e if i is any natural number, then < xg,e; >= «;;
2 2
o [lzo* =D leul*.
neN

Proof. Since .# is an orthonormal set, we notice that for all n,m in N (n > m) it holds

that
n 2 n
> | = 3 fo’ -

HSn - SMH2 =

~n_Sm’

We have that there exists x¢ in H such that {S,},en converges toward zy with respect
to the norm of H if and only if {5, },en is a Cauchy sequence with respect to the norm
of H. Hence, {Sy }nen is a Cauchy sequence if and only if {S, }nen is a Cauchy sequence,
that is equivalent to assume that it is convergent.

As for the second part of the statement, since the inner product is a continuous
function (see 4.1.7), if 7 is any integer, we can state that

n—-+00

n
< Tg,e; >= lim < g aje;, e >= qy.
Jj=1

Thanks to the continuity of the norm, we can state that

n
2 . 2 . 2 2
lwoll” = lim [IS,]° = lim » Jasl” = lau|*.
=1

neN

Theorem 4.2.5 (Hilbert’s basis theorem).
Let H be an Hilbert space; let F be countable orthonormal set in H, namely

F ={e, | n € N}.
Let x be any vector in H; for all n in N we define

Tp =< T,€, >,

Sn(z) = ixiei.
i=1

Then, the following conclusions hold true:

. Z \z,|? < |||, also known as Bessel’s inequality;
neN

o there exists xo in H such the sequence {S,(z)}nen converges toward xy with respect
to the norm of H;
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2 2 2
o llzoll* = faal® < Jl2)*;

neN
e ¥ — x¢ is in Span(F)*;
e if ¥ is a maximal orthonormal set, then x equals xy. In particular, it holds that

x:2<mp%

neN
|z =)< @ en >
neN

Proof. Step 1: Let x be any vector in H. For all n in N there exists 1, in H such that

n
T = Yn+ E ;€.
i=1

We notice that if j is any natural number lower than or equal to n it holds that

n
< Yp,€j >=< T — inei, e; >=0.
i=1

Hence, we can state that

n n
2 2 2 2
2 =D Jwal” + llyall* = D il
i=1 i—1

Therefore, the Bessel’s inequality follows taking the supremum in n.
Step 2: As for the second, the third and the fourth statement, they follow immedi-
ately from lemma 4.2.4. Hence, let us denote

Ty = E TnCp.

neN

Step 3: If . is maximal, we claim that Span(.#) = {0}. If there exists v in
Span(.%#) \ {0}, then we can extend F to an orthonormal set

7 ;:FU{L};
[|v]|

this is against the fact that .%# is maximal. Therefore, we can state that x — x( equals

0. [l

Remark 4.2.6. Let H be an Hilbert space with a countable orthonormal maximal set
Z . The following statements are immediate consequences of the theorem 4.2.5:

e .7 is complete if and only if .%# is maximal;
e H is separable. If H is a real space, it’s easy to see that
Spang(.#) = {v € Span(F) | Vi € N < v,¢; >€ Q}
is a dense countable set. If H is a complex space, it is enough to define

Spang(#) = {v € Span(F) | Vi c N R <v,e; >€ Q, I <v,¢; > Q}.
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e For all z in H, we define T'(z) = {< z,e, >},en and we notice that 7'(z) is in
¢2. In other words, the map T : H — ¢? is linear and well defined; we also know
that T is injective and surjective. It is an isometry between H and ¢2. Thanks to
restitution formula, it preserves the inner product; more precisely, if H is a real
space, for all x,y in H the following identity (also know as Parseval’s identity)
holds true:

1 2 2
<zy>n= 7 (le+yls - o -yla)

_ i (IT(x + )% = IT(x — 9)|1%)
=<T(z), T(y) >

:Z<x,en>H~<y,en>H.
neN

If H is complex space, the proof can be easily adapted;

e Span(.#) is an Hilbert’s basis that is not an Hamel’s basis. Thanks to lemma
4.2.4, we can state that
1
D gt
on

neN
is a well defined vector in H \ Span(.%).

Remark 4.2.7. As a matter of facts, if (V; < - - >) is an inner product space and .% is
a non-countable infinite complete set, then H cannot be a separable space. We notice
that if =,y are different point in .%, then it holds that ||z — y|| = v/2. If 2 is any dense
subset, thanks to choice axiom, there exists a function ¢ : % — & such that for all z in
Z it holds that || (x) — z|| < 3; this is enough to state that the function ¢ is injective.
So, D is a non-countable infinite set.

In deed, .# (countable or non-countable) is an example of closed and bounded set
that is non-compact. In fact, we have shown that it is not totally bounded.

4.2.3 A step toward duality

Lemma 4.2.8. Let (X;d) be a separable metric space; let Y a subspace in X. Then, Y
18 separable.

Proof. Let & be a countable dense subset in X. If we denote

2 ={q, | n € N},

r~fo(sd)

we notice that .% is countable basis for the topology. We say that (n,m) in N? are in
I if B(gn; ) NY # 0. For all (n,m) in .#, we choose ppm in B (g =) NY 0. If
we define

n,mEN},

G = {pn;m | (n,m) Eﬂ}:

we claim that ¢ is a countable dense subset in Y with respect to the subspace topology.
Let A be any non-empty open set in Y. By definition of subspace topology, there exists

o8
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an open set V in X such that A = V' NY. Since there exists a subset _# in N? such

that .
V= ; —
U B <qn, m) :
(nsm)e ¥

we can state that there exists (ng;mg) in _# such that

B(%a%ﬂ) nNY #0;

hence, prym, is in Z N A. O

Theorem 4.2.9 (Projection on a closed vector subspace).
Let H be a separable Hilbert space; let Y be a closed vector subspace in H. If x is any
vector in H, there exist w(x) in'Y and &(z) in Y+ such that

x=m7(x) 4+ £(z).
7(x) and £(x) are uniquely determined. We will write
H=YaY"

Moreover, w(x) is the unique point in'Y that minimizes the function d, : Y — R such
that for all y in'Y it holds that d(y) = ||z — y||>.

Proof. Step 1: Thanks to lemma 4.2.8, Y is a separable metric space. Since Y is
closed, it inherits from H the structure of Hilbert space. If we join 4.2.7 and theorem
4.2.5, we can state that there exists .# countable Hilbert’s basis of Y. If we denote

F ={e, | n € N},

theorem 4.2.5 implies that there exists m(x) in ¥ such that

=Z<x,en>en.

neN

Moreover,  — (z) is in Span(.%#)t. Thanks to 4.1.7, we immediately notice that
x — m(x) is in Span(.# )l that equals Y1. So, we can define £(z) = x — m(z).

Step 2: If there exist y in Y and z in YL such that x = y + 2z, we immediately
notice that y — 7(x) = £(x) — z is a vector in Y NY*; hence, it equals 0. In other words,
the decomposition of x is unique.

Step 3: If y is any point in Y we notice that z — 7(z) and 7(z) — y are orthogonal.
Hence, the following inequalities hold true:

da(y) = ||z —y|”
= ||z — m(z) + 7(z) — y||”

= ||z —n(@)|* + [I7(2) — yII”
> ||90 — m(x)|”
dy (7 (2))-
More precisely, the the identity d,(y) = d.(w(z)) holds if and only if y = 7(x). O
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Remark 4.2.10. In theorem 4.2.9 it is necessary to assume that Y is a closed subspace.
If .7 is an Hilbert’s basis in H, we have shown in 4.2.6 that Span(.%) # H; thanks to
4.1.7, we can state that

Span(%)*+ = Span(a@’)L = H* = {0}.

Theorem 4.2.11 (Riesz’s representation theorem).
Let H be a separable Hilbert space. Let A : H — F a continuous linear functional. There
exists a unique yy in H such that for all x in H it holds that

Ax) =< 2,95 > .

Proof. Since A is continuous, we notice that Ker(\) is a closed vector subspace of H.
Thanks to theorem 4.2.9, we have the following decomposition:

H = Ker()\) @ Ker(\)*.

If A(x) =0 for all z in H, we can define y, = 0. Otherwise, it is true that Ker(\) # H.
We claim that Ker(\)* is a 1-dimensional vector space; otherwise there exists a 2-
dimensional subspace X such that for all x in X it holds that A(z) # 0. Let zy be any
point in Ker(\)! such that g # 0. We define

o)

\ = 2270.
[z

If x is any vector in Ker(\), we have that
<zyy>= 0= A(z).

If z is a vector in Ker()\), there exists o in F such that = axy. So, the following
identities hold true:

Alao) EP(C7))

50 5 < Zo, To >= aX(xg) = Mawxg) = A(z).
o]l ol

<X, Yy >=< Xy,

Since A is linear, we have that for all x in H it holds that
Ax) =<2,y > .
As for the uniqueness, if there exists y;, yo in H such that for all  in H it holds that
<z, >= Mz) =< 2,92 >,
then 1, — v» is in H*, that is equivalent to y; — ys = 0. O

Remark 4.2.12. If (V; < -,- >) is a infinite dimensional inner product space, there exists
a linear, non continuous functional. Let .% be a countable orthonormal set, namely

ZF ={e, | n e N}.
As shown in 4.1.13, we can extend .# to an Hamel’s basis ¢. For all n in N, we define
Aey,) = 2"
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for all e in ¢ \ .7, we define
Ae) = 0.

Since ¢ is an Hamel’s basis, we can extend A to a linear functional over H. We notice
that it is non-continuous: we notice that {;—?L}n oy converges toward 0 with respect to
the distance in H, but for all n in N it holds that

A (e—”> ~1.
2n
Remark 4.2.13. Thanks to 4.1.7, we notice that if A is a non-continuous functional, it
cannot be represented by the inner product as in theorem 4.2.11.
Remark 4.2.14. In theorem 4.2.11, it is necessary that H is an Hilbert space. Otherwise,
we can consider in ¢? the vector subspace

X = {{xn}neN € (* | z,, = 0 definitively }

and the functional A : £2 — T such that if x = {x,, },en il in £, then

In
on’
neN

Az) =

If we denote y := {27}, we notice that for all z in ¢? it holds that \(z) =< z,y >; so,
A is continuous. By restriction, A defines a continuous functional \|x over X; obviously,
Al x cannot by represented by a vector in X.
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Fourier series

5.1 Complex Fourier series

5.1.1 Definition and main properties

Definition 5.1.1 (Fourier coefficient).
Let f be any function in LA((—m;7)). Let n be any integer. We define the n-Fourier
coefficient as follows:

cn(f) = %/ f(z)e ™ dz.

Remark 5.1.2. Since f is in LA((—m;m)), it’s immediate to see that definition 5.1.1 is
well posed.

Definition 5.1.3 (Fourier partial sum).
Let f be any function in L4((—m;7)); for any integer i we define ¢;(f) as in 5.1.1. For
all n in N we define the n-Fourier partial sum S, (f) : [-m; 7] — C such that

n

Suf(x) =Y ¢;(f)e’.

j=—n

Theorem 5.1.4. Let n be any integer: we define e, : [—m; 7| — C such that

If we denote
F ={e, | nel},

then F is an Hilbert’s basis of LA((—m;7)).

Proof. Step 1: Let n be any integer. We notice that

™

1 . .
< ey, lp >= — e™e " dy = 1.
2 ),

Let n, m be different integers; since the function e, _,, is 2—’rm‘—periodic, it holds that

In—
1 ™

< e,y >= — e =m) gy = ().
2 ) .
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This is enough to state that .% is an orthonormal set in L&((—m;)).

Step 2: We claim that .% is complete. Let z,y be any points in [—m;7]. We say
that z,y are equivalent if and only if x = y or x,y are in {—m;7}. We will write x ~ y.
Let us denote as K = [—m; 7|/~ the quotient space where —7r and 7 have been identified.
We also denote i : [—m; 7] — K the identification. It’s easy to see that K is a compact
Hausdorff space.

Since e,(—7) = e,(m) for all integer n, we notice that the identification induces a
set .# of continuous functions between K and C, namely

F={é, | nell.

We claim that Span(.%) is a set of complex-valued continuous functions over K with
the following properties:

e it is an algebra: let n,m be any integers; it’s easy to see that €, - €, = €,1m;

e it is closed under complex conjugation: if n is any integer, it’s easy to see that

€n = €_n,

e it separates point: if x,y are different points in /C, it holds that é;(x) # &, (y) (we
notice that this is the reason why we introduce the quotient space K);

e since éy(x) = 1 for all z in K, the constant functions are in Span(.%).

Step 3: We can apply Stone-Weierstrass theorem (see 5.3.7) and we can state that
Span(.Z) is dense in the set of the continuous function between K and C with respect
to the norm of the uniform convergence. We define X as the set of the continuous
functions between [—m; 7] and C that coincide in —7 and 7. We notice that a function
f belongs to X if and only if there exists a continuous function f between K and C
such that f = fo i. Then, it’s easy to see that Span(.%#) is dense X with respect to the
norm of the uniform convergence.

Since [—m; 7| is a finite measure space, we have that Span(.#) is dense in X with
respect to L? norm. Since X is dense in C'(K; C) with respect to L? norm and C'(K;C)
is dense in L4((—m; 7)) with respect to L? norm, then Span(.%) is dense in L4((—m; 7))
with respect to L? norm. O

Corollary 5.1.5. Let f be in LA((—m;m)). For all integer n we define ¢, (f) as in
5.1.1; for all n in N we define S, f as in 5.1.3. Then, the following conclusions hold
true:

o {S,f} nen converges toward f with respect to L* norm;

2 2
e 27‘-2 ’Cn(f)‘ = ”fHLQ((fﬂnr));

nez
e if g is in L&((—m; 7)), then it holds that
<fg>= [ @@ =23 elfels)
- ne”Z

Proof. Let % be as in theorem 5.1.4; we notice that if n is any integer, then it holds
that

cn(f)=¢%<f,en>.

Then, the thesis in an immediate consequence of theorems 4.2.5 and 5.1.4. O
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Remark 5.1.6. We remark that if f in any function in L&((—m;m)), then {S,f }nen
converges toward f with respect to the L? norm; so, there exists a subsequence that
converges pointwise toward f for almost every x in (—m; 7). This is not enough to state
that the whole sequence {S,, f },en converges pointwise toward f for almost every x in
(—m; 7). As a matter of fact, this is a consequence of a theorem proved by the Swedish
mathematician L. Carleson in 1966. However, the pointwise convergence of a specific
subsequence is enough to characterize some punctual properties of the functions with
other relations among the Fourier coefficient.

Proposition 5.1.7. Let f be any function in Li((—m;m)). Let us define the Fourier
coefficient {c,(f)}nez as 5.1.1. Then f is a real-valued function if and only if for all
integer n it holds that c_,(f) = cn(f)-

Proof. Let f be a real-valued function; let n be any integer; we have that

alf) =5z [ f@)e

1 [
—%/_Wf(aj)e dx

1 [7 . —_—
= 2—/ flz)emrde = c_,(f).
m —T
Let us assume that f is such that for all integer n it holds that c_,(f) = ¢,(f). We
notice that co(f) is a real number. Let N be any positive integer; if we define the
Fourier partial sum as in 5.1.3, we obtain that

N

Sxfl)= 3 cal)e™

n=—N

n=1

() + Y [enlF)e™ +cn(fle™]
= o)+ Y [eal )™ + calF)em]

= co(f) +2)_ Rfea(f)e™ ).

Let us denote {Sn, f},cy the subsequence that converges toward f for almost every x
in [—m; 7] Since {Sy, f},cy is a real-valued sequence of functions that converges toward
f for almost every z in [—m; 7] and R is a closed set in C, then f coincides almost
everywhere with a real-valued function. O

Remark 5.1.8. We notice that if f is in Li((—m; 7)) the definition of the Fourier
coefficients (see 5.1.1) make sense. So, if CZ denotes the collection of the complex-
valued sequences {a, } ez, we can well define the function © : LL((—m; 7)) — RZ such
that

O(f) = {ea(f) Inez-

First of all, we notice that for all f in L{.((—m; 7)), the sequence ¢, (f) is infinitesimal.
In fact, this is a consequence of Riemann-Lebesgue’ lemma (see 6.1.3), assuming that
f(z) is equal to 0 if z is not in (—m; 7).
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We claim that © is injective. Since © is obviously linear, it is enough to show that
cn(f) =0 for all n in Z implies that f(x) = 0 for almost every x in (—m; 7). We notice
that if f belongs to L((—; 7)) this statement has already been proved in 5.1.5. So,
let f be a function in L{((—m; 7)) such that for all n in Z it holds

cn(f) = %/_ f(x)e ™ dx = 0.

For all n in Z, we define the function e, : [-m; 7] — C asin 5.1.4, i. e.

we also define
F ={e, | neZ}

So, if ¢ is Span(.%#), we have that

/ F(@)g(z) =

Let us define Cpe,([—m;7]) the collection of the continuous functions that coincides
in —m and 7. We have shown in theorem 5.1.4 that .% is dense in Cj.,([—m;7]) with
respect to the uniform convergence. So, if g is any function in Cpe, ([—7;7]), there exists
a sequence of function {g, }nen that converges toward ¢ uniformly in [—m; 7. So, there
exists a real number M such that |g,(x)] < M for all n in N for all z in [—m;7]. We

claim that - -
Jdin [ @ = [ p@g

In fact, the {fg,}nen converges pointwise toward gf for almost every x in (—7; ) and
M |f] is a suitable domination in L. So, we can easily use the dominated convergence
theorem. In particular, we have that for all g in Cp.,([—m; 7]) it holds that

/ F(@)g(w)de =

Let h be any real-valued function in L>((—m;7)). There exists a sequence of real-valued
functions {hy, }nen in Cpe.([—; 71]) that converges toward h with respect to L? norm. So,
up to subsequences, not relabelled, the convergence is pointwise for almost every z in

(=m;m). We define Tjp, .. as the truncation between — ||| oo ((_pr.m)) a0 (B[] oo (i)
1. e.
||h||L°°((—7r;7r)) if z > ||h||L°°((—7"%7")) )
1—]|h||Loo (I’) =87 if v € [_ ||h||L°°((—7r;7r)) ; |Ih||L°°((—7r;7r))] ;

=Ml oo (emimy 2 < = Nll ooy -

Since T is a 1-Lipschitz function, we have that {THhHLoo o h”}neN is a sequence of
continuous equibounded function in Cp., ([—7;7]) that converges pointwise for almost
every x in (—m;7) toward h. Thanks to the dominated convergence theorem, the
sequence converges with respect to L! norm toward h. Hence, we have that

f()( =hm/f 0.
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In particular, we can take h(z) = sgn(f(z)). So, we can conclude that

0= / fla)sgnf@))ds = [ |f(a)] do

in other words, f(x) is equal to 0 for almost every z in (—m; 7).

5.1.2 On the convergence of the Fourier series

Let f be any function in L&((—m;m)); we have already shown that the Fourier series
converges toward f with respect to L? norm. The aim of this section is to tie up the
regularity of f and convergence of the Fourier series. We will find reasonable hypothesis
on f under which the Fourier series converges toward f punctually or uniformly. We
will show that the rapid convergence of the Fourier series force f to be regular. We
will also investigate the link between the decay of Fourier coefficients and the speed of
convergence of the Fourier series.

C* functions vs convergence of the Fourier series

Definition 5.1.9. Let k be any positive integer. We define X¥ . as the space of functions
with the following properties:

o fisin C*Y([—m7];C);
e there exists a partition of [—m; 7], namely
T =2y <2 < <X < Tjp1 =T

such that if ¢ is any integer in {0;...;j}, then f : is in € C*([xs; 2:441]; C);

TqTi+1
e for all 7 in {0;...;k — 1} it holds that fi(7) = fi(—m).

Lemma 5.1.10. Let k be any positive integer; if f is any function in Xpe
any 2m-periodic smooth function, it holds that

/_Z [%(“f)} plz)de = ( /f { )1 da.

Proof. The statement can be easily proved by induction on k. Let us assume that &
equals 1; let us denote

. and @ 18

T =2 <21 << T < Tjp1 =T

the partition as declared in definition 5.1.9. Let ¢ any 27-periodic smooth function.
Since f is a piecewise C'!' function and it is globally continuous, we can integrate by
parts and delete the boundary terms. So, we obtain that

| r@ptain - Z [ e

_Z{ Ti1) (i) — fxi)p(:) — /wi+1 f(x)go’(x)dx]
— f(x)p(r) - f(~m / e
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5.1. Complex Fourier series

The inductive step is completely similar to the basis. n

Theorem 5.1.11. Let k be any positive integer; let f be a function in XE_. For alln

per*

in Z, let c,(f) be as in definition 5.1.1. Then, the following conclusions hold true:

* ank lea(f)|? < +o0; in particular ¢, (f) is o (I ¥ )

ne”L

o if a is any real number such that o < k — %, then it holds that

Z]n[ len(f)] < +o0;

kEZ

o for all integer j in {0;...;k — 1} it holds that

{ &S, f }
dx’ neN

converges toward % totally in [—m;w| and for all x in [—m; 7| we have that

@f

dxd

(2) = S (imen()e™.

ne”L

Proof. Step 1: First of all, we notice that Zi—{ is in LZ((—m;7)). Thanks to lemma
5.1.10, for all n in N it holds that

d* 1 d* in®
()= . [Sho]

=G0 [ e as
= (in)eaf).

If apply the Parseval’s identity (see 5.1.5) to & { , we obtain that

_ 2k 2
E " :
’ =21y n" e, (f

LQ((—” )) nez
Step 2: Let a be a positive real number such that a < k — % We can apply the
Cauchy-Schwartz’ inequality in ¢? (see 4.2.3 and 4.1.3) and we obtain that

1
« k
> Il lenf 1= Il leaf| e

a*f
dxk

nez neZ
1
2% 2
< (ZW lcnf] ) (Zm) < +0o9,
nezZ nez n|

thanks to the previous step and our assumption on a.
Step 3: If we join step 1 and step 2, we have that for all integer j in {0;...;k — 1}

it holds that i
sup {cn ( ) } In? |ea(f)] < 4oo0.
2o lar) 7y 2
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Chapter 5. Fourier series

In other words, we have shown the total convergence in [—m; 7] of the series

{danf}
dx’ nGN.

Hence, for all x in [—7; 7], we obtain that

Z]—x];(:v) = ;cn (%) e = Z(in)jcn(f)ei"”.

neL

O

Remark 5.1.12. If f is any function in C*'([—m;7]) such that f(7) # f(—n), it cannot

be that
> el f)] < +oo.

neL

Otherwise, the Fourier series would converge punctually in —7 and 7; in particular, it

should be f(—m) = f(n).

Theorem 5.1.13. Let [ be a function in L((—m;7)). Let us define the Fourier
coefficient as in 5.1.1. Let k be any integer greater than or equal to 0. Let us assume
that one of the following alternatives holds true:

o there exists a > k + 1 such that ¢, (f) is O (#),

e there exists f > k + % such that

> [l fen () < +oe.

nez
Then f is in C*([—m;7]) and for all j in {0;...;k} it holds that

_df
 dad

If
dxd

(=) (7).

Proof. Let us assume that the first condition holds true; then, there exists a positive

real number M such that for all integer n we have that

en(F)] < ﬂy

n

If « > k — 1, we can state that

nez neL

1
T < too.
id

As a matter of facts, we have already shown in theorem 5.1.11 (see step 2) that the
second condition implies that

Y1l len( )] < +oo.

nez
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5.1. Complex Fourier series

However, for all integer 7 in {0;...;k} it holds that

&
Z sup { cn(f)me”m } = Z sup }cn( n)e mac Z len ()] ) < +o0.
ney, -] X ney, [-mm) ne’
In other words, if we define e, as in 5.1.4, for all integer j in {0;...;k} we have shown

the total convergence in [—; 7| of the series

de,
ch(f) dQJJ .

ne”L

In particular, we have that the Fourier series converges uniformly toward f. If we derive
the series, for all integer j in {1;...;k} we can state that f is a function in C’([—m;7])
and for all x in [—m; 7| it holds that

djf o nez
d’e,
= %cnm d; (x)
_ ch ] m:v
neL

Since the series converges totally, we obtain that

&f

dxd

O () =

dai

().
O

Remark 5.1.14. 1f we join theorem 5.1.11 and theorem 5.1.13, we immediately obtain
that f is in C%°.([—m; 7)) if and only if ¢,(f) is o (| = ) for all o greater than 0.

per

Example 5.1.15. Let us consider the function f in L*((—m;7)) such that f(x) = 2.
Integrating twice by parts, we can easily compute the Fourier coefficients and we obtain
that

2(—1)"
(—2) if n #0;
Cn(f): 7T.2n

Since f is in X° ., we can apply theorem 5.1.11 and the following identities hold true:

per?
) ' ﬂ_Q +oo 9
=Y e =T12) 2
n=1

neZ
If we rearrange terms, we obtain the very well know identity

“+o00
1 w2

— = .
n 6
n=1
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Chapter 5. Fourier series

Holder’s function vs convergence of the Fourier series

Proposition 5.1.16. Let v be a real number in (0;1); let f be a function in C%([—m; 7))
such that f(—m) = f(x). If B is any real number such that 5 > a — 5, then it holds that

Z In]? en(f)] < +o0.
neEZ
If v is greater that or equal to , the Fourier series converges toward f totally in [—m; 7.

Proof. Since f(—n) = f(r), we can extend f to a 2m-periodic function in C%*(R) with
constant cy; we will denote the extension as f.
Step 1: Let v be any real number. We define

10)= [ ([ - swpas) an

We claim that if ¥ < o+ 3, then I(7) is a real number. Since 2y — 2o < 1 we obtain

that
fm:/o% ([ 1t m = s as) an

1 1 s 90,
|
:27rcf/ P “Hoadh < 4o0.
0

Step 2: Let h be any real number; let 7, f be as in definition 1.0.1; we claim that
for all n in 7Z it holds that

cn(Tnf) = €™ e, (f).

If we recall that f has been extended to a 27-periodic function, we have that

eu(mf) = / fla+ h)e ™ dx

znh

=5 /_7r f(x + h)e ™@th gy

inh

e T+h
= / f(x + h)e ™=t gy

znh

f Je e = ey (f).

Step 3: Let h be any real number. We define gy, : [—7; 7] — C such that
gn(x) = f(x+h) — f(z).

[ lan@Pde =213 [~ 1 ()

nez
Since gy, is in L&((—m; 7)), for all n in Z it holds that

cnlgn) = c(mnf) —calf) = (emh — Dea(f)-

We claim that
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5.1. Complex Fourier series

We can apply the Parseval’s identity to g, (see 5.1.5) and we obtain that

lgnll 2oy = D €™ = 1| Jea(£)

neL

Step 4: For all integer n we define

1 ‘einh _ 1|2
a(y;n) = 27T/0 Tdh.

Since « in (0;1), 7 is lower than 2; hence, it’s immediate to see that the sequence
{a(y;n) }nez is Well defined. Since We have shown in step 3 the total convergence of the

series )
> et =1 e N

nel

we can switch the series and the integral and we obtain that

1= [ ([ i —s@ipa) an
:/< ~2r ) e - 17 ea(f) )

neL
|
neL
- Z 7a |Cn | .
nez

Step 5: We claim that there exists a positive real number «(v), such that for all n
in Z \ {0} it holds that

a(y;n) = a(y) [n| "

Let n be any integer such that n # 0; if we denote ¢t :== nh, then dt = ndh; hence, the
following identities hold true:

2

1 ‘einh _ 1|
a(y;n) = 27T/ h—dh
0

n zt_l
_or / —’e | ||2“dt

zt
>|n|2“27r/’
1 it_12
:/ le —1F N w
ot

Step 6: If vy < a+ % we join step 1, step 4 and step 5, we obtain that

MY 1 el NP <D alv,n) lea(H)PF = 1(7) < 400,

nez neL

So, it is enough to define
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Chapter 5. Fourier series

In particular, we have that

S T e ()1 < oo (5.1)

ne’

Let 8 be any real number such that f < a — % Let € be a positive real number such
that 3+ £ < a — 1. If we apply Cauchy-Schwartz inequality in 2 (sce 4.1.3 and 4.2.3),
we obtain that

S [0l fea(H = 3 1070 e (f)] ]2

nel neZ
1 1
2 2
< () (S ior)
neE”L nez

We notice that 25 — 2a 4+ ¢ < —1; moreover, if we define v = a + % — 5, we have that
Yo < o+ % and 2a — e = 299 — 1. This is enough to state that the series at right hand
side are both convergent. To conclude, it’s easy to see that if « is grater than %, we can
choose § = 0 and it holds that

S lenl )] < +oos

ne”Z

so, the Fourier series converges totally toward f. O]
Definition 5.1.17 (Convolution for 27-periodic functions). .
Let f,¢ be any functions in Li((—m;7)). We denote as f and ¢ their extensions

by periodicity over R. We define the convolution between f and ¢ as the function
f *or 0 : [=m; 7] — C such that

f o pl2) = / " Ftele — b

Definition 5.1.18 (Dirichlet kernel).
Let N be any positive integer. We define the function Dy : [—m; 7] — C such that

The sequence of functions { Dy} nen is called Dirichlet kernel.

Remark 5.1.19. Since Dy is the finite sum of complex exponentials for all N in N, we
can state that the Dirichlet kernel is a sequence of analytic functions. Moreover, it’s
easy to see that for all positive integer N it holds that
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5.1. Complex Fourier series

Remark 5.1.20. Let N be any positive integer; let ¢t be any point in (—m;7). The
following identities hold true:

N N ' . N
Dty = 37 e = 30 ()" = () N3 ()"
n=—N n=—N —
(e @ 1) )
— eit — 1 o it _ it
_sin (N +4)1)

sin (%)
Remark 5.1.21. Let f be any function in L&((—m;m)). Let us define the sequence of

Fourier coefficients {c,(f)}nez as in 5.1.1 and the sequence of the Fourier partial sum
{Snf}nen as in 5.1.3. Let N be any natural number; for all z in [—; 7] it holds that

N

Sn(f)= D ealf)e™

s ( /_ : f (y)ei"ydy>

=2
-/ (f(y) > <>) dy

einx
2m
n=—N
n=—N

= % /_: f(y)Dn(z — y)dy

1

We notice that if there exists M in R such that [|[Dy||11((_y,x) i lower that M for all
positive integer N, then we could use something like proposition 3.2.19; therefore, if f
is any continuous function in LZ((—m; 7)), we could conclude that the Fourier series
converges point-wise toward f for all x in (—m; 7). As a matter of facts, there exists
a continuous function f in LA((—m; 7)) and a subset D dense in [—m; 7] such that for
all z in D the Fourier series does not converge pointwise toward f. In fact, it can be
proved that

1iminf/ | Dy, ()| dt = +o0.

n——+oo

Proposition 5.1.22. Let f be any function in L((—m;m)). Let xg be any point in
[—m;7w]. Let us assume that there exists a in (0; 1] such that f is a-Holder in xo, i. e.
there exists a positive real number C such that for all x in [m; 7] it holds that

|/ (@) = f(@)] < Clz— xo|” .
Let us define the sequence {S, f}nen as in 5.1.3. Then, it holds that
lim S, f(xg) = f(x0).
n—-+00

Proof. We will also denote as f the extension of the function by periodicity over R.
Under our hypothesis, it’s easy to see that for all z in R it holds that

|f (o) = ()] < C'lw — xo|” .
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Chapter 5. Fourier series

If we join 5.1.19, 5.1.21 and 5.1.20, for all positive integer N the following inequalities
hold true:

/(o) = SGaw)l = | [ 20— 000t~ [ stDatera

—T

— 5| [ a0 - syt

—T

_ % /_ic("[(“"”O ;z)(z)f(x‘))) sin ((N + %) t) dt

2

If we define g : R — R such that

f(xo —t) — f(x0)

27 sin (%)

g(t) = Lmim (1),

we have shown that for all positive integer N it holds that

/Rg(t) sin ((N + %) t> dt‘ |

If we show that ¢ is in L'(R), then we can apply Riemann-Lebesgue’s lemma (see 6.1.3)
to conclude that

SN f(z0) — f(20)] <

. i(N+3)E gy
Nl_lg_loo Rg(t)e dt = 0.

If we consider the imaginary part, the thesis follows immediately. So it is enough to
show that ¢ is in L'(R). It’s easy to see that if ¢ is any point in [0; 7] then sin (§) > 7¢.
Since « is in (0; 1], we obtain that
ol = [ lato) d
™ _t _
_ / |f(zo — ) — flxo)| ,,

o [sin(3)]
c (M
= or J, 7t
c [ 1
— [ ——dt < .

[

Proposition 5.1.23. Let f be any function in LA((—m;7)). Let us assume that there
exists a partition of [—m; | i. e.

M=) < T < <X < Tpy1 =T
such that for all integer i in {0;...;k} it holds that
o f

i f,|[£5i;1’i+1] is in L(%((xwxz—l-l))

1 is i CH((z; 24 1));

[@s5541
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5.1. Complex Fourier series

Let us assume that for all integer i in {0;...;k} there exists I such that
flx)T = lim f(z)
r—z)

and for all integer i in {1;...;k + 1} there exists I; such that

f(zi)” = lim f().

Let us define the sequence of the Fourier partial sum as in 5.1.3; then, the following
conclusions hold true:

o {S,f}nen converges toward f uniformly in any closed interval that does not
intersect {z; | i € {0;...;k+1}};

o for alli in {1;...;k} it holds that

lim S, f(z;) = f@)™ + flo)™

n—-+4oo 2 ’

e lim S, f(x) = flzo)™ + f(xkﬂ)__

n—-+4o0o 2

Proof. Step 1: Without loss of generality, we can assume that

N+ N—
oy = T
for all integer 4 in {1;...;k} and
+ -
F(m) = f(—m) = £120) tfwﬂo'

Let us define go : [0;27) — R such that go(0) := 0 and go(x) == 7 — x for all z in (0; 27).
So, go can be extended in R be periodicity. We also denote as gy this extension. For
all b in [—m;7) we define g, : R — R such that g,(z) == go(x — h). Obviously, g, is
a piecewise affine function; moreover, h is the unique discontinuity point in [—7; 7).
Moreover, we have that

gr(h)" = lim_gu(z) =T,

z—ht

gn(h)™ = lim gn(z) = —m,

z—h~
_ gn(W) "+ gn(h)”
5 .
Step 2: For all integer ¢ in {1;...;k} we define
fl)™ = fm)”

di = )
2T

0= gn(h)

we also define -
S0 = )
0 2T ’
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Chapter 5. Fourier series

We denote as f. : [—m;7) — C the function such that

fla) = (@) = 3 diga (@)

Thanks to the properties of g, we have that £, is a piecewise C'! function; it is continuous
and f.(—m) = fe(m). So, if we define the sequence {S,, f.}nen of the Fourier partial
sum for f. as in 5.1.3, we can use theorem 5.1.11 and we obtain that the {S,, f.}nen
converges toward f, uniformly in [7; 7).

Step 3: We show the theorem assuming that f is equal to go. We define the
sequence {c¢,(go) fnen of the Fourier coefficient for go as in 5.1.1. It’s easy to compute

that
(50) 0 if n =0;
Cn = A
9 if n # 0.

2
n

Moreover, for all n in N for all z in [—m; 7| we have the

n

Sngo(z Z ¢j(g0)e”” + c—j(go)e "]
7j=1
— [ —ijTr— e‘“]

For all n in N we define a,(r) = €™*; we also define

Lifn>1
Bn<x):={"l e

1 it n=0.
n i 1 — eia:(n-i—l)
An(l') = ZG kzw
k=0

For all positive integer n we denote

if n > 2,

. 1
bn = Bn - Bn—l - n(n—1)
0 ifn=1.

So, we can use the summation by parts formula and we obtain that

Zel]xz— —1+Zk—_1)Ak 1().

Let € be any positive real number. Since the sequence of functions {4, },ey is uniformly
bounded in [e; 27 — ], the sequence {5, o }nen converges uniformly toward gy (as a
matter of facts, we know that gy is the limit with respect to L? norm and it is unique).
Moreover, S, (0) is equal to 0 for all n in N; hence, the theorem is completely proved
assuming that f is equal to go.
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5.1. Complex Fourier series

Step 4: Let h be any point in [—7; 7); we notice that §,g,(x) = S,go(z — h) for all
n in N for all z in [—m;7]. So, the theorem is true if f is equal to gj.
In conclusion, we notice that

k
S f (@) = S fel®) + D diSnga, ()

for all m in N for all z in [—7; 7|. So, if we join the second step and the third step, the
conclusion follows immediately. O]

5.1.3 Application of the complex Fourier series to PDE
Heat equation with periodic boundary conditions

Definition 5.1.24. Let ug : [—m; 7] — C be any function. Let us consider the following
partial derivative equation

( au 82u .
5 (10) = 55 (t) ?f (t;x) € (0;T) x [=m; 7]
15(5; ) = u(gu—ﬂ) ?ft €(0;7) (5.2)
%(t; ) = g(t; —m) ifte (0;7)

\u((); :L‘) = uo(m) if v € [_ﬂ'; 77]

We say that (5.2) is the heat equation in [—; 7| with periodic boundary conditions.

Definition 5.1.25. Let ug : [—7; 7] — C be any function; let T' be any positive real
number. We say that w : [0;T") x [—m; 7] — C is a solution of (5.2) if it has the following
properties:

e 1 is continuous in [0;T") X [—m; 7];

for all (¢;2) in (0;7) x [—m; 7], there exists
0*u
@(ﬂx)

and it is continuous in (0;7") x [—m;7];

for all (t;2) in (0;T) x [—m; 7], there exists
ou
t.
at ( ) Qj)

and it is continuous in (0;77) x [—m;7;

for all (t;2) in (0;T) x [—m; 7] the following identity holds true:

0%u ou
@(tl’) = =

for all ¢ in (0;7") it holds that
u(t; m) = u(t; =),

ou ou
%(L 7T) - a_x(ta _ﬂ-)u
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Chapter 5. Fourier series

e for all z in [—m; 7| it holds that
u(0; z) = ug(x).

We are looking for reasonable hypothesis on uy to make sure that there exist a time
T in (0; +00) and a function u : [0;T) x [—m; 7] — C that is a solution of (5.2) in the
sense of definition 5.1.25.

Theorem 5.1.26 (Existence and uniqueness of the solution for heat equation with
periodic boundary conditions).

Let ug : [—m; 7] — C be any function in LA((—m;7)); let us define the Fourier coefficient
{P} ez asin 5.1.1. Let us assume that

S| < +oo.

ne”L

Let u : [0; +00) x [—m; 7] — C such that

2 CO —n2t 'mx

nez
Then the following conclusions hold true:
o u is a well defined complez-valued function in [0; +00) X [—m;7|;
e u is in C°((0; +00) X [—m;7]);
e u is a solution of (5.2) in the sense of definition 5.1.25;

e if ug is a real-valued function, then u is a real-valued function;

if v is a solution of (5.2) in the sense of 5.1.25, then v is equals to u.

Proof. Step 1: We claim that u is well defined and it continuous in [0; +00) X [—m; 7.

We notice that
} Z |co| < +00.

neL

0 _—n2t znm

Cn€

> |
ez [0;+00) x[—m;m]

If up is a real-valued function, then ¢, (f) = c_,(f) for all integer n, as shown in 5.1.7.
For all N in N we define Syu : [0; +00) x [—7; 7] — C such that

N
SNu(t;q;) = Z C(]e—n2temz
n=—N
We notice that for all N in N for all (¢;x) in [0; +00) X [—; 7] it holds that
N
Syu(t; z) = ) + Z [cge*"%eim + cgne’zte’im
n=1
N
=cp+2 Z eIR{ QY.
n=1
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5.1. Complex Fourier series

Hence, we obtain that {S,u},ecn is real-valued sequence of functions that converges
toward u uniformly in [0;+00) X [—m;7]. Since R is a closed set in C, then u is a
real-valued function.

We claim that u is in C*°((0; +00) x [m;7]). Let ¢ be a positive real number. Let
k, 7 be nonnegative integers. We notice that for all integer n it holds that

ak+j 0, . } ,
0 —n“t _inr 0 2h+k —n2§
sup C, =1 |n e .
(8;400) X [—m3m] {| | axkath( ) ‘ ‘ n|
Hence, we obtain that
§ : O i } 0 2h+k 25
Sup { ( -n ZTL]} |C | | _n
nez (65400) X [—m;m] al'kath Z

neL

Since § is a positive real number and the sequence {c?},cz is bounded, we can state
that the right hand side series converges. So, we derive the series and we obtain that u
is in C*°((6; +00) x [—m;7]). This is enough to state that u is a smooth function in
(0; +00) X [—m;7]. In particular, if (¢;x) is in (0; +00) X [—m; 7], it is true that

au 0 a —n2t znz 0 —n 2¢ mx
a(t,x):chat Z —n*c ;

neL ne’l

2 C —n2t mz E n2 0 —n 2t zn:c
81’2 "89&2

nez ne”L

As for the periodic boundary conditions, if ¢ is any positive real number, we have that

Z 0 —nt znﬂ_z 0 —nt —zmr_u<t;_ﬂ_)7

neL nez
ou
E inc®e " teinm g inc®e " te™T = Z—(t; —).
Ox
neZ nez

As for the initial datum, we know that the Fourier series of ug is totally convergent (see
5.1.11); hence, if = is any point in [—7; 7], we have that

Z CO nr __ )
nel

This is enough to state that u is a solution of (5.2) in the sense of definition 5.1.25.
Step 2: Let v be any solution of (5.2) in the sense of definition 5.1.25. Let ¢ be
any real number in [0;77). We define

cn(v(t; ) = L /7T v(t; z)e” ™ d.

2 J_,

For all integer n we define

ov 1 [T Ov ina
Cn (E(t’ )> = %/_ﬂ E(t,x)e dx.

Since v is continuous in [0;7T") X [—m; 7], we can apply theorem 2.3.1 and we have that
for all  in Z the function ¢, (v(—;-)) : [0;T) — C is continuous. Since %¢ is continuous
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in (0;7) x [—m; 7|, we can apply theorem 2.3.2 and we have that if n is any integer,
then ¢, (v(t;-)) is in C*((0;T)) and for all ¢ in (0; 7)) it holds that

021 1 " 81) —inT _ . /
o (5006) = 55 | Gt oot ).

We recall that v is such that for all ¢ in (0;7") it holds that
v(t;m) = o(t; —m),

ov ov
%(t 7T) = %(ta _ﬂ—)‘

Let n be any integer; we define

0*v 1 [™ 0% —ina
Cn (E?z_a:(t; )) = —(t;x)e”""dx.

2r J_, 0%z

Thanks to lemma 5.1.10, for all integer n it holds that

9*v 1 [ 0% —ing
Cn <%(t; )) = — —(t;x)e "™ dx

27 J_. 0x?

_p2 [T

=5 7ﬂv(t; r)e " dy
= —n’c,(v(t; ).
We recall that v is such that for all (¢;x) in (0;T) x [—7; 7] it holds that

ov 0%

E(t;x) = @(t;iﬁ)-

Hence, for all integer n for all ¢ in (0;7"), we have that

Cn (%(t; -)) =Cn (%(t; -)) :
In other words, for all integer n for all ¢ in (0;7") it holds that
en(v(t; ) = —nea(v(t; ).
Since v(0; z) = ug(z) for all x in [—7; 7], we can state that
cn(v(0;+)) = €.

We have that ¢, (v(t;-)) is a solution of the following differential problem

{y’(t) = —n2y(t) ift>0,
y(0) =0,

and it is continuous in 0; this is equivalent to state that ¢, (v(¢;-)) is a solution of the
following Cauchy’s problem:

{y’(t) = —n2y(t) ift>0,
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5.1. Complex Fourier series

Hence, we have that for all ¢ in [0; +00) it holds that

ea(v(t; ) = Le

This is enough to state that that for all ¢ in [0; +00) the function v} () [min] coincides
with the function u|{t}x[_7r.7r], ie. for all (¢;z) in [0;400) X [—m; 7] it holds that
v(t; x) = u(t; ). O

Remark 5.1.27. We can show that there exist an initial datum wug such that for all
positive real number § the problem (5.2) has no solution in the sense of definition 5.1.25
in (—=6;0] x [-m;7]. Let ug : [—m; 7] — C be the initial datum; we denote {c?},cz
the sequence of the Fourier coefficients. Let us assume that there exist a positive real
number § and a function v : (—=4§;0] x [—m; 7] — C that is a solution of (5.2) in the
sense of definition 5.1.25. For all integer n for all ¢ in (—4; 0] we define

cn(v(t; ) - ! /7r v(t; z)e” ™ dx.

:% o

As shown in further details in the proof of theorem 5.1.26 (see the second step), the
function ¢, (v(t;-)) has the following properties:

e it is well defined and it is continuous in (—d; 0];
e ¢,(v(0;-)) equals ¥;
e it is in C'((—4;0));

e it is a solution of the following Cauchy’s problem

{y(t)' = —n?y(t) ifte (-5;0],
y(0) = cb.

Hence, we can state that for all n in N for all ¢ in (—d; 0] it holds that
ea(v(t; ) = De

Since the function v’{ - is in C,,([-m;7]), we can apply theorem 5.1.11 and
-3 —m;m

S ((4))] <

neL

nel

we obtain that

In other words, we have that

28
e 2| < +oo.

If ug is such that ¢ = eIl for all integer n, it’s easy to see that ug is in C52.([—m; 7))
(see theorem 5.1.11 and 5.1.13) but it holds that

lim | n’s
n—+oo

C = 400.

81



Chapter 5. Fourier series

Wave equation with periodic boundary conditions

Definition 5.1.28. Let wug,u; :

number. Let us consider the following partial derivative equation

We say that (5.3) is the wave equation in [—7; 7] with periodic boundary conditions.

Definition 5.1.29. Let ug, u; :

( 0% 28216 .
5 () = o5 (k) if (o) € (0,T) x [=m;7]
u(t; ) = u(t; —m) ift € (0;7)
ou ou . )
%(t;ﬂ'):£(t; —71') ifte (O,T)
73(0; x) = UO(I) if v € [_77577]

SO =w()  frel-ma)

of (5.3) if it has the following properties:

u is continuous in [0;T") X [—m;7;
for all (t;2) in [0;T") x [—m; 7] there exists

ou
E(ta SL’)

and it is continuous in [0;T") x [—m; 7];
for all (¢;2) in (0;7) x [—m; 7], there exists

0%u
@(t; )

and it is continuous in (0;7T) x [—m; 7[;
for all (t;2) in (0;T) x [—m; 7], there exists

0%u
w(ﬁ )

and it is continuous in (0;7) x [—m;7];
for all (¢;2) in (0;7) x [—m; 7| the following identity holds true:

0%u 0%u
2 o o
o (t; ) 5 (t;x);

for all ¢ in (0;7") it holds that

u(t;m) = u(t; —m),

ou ou
%(L 7T) - 8_x<t’ _ﬂ-)a
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e for all z in [—m; 7| it holds that

w(0;z) = ug(x);

e for all x in [—m; 7| it holds that

ou
E(OQ z) = u(z).

We are looking for reasonable hypothesis on ug and u; to make sure that there exists
a time 7" in (0; 400) and a function u : [0;T") x [—7; 7] — C that is a solution of (5.3)
in the sense of definition 5.1.29.

Theorem 5.1.30 (Existence and uniqueness of the solution for wave equation with
periodic boundary conditions (1)).

Let ug,uy : [-m; 7] = C be any functions in LZ((—m;7)); let ¢ be any positive real
number. Let us define the Fourier coefficient {2 }nez for ug and {c-}nez for ui as in

5.1.1. Let us assume that
Z |n202} < +00,

nez

Z ‘ncH < +00.

nel

For alln in Z\ {0}, we define

Let u: R x [—m;w] = C such that

u(t; ) = 3+ cot + Z [anei”(”d) + ﬁnem(”c_“)} )
n€eZ\{0}
Then the following conclusions hold true:
o u is a well defined complez-valued function in R x [—m;7];
e uis in C*(R x [—m;7]);
o u is a solution of (5.3) in the sense of definition 5.1.29;

e if ug and uy are real-valued functions, then u is a real-valued function;

o if v is a solution of (5.3) in the sense of 5.1.29, then v is equals to u.

Proof. Step 1: We claim that u is well defined and it is continuous in R x [—m; 7]. We
notice that

S s {Jan@ O 4 gDy < S g 418,

nez)\ {0y Rx =i nez\{0}
1
C
< D e+ || < oo
neZ\{0}
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We claim that if uy and u, are real—valu_ed functions,_then u 1s a real-valued function.
As shown in 5.1.7, we have that ¢ =V and ¢! = ¢l for all integer n. In particular,
3 and ¢} are real numbers. For all N in N we define Syu : R x [—7; 7] — C such that

1 N
SNU(t;I') — Cg + C(l) + Z [anein(a:-i-ct) + ﬁnein(a:—ct)] + Z [anein(:r:+ct) + 5n€in(:r:—ct)} )
n=—N n=1

It’s easy to see that for all n in Z for all (¢;2) in R x [—m; 7] it holds that

anez‘n(m-i,-ct) + /Bnein(m—ct) — ()d_ne_in($+6t) + 6—n6_in(z_6t)‘

Therefore, we obtain that

N
Syu(t;z) = )+ cjt + 2 Z R {a, et 4 g ey

n=1

Since {Snu}nen is a real-valued sequence of functions that converges toward u uniformly
in R x [—m; 7] and R is a closed set in C, it holds that u is a real-valued function.

We claim that u is a C? function in R x [—m;7]. Let h, k be integers in {0;1;2}
such that h + k < 2. First of all, we state that

h+k
in(x+-ct) in(x—ct) < )
ol e < o
neZ\{0}

For all n in Z \ {0} for all (¢;z) in R x [—m; 7] it holds that

ah+k ] ‘ ' ‘
‘ = (anem(:erct) + ﬁnem(a:fct)) ‘ — ‘anck(in)k+h€zn(x+ct) + ﬁn<_c>k<in>k+h€m(:pfct)

otkoxh
< (lan| + [Bal) Inf* "

k 0 |C111| k+h
<]+ 2 ) In]
|en|

k+h k+h—1

=" || [n]"™" + F e )

Since we are assuming that h 4+ k < 2, we obtain that

ah+k ) )
Z sup { ’ (anezn(l’-l—ct) + 5nezn(a:—ct))
i)

kA
nez\{oy RX[=mm 0tF oz

b 3 el ) 2

nez\{0}

under our hypothesis, the right hand side series converges. In particular, if we derive
the series we obtain that for all h, &k in {0;1;2} such that h + k& < 2 for all (t;2) in

84



5.1. Complex Fourier series

R x [—m; 7] it holds that

aQU 82 in(x+c in(x—c
P = T (oo s )
neZ\{0}

— E _n202anezn(z+ct) - n2026nem(:c—ct)

nez\{0}

e | 1 ch\ 1 a\
— 02 § _n2€mz - Cg + - n ezcnt i CE)L — - n e icnt
|2 wen 2 wen

nez\{0}
) B eicnt + eficnt Cl 6icnt _ eficnt
— C2 § _n2€znm Cg 4 -n :
2 cn 21
nez\{0} L

- 1

— 2 2 inx | 0 C_n .

=c Z n°e ¢, cos(cent) + = Sln(cnt)} )
neZ\{0} -

Similarly, it can be proved that
1

82“ 2 _inz 0 Cn
ﬁ@; x) = Z —n’e"™ |c, cos(ent) + - sin(ent) | .
t neZ\{0}

As for the periodic boundary conditions, for all £ in R we have that

u(t;m) = G+ cit+ Y e 4 g et
neZ\{0}
= 08 + C(l)t + Z anei”(_”““ft) + 5nein(—7r—ct)
neZ\{0}
= u(t; —);

if we derive the series, we can state that for all £ in R it holds that

0 ,
a—u(t; ) = Z inay,e™m ) Ling,em ¢
v nez\{0}
_ Z inanein(—ﬂ—‘rct) + inﬁne—w—ct
nez\{0}
ou
O 1)

As for the initial datum, we can similarly show that for all x in [—7; 7] it holds that
u(0; ) = uo(x),

0

5 0) = wi ().

We can finally conclude that u is a solution of (5.3) in the sense of definition 5.1.29.
Step 2: Let v : [0;T) x [—m; 7] — C be any solution of (5.3) in the sense of definition

5.1.29. Let n be any integer; let ¢ be any point in [0; 7). We define

™

cn(v(t; ) = %/ v(t; z)e” "™ dx;

—Tr
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v
azv —inx
Cn (W(t, )) o | o —(t; x)e”"dx.
[ 7]

Since v is continuous in [0;7") x
that the function

" E)v —inx .
E(L x)e "dx;
82

7|, we can apply theorem 2.3.1 and we can state

cn(v(t;+))  [0;T) = C

is well defined and it is continuous. Since ‘?;t’ is continuous in [0;T") X [—m; 7], we can

use theorem 2.3.2 and we obtain that the function ¢, (v(¢;-)) is in C*([0; 7)) and for all
tin [0;7) it holds that

, L [Tov . ov,
cn(v(t; ) = Py B Ee dr = ¢, (a(t, )) .

By definition 5.1.29, we have that at” is continuous in (0;7") x [—m; 7. So, thanks to
theorem 2.3.2, we have that c¢,(v(t;+)) is in C?((0;T)) and for all ¢ in (0;7) it holds

that L s o2
" v, —inx _ Vo
Cn(U(t; )) = % ;. W(L ZL')@ dr = Cp, (W(t’ )) .

We recall that for all z in [—m; 7] it holds that

v(0;2) = ug(x),

ov
% 0:2) = w(e).

Hence, it’s immediate to see that

cn(v(0;-))
en(v(057) =,

Let n be any integer; let ¢ be any point in (0;7"). We define

0*v 1 [T 0% Cine
Cn (@(t, )) b /_7r @(t,x)e dx.

By definition 5.1.29, for all ¢ in (0;7") it holds that
v(t;m) = v(t; —m),
ov ov
—(t;m) = —(&; —m).
O ) = 221 —m)

Hence, we can use lemma 5.1.10 and we obtain that

82,0 82 —Zn:(:

—n2 i -
— t: —inz g
5 v(t;x)e x

—T

= —n’eu(v(t; ).
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We recall that v is such that for all (¢;x) in (0;7") x [—m; 7] it holds that

0% 0%

@(t;x) = 02@(75;@-

Hence, for all integer n for all ¢ in (0;7"), we have that

Cn (%(t; -)) =c, (CQ%@; -)) :

In other words, we have shown that for all integer n the function ¢, (v(¢;+)) is a solution
of the following differential problem

y'(t) = —n2y(t) ift >0,

y(0) = ¢y,

Yy (0) =c,
and it is continuous in 0; this is equivalent to state that ¢, (v(¢;-)) is a solution of the
following Cauchy’s problem:

y'(t) = —nPy(t) ift >0,

y(0) =y,

y'(0) = cy.
So, if n is 0, for all ¢ in [0; +00) it holds that

co(t) = ¢ + cot;

otherwise, it’s easy to see that

1

cn(t) = 2 cos(ent) + & sin(cnt) = a,e™ 4 B,e” ",
cn

This is enough to state that that for all ¢ in [0; 400) the function v} (O[] coincides
with the function U|{t}><[7ﬂ_'ﬂ_], i. e. for all (¢;x) in [0;400) X [—m; 7] it holds that
v(t;z) = u(t; x). O

Theorem 5.1.31 (Existence of solution for wave equation with periodic boundary
conditions (2)).

Let ug be any function in CZ, .([—m;7]); let uy be any function in C, . ([—m;7]); let ¢ be
any positive real number. Then, there exist ¢ and ¢} in C and there exist complex-valued
27 -periodic functions o™ and o~ in C*(R) with the following property: if we define
u: [—m;m] x R — C such that

u(t;z) = ¢ + gt + ¢t (x —ct) + ¢ (z + ct),
then w is a solution of (5.3) in the sense of 5.1.29 in R x [—m;].

Proof. 1If we show that there exist ¢J and ¢} in C and there exist ¢, ¢~ : R — C such
that for all x in [—7; 7] it holds that
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then thesis follows immediately (the other requests are obviously satisfied.) We can
derive the first equation and we obtain that for all x in [—7; 7] it holds that

(@) + (1) = uo(x),
—o" (@) +¢ () =

Hence, the following identities hold true:

We can choose ¢j such that
[ ) - dyde =0

since, ug is in C2.,([—m; 7]), we have that

/ ug(x) dx = 0.

We notice that the right hand side of the equations 5.4 are functions with zero mean.
From now on, we will identity ug and u; with their extension over R by periodicity. If
we choose ¢ := u(0), for all z in R we can define

o) = [ (e - 2= D) o

o () = z /0 ' (uo(t)’ + @) dt.

We have that o™ and ¢~ are 2m-periodic functions in C*(R) that satisfy all the
requests. 0

5.2 Real Fourier series

5.2.1 Decomposition in sines and cosines

Theorem 5.2.1. Let us define
.
n e N*} U {—sm(nm)

v {\/%}U{%Cos(nx) 7

Then 94 is a real-valued functions Hilbert’s basis of LE((—m;7)).

nEN*}.

Proof. 1f we show that ¢ is a maximal set, then thesis follows immediately (the other
requests are obviously satisfied). If we define
n e Z} ,

1 )
g — eznx
{ V2T
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we have shown in theorem 5.1.4 that .# is an Hilbert’s basis of LZ((—m;7)). It’s
immediate to see that

Span(.#) C Span(¥);
this is enough to state that
Span(¥) = L&((—m;7)).
O

Remark 5.2.2. We remark that the maximality can be proved as a direct consequence
of Stone-Weierstrass theorem; unfortunately, the proof of the fact that ¢ is an algebra
is a bit technical.

Definition 5.2.3 (Real Fourier coefficient). Let f be any function in LZ((—m;)). Let
n be any positive integer. We define

_ % /_ : F(z) cos(na)dz
_ % /_ 7; f(2) sin(nz)dz

ao 2W/f

Definition 5.2.4 (Real Fourier partlal sum)
Let f be any function in L&((—m;m)). Let us deﬁne the real Fourier coefficients as in
5.2.3. Let n be any positive integer. For all z in [—m; 7] we define

We also define

Guf(z ) + Z ap(f) cos(kx) + by (f) sin(kx)] .

We say that {G,, f}.en+ is the sequence of the real Fourier partial sum of f.

Corollary 5.2.5. Let f be any function in L&((—m;7)). Let us define {Gyf fnen- as
in 5.2.4; then {G,, f tnen+ is a sequence of functions that converges toward f with respect
to L? norm. Moreover, if f is a real-valued function, then {Gyf}nen+ is a real-valued
sequence of functions, c¢o(f) = ao(f) and for all n in N* it holds that

an(f) = cn(f) + con(f) = 2R(ca(f)),
bu(f) = i(en(f) — con(f)) = 2S(cn(f)).

Proof. As for the first statement, it is an immediate consequence of theorems 5.2.1 and
4.2.5.

By definitions 5.1.1 and 5.2.3, it follows that c¢o(f) = ao(f). Let n be any positive
integer; then, we have that

! f<>[*m+ ] dp =+ f()COS(nx)dfvzan(f),

o T

cn(f) +en(f) =

i(en(f) — con(f = 3= / flx) [e7 — ™) do = 1 _ﬂ f(z)sin(nz)dx = b,(f).
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Let us assume that f is a real-valued function. Thanks to proposition 5.1.7, we can
state that for all n in Z it holds that ¢, (f) = c_,(f). Hence, we can conclude that
is a real number and for all n in N* it holds that

an(f) = 2R(ca(f)),
bu(f) = 23(en(f))-

5.2.2 Decomposition in sines

Definition 5.2.6. Let f be any function in L2((0;7)). Let n be any positive integer.
We define

Bu(f) = %/Oﬂ f(z) sin(nz)dx.

nEN*}.

Proof. 1t’s immediate to see that .% is an orthonormal set. We claim that . is complete.
Let f be any function in L2((0;7)). We define f : [-m; 7] — C the odd extension of f,
ie. f(z) = f(z)if z in [0;7] and f(z) = —f(—=x) if = is in [—7;0). Let us define the
sequences {a, }neny and {b, }nen+ as in 5.2.3 and the sequence of the real Fourier partial
sum {G, f }nen+ as in 5.2.4. Since f is odd, the following conclusions hold true:

Theorem 5.2.7. Let us define

= {\/g sin(nz)

Then 7 is an Hilbert’s basis of LA((0;7)).

. ao(f)Z%/_ﬂf(ﬂf)dﬁz();

e for all n in N* we have that

an(f) = ! /Tr f(z) cos(nz)dx = 0;

-
e for all n in N* we have that

b(F) == [ Fwysintuade =2 [ fla)sintna)ds = 5,(9).
For all n in N* we define J,, f : [0; 7] — C such that
Jnf(z) = Z Br(f) sin(kzx).
k=1

Since {G,, f }nens converges toward f with respect to L2 norm in (—; ), we have that
{Jnf}nen- is a sequence in Span(.) that converges toward f with respect to L? norm
in (0;7). O

90



5.2. Real Fourier series

Lemma 5.2.8. Let k be any positive integer. Let f be any function in C*([0;n])
such that for all integer i in {0;...;k — 1} it holds that f@9(0) = f®)(7) = 0. Let
@ be a function in C*([0;7]) such that for all integer i in {0;...;k — 1} it holds that
©?)(0) = ) (1) = 0. Then, the following identity holds true:

/0 " 10 (o) = / " f(2)®™ (x)d.

Proof. The statement can be easily proved by induction on k. Let us assume that k
equals 1. If we integrate twice by parts and we use the boundary conditions, we obtain
that

| et = r@em - r0p0) - [ radei
- [ re@i
=~ )+ FOLO) + [ ) @)
- |t @y

The inductive step is completely similar to the basis. O

5.2.3 Decomposition in cosines

Definition 5.2.9. Let f be any function in LZ((0;7)). Let n be any positive integer.
We define

2 T
an(f) = ;/0 f(z) cos(nz)dx.
We also define -
o)== [ sy

nEN*}.

Proof. Tt’s immediate to see that € is an orthonormal set. We claim that % is complete.
Let f be any function in L2((0;7)). We define f : [—m; 7] — C the even extension of
foie f(z) = f(z)if z in [0;7] and f(z) = f(—z) if z is in [-7;0). Let us define the
sequences {a, }neny and {by, }nen+ as in 5.2.3 and the sequence of the real Fourier partial
sum {G,, [ }nen- as in 5.2.4. Since f is even, the following conclusions hold true:

Theorem 5.2.10. Let us define

C = {%} U {\/gcos(m:)

Then € is an Hilbert’s basis of L%((0;m)).

e for all n in N* we have that

bo(f) = %/j f(x) sin(nz)dz = 0;
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v alf) =5 [ Fore =< [ fade = aul)

e for all n in N* we have that

F) = %/: f(x) cos(nx)dx = %/0” f(z) cos(nz)dz = an(f).

For all n in N* we define H,,f : [0; 7] — C such that

H,f(z) )+ Z ag(f) cos(kz).

Since {Gpf }nen- converges toward f with respect to L? norm in (—m;7), we have that
{H, f}nen- is a sequence in Span(%’) that converges toward f with respect to L? norm
n (0;m). O

Lemma 5.2.11. Let k be any positive integer. Let f be any function in C**([0;7]) such
that for all integer i in {0;...;k — 1} it holds that f®+1(0) = f(QZJrl (m) = 0. Let ¢
be any function in C*([0;7]) such that for all integer i in {0;...;k — 1} it holds that
0 D(0) = @+ (1) = 0. Then, the following identity holds true:

/07T O (2)p(x)da = /wa(x)go(zk)

Proof. The statement can be easily proved by induction on k. Let us assume that &
equals 1. If we integrate twice by parts and we use the boundary conditions, we obtain
that

/07r f(@)e(x)de = f'(m)e(m) — f(0)p(0) — ' f'(@)¢ (z)dx

0

The inductive step is completely similar to the basis. O

5.2.4 Application of the real Fourier series to PDE
Heat equation with homogeneous Dirichlet boundary conditions

Definition 5.2.12. Let ug : [0;7] — C be any function. Let us consider the following
partial derivative equation

ity = L8 2) it () € (0;T) x [057]
0 Ox?
(tt, T =ult;—m) =0 ifte (0;7) (5.5)
u(0; ) = ug(x) if x € [0; 7]

We say that (5.5) is the heat equation in [0; 7] with homogeneous Dirichlet boundary
conditions.
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Definition 5.2.13. Let ug : [0;7] — C be any function; let 7" be any positive real
number. We say that w : [0;T) x [0; 7] — C is a solution of (5.5) if it has the following
properties:

e v is continuous in [0;7) x [0; 7];

for all (t; ) in (0;T") x [0; 7], there exists

0%u
@(t; )

and it is continuous in (0;7") x [0; 7];

for all (t; ) in (0;T") x [0; 7], there exists

ou
;§Z(t7x)

and it is continuous in (0;7") x [0;7];

for all (¢;2) in (0;7) x [0; 7] the following identity holds true:

0%u ou
@(t;x) = E(t;iﬂ);

for all ¢ in (0;7") it holds that

u(t;m) = u(t; —m) = 0;

for all z in [0; 7] it holds that

u(0; ) = ug(x).

We are looking for reasonable hypothesis on ug to make sure that there exists a time
T in (0; 4+00) and a function w : [0;7T") x [0;7] — C that is a solution of (5.5) in the
sense of definition 5.2.13.

Theorem 5.2.14 (Existence and uniqueness of the solution for heat equation with
homogeneous Dirichlet boundary conditions).

Let ug : [0; 7] — C be any function in LE((0;7)); let us define the real Fourier coefficient
{8} e as in 5.2.6. Let us assume that

Z ‘ﬁm < +o00.

neN*

Let u : [0;+00) x [0;7] — C such that

u(t;z) = Z 3% " sin(nz).

neN*
Then the following conclusions hold true:

o u is a well defined complez-valued function in [0;+00) x [0;7];
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u is in C((0;400) x [0;7]);

e u is a solution of (5.5) in the sense of definition 5.2.153;

e if ug is a real-valued function, then u is a real-valued function;

e if v is a solution of (5.5) in the sense of 5.2.13, then v is equal to u.

Proof. Step 1: If we slightly modify the procedure described in many details in the
first step of theorem 5.1.26, we immediately obtain the following statements:

u is a well defined complex-valued function in [0; +00) x [0;7];

w is in C*°((0; +00) x [0; 7]);
e u is a solution of (5.5) in the sense of definition 5.2.13;
e if ug is a real-valued function, then u is a real-valued function.

Step 2: Let v be any solution of (5.5) in the sense of definition 5.2.13. Let n be
any positive integer. Let ¢ be any real number in [0;7"). We define

Bn(v(t;-)) = 2 /Oﬂ'u(t; x) sin(nx)dz.

™

Let n be any positive integer. Let ¢ be any real number in (0; 7). We define

Bn (%(t; )) = 2 /07r %(t;x) sin(nz)dx.

™

Since v is continuous in [0; T") x [0; 7], we can apply theorem 2.3.1 and we have that for

all n in N* the function 8,(v(—;-)) : [0;7) — C is continuous. Since % is continuous in
(0;T) x [0;7], we can apply theorem 2.3.2 and we have that if n is any positive integer,

then 3, (v(t;-)) is in C*((0;T)) and for all ¢ in (0;T) it holds that

2 s
Bn (%(t; )) = i %(t;x) sin(nz)dr = B,(v(t;-)).
We recall that v is such that for all ¢ in (0;7") it holds that

v(t;m) =v(t; —m) = 0.

Let n be any positive integer; we define

T J, 0%z

2 2 T 92
Bn (%(t; )) == @(t;x) sin(nz)dz.
Thanks to lemma 5.2.8, for all integer n it holds that

B (272;}(75; )) _2 [ @(t;x) sin(nx)dz

T Jo Ox?
—2n?

_ /0 " o(t ) sin(nz)da

™

= —nBa(v(t; ).
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We recall that v is such that for all (¢;x) in (0;7T") x [0; 7] it holds that

Hence, for all positive integer n for all ¢ in (0;7), we have that

b (Gr050) = o (a0 )

In other words, for all positive integer n for all ¢ in (0;7) it holds that
Balv(t; ) = —n?Bu(v(t; ).
Since v(0; ) = up(x) for all x in [0; 7], we can state that
Bu((0;-)) = By.

We have that [, (v(t;-)) is a solution of the following differential problem

{y’(t) = —nPy(t) ift>0,

and it is continuous in 0; this is equivalent to state that 5, (v(¢;-)) is a solution of the
following Cauchy’s problem:

y'(t) = —n?y(t) ift>0,
y(0) = 0.
Hence, we have that for all ¢ in [0; 400) it holds that
Bulv(t; ) = Bre™™".

Hence, for all ¢ in [0; +00) the function v coincides with the function u :

| (1) x[0:m] {1} x[0s7]
i.e. for all (¢; ) in [0; +00) x [0;7] it holds that v(t; ) = u(t; x). O
Heat equation with homogeneous Neumann boundary conditions

Definition 5.2.15. Let ug : [0; 7] — C be any function. Let us consider the following
partial derivative equation

ou 0%u

?(t;x) = ?(t;w) if (t;x) € (0;7) x [0; 7] -
u u . 5.6
%(t;ﬂ):%(t; —m)=0 ifte (0;T)
uw(0;x) = ug(x) if z € [0; 7]

We say that (5.6) is the heat equation in [0; 7] with homogeneous Neumann boundary
conditions.

Definition 5.2.16. Let ug : [0;7] — C be any function; let 7" be any positive real
number. We say that w : [0;T) x [0; 7] — C is a solution of (5.6) if it has the following
properties:
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e u is continuous in [0;7) x [0;7;

for all (t; ) in (0;7") x [0; 7], there exists

0%u
@(t; )

and it is continuous in (0;7") x [0; 7];

for all (t; ) in (0;T") x [0; 7], there exists

ou
E(ta {L‘)

and it is continuous in (0;7") x [0; 7];

for all (¢;2) in (0;7) x [0; 7] the following identity holds true:

0%u ou
@(tﬁv) = a(tw),

for all ¢ in (0;7") it holds that

ou ou
%(tv 7T) - %(ta _ﬂ-) - Oa

for all x in [0; 7] it holds that
u(0; z) = ug(x).

We are looking for reasonable hypothesis on uy to make sure that there exists a time
T in (0;+o00) and a function w : [0;7T) x [0; 7] — C that is a solution of (5.6) in the
sense of definition 5.2.16.

Theorem 5.2.17 (Existence and uniqueness of the solution for heat equation with
homogeneous Neumann boundary conditions).

Let ug : [0; 7] = C be any function in LE((0;7)); let us define the real Fourier coefficient
{a%}en as in 5.2.9. Let us assume that

Z ’ag‘ < +00.

neN

Let u : [0;4+00) x [0;7] — C such that

u(t;z) = Z&%e’”% cos(nx).

neN
Then the following conclusions hold true:
o u is a well defined complez-valued function in [0;+00) x [0;7];
o u is in C*°((0;400) x [0;7]);

e u is a solution of (5.6) in the sense of definition 5.2.16;
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e if ug is a real-valued function, then u is a real-valued function;
e if v is a solution of (5.6) in the sense of 5.2.16, then v is equal to u.

Proof. Step 1: If we slightly modify the procedure described in many details in the
first step of theorem 5.1.26, we immediately obtain the following statements:

e 1 is a well defined complex-valued function in [0; +00) x [0; 7;
e u is in C((0;400) x [0;7]);

e u is a solution of (5.6) in the sense of definition 5.2.16;

e if ug is a real-valued function, then w is a real-valued function.

Step 2: Let v be any function of (5.6) in the sense of definition 5.2.16. Let n be a
positive integer. Let t be any real number in [0;7"). We define

an(v(t;+)) = 2 /va(tw) cos(nz)dz.

™

Let n be a positive integer. Let ¢ be any real number in (0;7"). We define

o (%(t;.)) - % /O ﬂ%(t;@ cos(nz)dz.

Similarly, for all ¢ in [0; T") we define

ao(v(t; ) = - / "ot )de:

™

for all ¢ in (0;7") we define

ov 1 [T ov
o <E(t, )) == E(t,x)dx.

™ Jo

Since v is continuous in [0; T") x [0; 7], we can apply theorem 2.3.1 and we have that for

all n in N the function a,,(v(—;-)) : [0;T) — C is continuous. Since % is continuous in

(0;T) x [0;7], we can apply theorem 2.3.2 and we have that if n is any positive integer,
then a,(v(t;+)) is in C'((0;T)) and for all ¢ in (0;T) it holds that

ap, (%(t; )) = % OW %(t; x) cos(nx)dr = a, (v(t;-)).

Similarly, we can also state that ag(v(¢;-)) is in C'((0; 7)) and for all ¢ in (0; ) it holds

that 5 5
v 1 [T Ov
- t' . = — —_ t' d = n t. . ,-
aO(at(a)) T/ 8t(’x)x OC(U(,))
We recall that v is such that for all ¢ in (0;7") it holds that

ov ov
%(tﬂ) = (9_x(t’ —7) = 0.
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Let n be any positive integer; we define

0*v 2 [T 0%
ap (%(t; )) =— | ——(t;z)cos(nz)dz.

T J, 0%z

Thanks to lemma 5.2.11, for all positive integer n it holds that

0*v 2 [T 0%
an (%(t; )) =— | —(t;x)cos(nx)dx

T Jo Ox?
—2n?

= /07T v(t; x) cos(nx)dx

= —n’on(v(t; ).

Similarly, we define

9*v 1 [T 0%
0 (Gt =1 [ Gt

T Jo
thanks to the fundamental theorem of calculus and our assumption on v, we can state
that for all ¢ in (0;7") it holds that

0*v v v
o0 (Gan(t)) = Geteim) - 52650 =o.

We recall that v is such that for all (¢;x) in (0;7T") x [0; 7] it holds that

ov 0%v

Hence, for all n in N for all ¢ in (0;7T), we have that

O, <%(t; -)) = ap, (%(t; -)) :

In other words, for all n in N for all ¢ in (0;7") it holds that
an(v(t; ) = —nan(v(t;)).
Since v(0; ) = up(x) for all x in [0; 7], we can state that
an(v(0;-)) = aj.
We have that a,(v(¢;-)) is a solution of the following differential problem
y'(t) = —nPy(t) ift>0,
{y(o) =0,

and it is continuous in 0; this is equivalent to state that a,(v(¢;-)) is a solution of the
following Cauchy’s problem:

{y’(t) =-—n?y(t) ift>0,

Hence, we have that for all n in N for all ¢ in [0; +00) it holds that
Bulv(t; ) = fe ™.

So, for all ¢ in [0; +00) the function v

coincides with the function u {t}x[o g ie.
3

{erx0m)
for all (t;2) in [0; +00) x [0; 7] it holds that v(t; ) = u(t; x).
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5.3 Appendix

5.3.1 Stone-Weierstrass theorem

Definition 5.3.1. Let X a topological space. We denote as C'(X;R) the set of the
continuous functions among X and R; we denote as C'(X; C) the set of the continuous
functions among X and C.

Definition 5.3.2. Let X be a topological space. Let o7 be any subset of C'(X;R) or
C(X;C). We say that o/ is an algebra if it is vector space closed under multiplication.
Let us assume that for all x1, x5 in K such that x; # x5, there exists a continuous
function in & between X and R (or C) such that f(z1) # f(z2). We say that A
separates points.
Let us assume that o/ is a subset of C'(X;C). We say that <7 is closed under
complex conjunction if f in & if and only if f is in A, where f : X — C is such that

f(x) = f(=).
Remark 5.3.3. Let X be a topological space. It’s immediate to see that if there exists an

algebra of complex-valued or real-valued continuous functions, then X is an Hausdorff
space.

First of all, we state and prove some useful lemmas.

Lemma 5.3.4. Let M be a positive real number. There exists a sequence of polynomials
{Pn}nen that converges toward f(t) :== v/t uniformly in [0; M] and such that p,(0) =0
for all n in N.

Proof. We notice that if {g, }nen is a sequence of polynomials that converges toward
f uniformly in [0; M], then {g, — ¢,(0)},en satisfies all the requests. Let ¢, be the
Taylor polynomial of degree n. We claim that {g, }nen converges toward f uniformly in
[e;2M — €] for all € greater that 0. Let g : C\ RS" — C be the holomorphic function
such that ¢g(z) == v/z. Let € be a positive real number. Since g is holomorphic, there
exists a power series centered in M that converges toward f totally in B(M; M — ¢), i.

c. (n)
o) =3 Wy

where the right hand side series converges totally toward g in B(M; M — ). However,
it’s easy to see that g™ (M) = (M) for all n in N; in other words, g™ (M) is a real
number for all n in N. So, for all n in N we can define ¢, : R — R such that

LN (1))
ity =S W g

n!
i=0

By restriction, {g, }.en is a sequence of real-valued polynomials that converges uniformly
toward f in [e;2M — €] for all € greater than 0. For all k£ in N there exists ny in N such

that
an(t) = VI } <27

sup {
2k 2N 2~k

Obviously, we can assume that the sequence {ny }ren is strictly monotonically increasing.
For all k£ in N we define p; : R — R such that

Pr(t) =, (t +275).
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The sequence {py }ren converges toward f uniformly in [0; M]. In fact, if k& is such that
27% < M, for all t in [0; M| we have that

[pelt) = V| <

%m(t%—Q_k)—-\/t%—Q—k’%—’»/t%—2—k-—'v€ <27F 4 Vo R,
O

Lemma 5.3.5. Let &7 be an algebra closed in C(K;R). Then, f belongs to </ implies
that | f| belongs to </ . In particular, if f,g are functions in <7, then the pointwise
mazximum max{f; g} and the pointwise minimum min{f; g} are in <.

Proof. Since f is continuous and K is a compact space, there exists a real number M
such that

M = mﬂgx{f(x)z}.

Let {p,}nen be a sequence of polynomials that converges toward ¢(t) := /¢ uniformly
in [0; M| and such that p,(0) = 0 for all n in N (see lemma 5.3.4). Since &7 is an algebra
and p, does not have the term of degree 0, we have that {p,(f)}.en 18 & sequence in
A that converges uniformly in K toward /f2 = |f|. Since </ is closed under uniform
convergence, we can conclude that |f| is in /.

In conclusion, we notice that, if f, fo are functions in o7, then

fi+ fa+1fi + fol

max{fi; f2} = T,
min{ f1; fo} = fr t f2 _2|f1 — fQ‘.
So, the pointwise maximum and the pointwise minimum belongs to 7. O

Lemma 5.3.6. Step 2: Let o be a set in C(K;R) with the following properties:

e if f,g are in &, then the pointwise maximum and the pointwise minimum are in
A ;

o for all x1,x9 in K such that x1 # 2, for all yi,y, in R (they can also coincide)
there exists a function g in o such that g(x1) = y1 and g(xs) = ya.
So of is dense in C'(K;R).

Proof. Let f be a function in C'(K;R); let € be a positive real number. We are looking
for a function h in o/ such that for all x in K it holds that

fx) —e < h(z) < f(z) +e.

We notice that for all z, 2" in K there e exists a function g¢,.,» in &7 such that g,../(x) =
f(z) and g..v(2') = f(2'). Let us fix z in K. For all 2’ in K, let us consider g,.,» such
that g,...(2') = f(2’) < f(2') +e. Since g~ and f are continuous functions, there
exists an open set U,s such that 2’ belongs to U, and g¢,..(y) < f(y) + ¢ for all y in
Uy . The collection {U,s | ' € K} covers K; since K is a compact space, there exists a
positive integer n and {z;...; 2]} in K such that

K:O%.
i=1
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We denote

he = min{ge0rs - - - ; Goiar, }-
Thanks to our hypothesis, h, is a function in /. By definition of A, it immediately
follows that h,(z) = f(z) and h.(y) < f(y) + ¢ for all y in K. Since h, and f

are continuous functions, there exists an open set V. such that x belongs to V, and
h.(y) > f(y) — e for all y in V.. The collection {V, | x € K} covers K; since K is a

compact space, there exists a positive integer m and {zy;...;x,,} in K such that
K= ]JV..
i=1
We define

h = max{h,;...;hs, }.

Thanks to our hypothesis, A is a function in /. In conclusion, the following inequalities
are an immediate consequence of the definitions given:

flx) —e <h(x) < f(x)+e.

Theorem 5.3.7 (Stone-Weierstrass theorem).

Let K be a compact Hausdorff topological space. Let o be an algebra of real-valued

continuous function that separates points and such that the constant functions belong to

. Then, o is dense in C(K;R) with respect to the norm of the uniform convergence.
Let </ is an algebra of complex-valued continuous functions that separates point, it

1s closed under complex conjunction and it is such that the constant functions belong to

o | then of is dense in C(K;C) with respect to the norm of the uniform convergence.

Proof. Step 1: Let us assume that & is in C(K;R). Let &’ the closure of & in
C(K;R). Thanks to the algebraic properties of the uniform limit, </’ is an algebra in
C(K;R) that separates points and such that the constant functions are in .7’. Thanks
to lemma 5.3.5, is f, ¢ are in &7/, then the pointwise maximum and the pointwise
minimum are in /. Let x1, x5 be in K such that x; # x9; let y1,y> be real numbers.
Under our hypothesis, there exists a function f in 7 such that f(zq) # f(x3). So, there
exist real numbers «, 3 such that o + Sf(x1) = y; and a + Bf(x2) = yo. We notice
that the function g .= a + S f belongs to 7. So, we can apply lemma 5.3.6 and we can
conclude that &7’ is dense in C'(K;R). In particular, o7 is dense in C(K;R).

Step 2: Let us assume that o7 is in C'(K;C). Let o7” be the set of the real-valued
functions in /. Obviously, &7” is an algebra that contains the real-valued constant
functions. We claim that /" separates points. Let z1, 25 be in K such that z; # x.
Let f be a complex valued function in &7 such that f(z;) # f(z2). In particular, we
have that Rf(x1) # Rf(xe) or Sf(x1) # Sf(zy). We recall that &7 is closed under
complex conjunction and the following identities hold true:

[+ ]
éRf_ 2 9
wr T
Sf = 5 -
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So, ®f and I f are real-valued functions in .7; in particular, they belongs to «7”. This
is enough to conclude that .«7” separates points. Thanks to the previous step, 27" is
dense in C'(K;R). To conclude, for all f in C'(K;C) it holds that f = Rf 4+ iSf. So,
o/ is dense in C(K;C). O

Corollary 5.3.8 (Weierstrass theorem).
Let K be a compact subset in R. Then, the collection of the real polynomials between K
and R is dense in C'(K;R).

Let K be a compact subset in C. Then, the collection of the complex polynomials
between K and C is dense in C(K;C).

Proof. The proof is an immediate consequence of theorem 5.3.7. n
Remark 5.3.9. In conclusion, we notice that Weierstrass proved theorem 5.3.8 in 1885

and Stone showed its most general version (see 5.3.7) in 1937.

5.3.2 Isoperimetric inequality in dimension 2

We recall the Gauss-Green formula.

Theorem 5.3.10 (Gauss-Green formula).
Let A be a bounded open set in R? such that there exists a closed path v : [a;b] — R?
with the following properties:

o v is in C'([a;b]);

e v(a) =~(b);
e 7 is a counter-clockwise parameterization of the boundary of A.

Let w be a differential form in any open neighborhood D of A, i. e. there exist functions

P,Q: D — R in CY(D) such that

w(z;y) = P(x;y)dr + Q(z; y)dy

Then, the following identity holds true:

0Q oP )
w = —(z;y) — —(z;y) | dedy.
[ [ (Fotn -G
Remark 5.3.11. In the hypothesis of theorem 5.3.10, we recall that
LY A) = / ldzdy.
A
We define the differential form w in R? such that
1
w(z;y) = —5 (yde — zdy).

Thanks to the Gauss-Green formula (see 5.3.10), the following inequalities hold true:

/w—/ld:vdy_ (a).
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Definition 5.3.12. Let A be a bounded open set in R? such that there exists a closed
path 7 : [a; b] — R? with the following properties:

o isin O ((a;b));
o 7(a) =~(b);
e 7 is a counter-clockwise parameterization of the boundary of A.

If we define the perimeter of A as

mmm:/WwMﬁ.

Remark 5.3.13. It can be proved that the perimeter of A does not depend on the specific
parameterization.

Proposition 5.3.14. Let A be a bounded open set in R? such that there exists a closed
path v : [m; 7] — R? with the following properties:

o 7 is in C([=m;7]);
e y(=m) =(m);
e 7 is a counter-clockwise parameterization of the boundary of A.

Let us define the perimeter of A as in 5.3.12. Then, the following inequality holds true:
A LY (A) < per(A)*.

Moreover, it holds that
A L(A) = per(A)?

if and only if A is the circle.

Proof. We recall that per (A) does not depend on the specific parameterization. We
will prove the statement under the further assumption that |7/| is a constant function.
In other words, we are assuming that for all ¢ in [—; 7] it holds that

_ per(4)

(0] = 22

Moreover, we can identify R? with the complex plane; hence 7 is a complex-valued
function in C([—m; 7). We define the sequence of the Fourier coefficients {c,, () }nez as
in 5.1.1; thanks to 5.1.10, for all integer n it holds that ¢,(7’) = inc, (7). Be definition
of perimeter, we have that

1 ™ ™
per (A)2 = _/ per (A)2 dt = 27T/ |7,(t)|2 dt = 2w ||’7,||i,2((—7r;7r)) :

27T —T —T

If we use the Parseval’s identity, we obtain that

per (A)* = 47? Z n? e, ()|

nez
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Since the xdz + ydy is an exact differential form (the potential is d% + d%), we have
that

/xderydy = 0.
v

Hence, the following identities hold true:

/ Wv’(t)dt = /Edz = /xdx + ydy + i(xdy — ydzx) = z'/xd:v — ydy.
v v

—r ~

We also know that

=my nle.(.

neZ

We have shown that

4 2N A) =73 nlea(N)F < 7Y 0P len(7)[ = per (A)%.

nez neL

It’s immediate to see that
4 L' (A) = per (A)?

if and only if ¢,(y) = 0 for all integer n in Z \ {0; 1}, that is equivalent to require that
() = co(y) + er(y)e”,

that is the counter-clockwise parameterization of a circumference. O

5.3.3 Fourier series in L% ((—m;m)?)

Let us denote as FF the real field or the complex field.
Definition 5.3.15. For all n in Z? we define e, : [—m;7]¢ — C such that

N
(2m)?

€n<x> — e—i<n,z>.

We also denote
F={e, | n €.

Theorem 5.3.16. Let us define F9 as in 5.3.15. Then F¢ is an Hilbert’s basis of
L2((—msm)?).

Proof. Thanks to Fubini’s theorem, it’s immediate to see that .#? is an orthonormal
set. As a for the maximality, it can be proved via Stone-Weierstrass theorem (see 5.3.7):
the proof is completely similar to theorem 5.1.4. O

104



5.3. Appendix

Remark 5.3.17. Thanks to theorem 5.3.16, the theory developed in this chapter can be
easily generalized in any dimension.

Remark 5.3.18. Theorem 5.3.16 is not surprising. In fact, for all n in Z¢, it’s immediate

to see that .

1 —i<n,r> 1 —iniT;
—€ ’ = —€ 7
(27)2 ]Ul V2r

As a matter of facts, the maximality of .#? can be an immediate consequence of the
following theorem.

Theorem 5.3.19. Let (Eqi;&; 1), (Eg; &35 p2) be measurable spaces with measures
W1, . Let us define the tensor product o-algebra and the product measure as in
2.2.20, i.e.

& = éal X EQ,

M= & .
Let F1, F, be respectively Hilbert’s basis of L*(Ey) and L?(Ey). We denote

Fr={f;1ie 7},
Ty =A{gi | i€}
For all (j;i) in 7 x &, we denote hj,; : E; x E; = C as

hji(r) = f;(x)gi(y)-

If we denote
F =Ahiy | (j;i) € J x I},
it is an Hilbert’s basis of L*(E; x Ey).

Proof. Thanks to Fubini’s theorem, it’s immediate to see that .% is an orthonormal set.
We recall that the step function are dense in L?(E; x Ey) (see 3.1.34). Thanks to 3.1.33,
it is enough to show that Span(.#) contains all the indicator functions of measurable
sets in [E; x E,. We define

%::{Ee£|1EeW}.

We have to show that ¢ is equal to &. Let Ey, F, be measurable sets respectively in
E; and Ey. Let us denote E := E; x Ey. We claim that E in in . Let {g,}nen a
sequence in Span(.%#;) that converges toward 1, with respect to L?* norm. Let {f, }nen
be a sequence in Span(.%,) that converges toward 1, with respect to L? norm. For all
n in N, we define h,, : E; X E5 :— C such that

ho(2;Y) = gn() fuly)-

We notice that {h,},en is a sequence in Span(.%#); we claim that {h, },en converges
toward 15 with respect to L? norm. For all n in N we define p, : E; x E; — C such
that

Pu(3y) = gn(2)1E,(y).
We notice that
]lE1><E2 (75; y) = ]]‘El (x)]lEz (y)
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Chapter 5. Fourier series

Thanks to triangular inequality, for all n in N it holds that

||h‘n - ]]‘EHLQ(]ElX]EQ) S th - pn”LQ(]ElxlEQ) + ”pn - ]IEHLQ(E1><]E2) :

Thanks to Fubini’s theorem, we have that

lim 190 (2) fa(y) = gn(2) L5, ()]” d(p1 ® p12) (3 )

n—-+o00 Eq xEqy

ga(a)]? < [ 150 - ]1E2(y)|2dﬂz(y)> din ()

E;

. 2 2
= lm {lgnllre@y 1o = Lrall12@,) = 0-

The last identity is an consequence of the fact that {HgnH L2(1E1)} is a bounded
neN
sequence. Similarly, it can be shown that

n1—1>r—|1—1<>o Hp” - ]IEHLQ(EIXI&) =0

We have shown that the measurable boxes belong to .#". Moreover, it can be easily
proved that J# is a o-algebra. Since & is the o-algebra generated by the collection of
the measurable boxes, then £ is equal to &. O]
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Fourier transform

6.1 Fourier transform in !

6.1.1 Definition and main properties
Definition 6.1.1. Let f be any measurable function in LL(RY). We define the Fourier
transform Ff : R? — R as follows:

Fit)= | f)e <

Remark 6.1.2. It’s easy to see that definition 6.1.1 is well posed, namely the right hand
side is finite for every y in R?. Moreover, Ff is continuous function: if y is any vector
in R and {y, }nen is any sequence in R? that converges toward y, then

lim f(z) (e =Hvn> — 7 I<TW>dy = .
n—-+o0o R4

Since the point-wise convergence is obvious and 2| f| is a suitable domination in LL(R?),
the statement in an immediate consequence of dominated convergence theorem.

Lemma 6.1.3 (Riemann-Lebesgue’ lemma).
Let f be any measurable function in LL(R?); then, it holds that

lim Ff(y) =0,

ly[—+oo
namely Ff is in Co(R?). In particular Ff is uniformly continuous.

Proof. First of all, we notice that any function in Cy(R?) is uniformly continuous.

Step 1: Let us assume that f is in C.(R?), namely there exists a positive real
number M such that f is supported in B(0; M). Let y be any vector in R?; if we denote
t=ux— Wﬁ, then it holds that

Fiw)= | f@e<da

_ Y —i<t;y> T <1",m§>
= f t+ Wm € (& lwl* dt
R4 Y

_ _/ f t—i—ﬂ'i 67i<t;y>dt
R ||
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Chapter 6. Fourier transform

]
B(0; M 4 1); hence, the following identities hold true:

If y is any vector in R? such that < 1, we notice that Tonty f is supported in
Y

Fw) = [ [ e [ 5 ( N ”w%) dx}

_ 1 _ i —i<y;x>
2 /B(O;MJrl) {f(x) d (x " W|?/2‘)] ‘ -

Since f is continuous and supported in a compact subset, we notice that

e for all z in R? it holds that

lim {f(:z:) —f (;U + Wi)] emi<v> ().

y=rtoo 7]

e f is bounded, 50 2| f| .o ga) Ls(0;ar+1) is & suitable domination.

Having said that, the thesis is an immediate consequence of the dominated convergence
theorem.

Step 2: Let f be any function in L'(R%); let ¢ be any positive real number. Thanks
to 3.2.17, there exists f. in Co(R?) such that ||f — fol| 1 (gey < 5. There exists a positive
real number M such that if |y| is greater than M, then F f.(y) < 5. Hence, if y is any
vector in R? such that |y| > M, then

IFfy)l =

/Rd f(x)e*i<x;y>dx
/Rd F() — fu()]e— <o da

IN

+

feo(x)e ="V>dy
Rd

<5+ =
-2 2 7

So, the thesis follows immediately. O]

Remark 6.1.4. If we consider Cy(R?) with the norm of the uniform convergence, then
we notice that F : LE(R?) — Cy(R) is a continuous operator between Banach spaces.
If f is any function in LL(R?), it holds that

sup {|F )| | v € RY} = sup { ’ [ e

5 R} < e
thanks to 3.1.12, F is a 1-Lipschitz operator.

6.1.2 Examples of Fourier transform

Ezample 6.1.5. Let f be any function in L:(R?); let h be any vector in R%; let 7, f be
define as in 1.0.1. Then, for all y in R? the following identity holds true:

[Frufl(y) = e "> F f(y).
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6.1. Fourier transform in L'

If we denote t := x — h, we have that
[Frufl(y) = f(z —h)e "<"v>dx
R4
flt)e i <thv=dt
d

— e—z‘<h;y> f(t)e—i<t;y>dt
= ().

Ezample 6.1.6. Let f be any function in L{(IR?); let ¢ be any positive real number; let
osf be asin 1.0.2. Then, for all y in R? the following identity holds true:

[Fosfl(y) = Ff(dy).

If we denote ¢ := %, then dt = %dx; hence, we have that

Foufl) = [ 58 (5) e o

f(t)e—i<y;5t> dt
d

f (t) 67i<6y;t> dt
Rd

= Ff(0y).

Ezample 6.1.7. Let f be any function in LL(RY); let A be any matrix in M(n; R) such
that det(A) # 0. Then, for all y in R? the following identity holds true:

L
|det(A)]

If we denote t := Ax, then dt = |det(A)| dx; hence, we have that

[FfoAlly) = FrIA Ty).

Frodlw)= | fAr)e<rwda

_; —i<y; A" >
= Taer(A)] foa e dt
1 —i<[ATty;t>
= Qet(d) Juu T dt
1
ANy,
- e AT

Ezample 6.1.8. Let us consider f(x) := eI, Since f is in L'(R), we can compute the
Fourier transform. For all y in R it holds that

S e

0 ) +o0 )
_ / ea:(l—zy)dx + / 6m(—l—zy)dl,
—00 0

1 12
1—iy —1—dy 1479y
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Chapter 6. Fourier transform

Fourier transform. For all y in R\ {0} it holds that

1 rx=1
Fi) = [ = | e

Ezample 6.1.9. Let us consider f(z) = 1;_1,5j. Since f is in L*(R), we can compute the

e —e ™  2siny

—iy o—1 iy y
Since Ff is continuous, it holds that Ff(0) = 2
Example 6.1.10. Let us consider
fla) =
Since f is in L'(R), we can compute the Fourier transform. For all y in R it holds that
FIy) = o= [ e %
Vor Jw

Let n be any natural number; let us consider the following paths in the complex plane:

® 71, is the path that joins the the points —n and n, namely for all ¢ in [—n;n]
Yinm(t) = t;
® 7o, is the path that joins the the points n and n + iy, namely for all ¢ in [0; 1]
Vo (t) = n 4 iyt;
® 73, is the path that joins the the points n 4 iy and —n + ¢y, namely for all ¢ in
(=]
’73;n(t) =—t+ W,

® 74, is the path that joins the the points —n + iy and —n, namely for all ¢ in [0; 1]

Yan(t) = —n +iy(1 —1).

z

Let ~,, denote the junction of those paths. We define g : C — C such that g(z) :==e~ 7
Since 7, is a closed loop and f is an holomorphic function, it holds that

0= /%g(Z)dz
_ /WL g(2)dz + /ml g(2)dz + /%'n g(2)dz + /Mn g(2)dz.

We consider the limits as n approaches +o0o and we have that:
e it is well known that

N

lim g(z)dz = lim
n—-+00 Vi n—-+oo [

n 2
e Tdt = 2m;

n
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6.1. Fourier transform in L'

e as for 7s.,, it holds that

+ V3;n + -n

" t+iy)? t+iy)?
lim g(z)dz = — lim e dt = — / e~ 3" dt;
R

e as for 7,.,, it holds that

1

n—+1 2
lim / g(z)dz| < |iy] lim e~
n—-+oo Yoin n—-+oo 0
1 n2_y22
= |y| lim e 2 dt
n—-4o00 0

1 22 2
o ([ ) %o
/ g(z)dz
Y4;n

i 2
0= \/27T—/e_<t+2y) dt;
R

In particular, we have shown that for all ¥ in R, the following identity holds true:

e similarly, we can prove that

lim =0.

n—-4o00

Hence, we can state that

N

Y

Ffly)=e"7.
FExample 6.1.11. Let us consider

1

o=

Since f is in L'(IR), we can compute the Fourier transform. For all y in R it holds that

F "

Let us define D := C\ {i; —i} and g : D — C such that for all z in D if holds that
e—izy

2241

g(2) =

We notice that g is an holomorphic function in the open set D. Let n be any integer
greater than 2. Let us consider the following paths in the complex plane:

® 71, is the path that joins the points —n and n, namely for all ¢ in [—n;n]
Yn(t) = t;
® 7o, is the semicircle that joins the points n and —n, namely for all ¢ in [0; 7]
Yo (t) = ne'.
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Chapter 6. Fourier transform

Let v, be the junction of those paths. We also denote as Res(; g) the residue of the
complex variable function g in 2. Moreover, 7, is the counter-clockwise parameterization
of a closed loop in D that surrounds the point 7, where the function ¢ has a polar
singularity. So, we can apply the residue theorem and for all n greater than 2 it holds
that

2miRes(i;9) = /

Y15n

g(z)dz + / g(z)dz.
V251
Let us assume that y is a negative number. It’s easy to see that
2miRes(i; g) = mev.
Moreover, since f is in L'(R), we have that

n 6—zty

lim g(z)dz = lim dt = Ff(y).

n—+oo n—+oo [_ 1 —+ t2
It is also true that

Yi;n
1 —iynett, it 1
e ne n .
/ g(2)dz / 5 & < / eV St dt,
o o 1+ n2e?t n?—1J,

Since y is a negative number, it’s easy to see that the right hand side is infinitesimal.
So, we have shown that for all y < 0

Ff(y) = mev.

Since f is even, it’s easy to see that F f is even. Moreover, it is continuous; so, we can
conclude that

Ffly) =me .

6.1.3 On the regularity of the Fourier transform

The theory will be developed for one variable functions. As a matter of facts, all the
statements can be adapt to the case of several variable functions.

Lemma 6.1.12. Let f be any function in Li(R) N CY(R). If we assume that f' is in
L&(R), then it holds that

[Ff(y) = iyF f(y).
In particular, we have that
T
it yl

Proof. Step 1: Under our hypothesis, we claim that f is in Co(R). Since f is in L (R),
if we show that there exists a real number [ such that

= lim f(z),

T—r+400

then [ must be 0. Since f’ is in Lg(R), the dominated convergence theorem implies
that f admits a limit as x approaches +o0o and it holds that

T—+400 T—r+400 0

lim f(zx) = f(0) + lim /01 f(t)dt = £(0) + - f'(t)dt.
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6.1. Fourier transform in L'

Step 2: Since f’is in LE(R), for all y in R the following identity is an immediate
consequence of the dominated convergence theorem:

Ff'(y) = lim /_n f(z)e ¥ dz.

n—-+o0o

Integrating by parts the right hand side, for all natural number n we obtain that
/ f'(x)e ¥ dx = f(n)e ™ — f(—n)e™ —H'y/ f(z)e “Ydx.

If we recall that f is in L&(R), we can take the limit as n approaches to +o0o and the
thesis follows from the dominated convergence theorem and the first step.

As for the second part of the statement, it is an immediate consequence of the fact
that Ff" is in Cy(R) as shown in lemma 6.1.3. O

Corollary 6.1.13. Let f be any function in LL(R) N C*(R). If we assume that for all
integer i in {1;...;k} it holds that £ is in LL(R), then the following identity holds
true:

[Ff®N ) = (i)  Ffy).

In particular, we have that

Fiw) _
=t [y)*
Proof. The proof is consist of the iterated application of lemma 6.1.12. m

Lemma 6.1.14. Let f be any function in Le(R). We define f:R — C such that
f(z) = —ixf(x) for all z in R. If we assume that f is in L&(R), then Ff is in C*(R)
and for all y in R the following identity holds:

Ff)'(y) = Ffly).

Proof. Since f is in LE(R), lemma 6.1.3 implies that F f is a uniformly continuous
function. If we show that for all y in R it holds that

Fi(y) — FF(0) = /0 " Fita,

then thesis is an immediate consequence of the fundamental theorem of calculus.
Without loss of generality, we can assume that y is a positive real number. We notice

that
/ f(l’) efitac
Rx[0;y]

Therefore, we can use Fubini’s theorem and switch the order of integration:

/0 yff(t)dt: /0 ' ( /R —ixf(x)e_mdx) dt
_ /R ( /0 ' —z’xf(x)e‘mdt) da
_ /R ixf(z) [—%e—iyu%} dz
_ /IR F@)le ™ — 1)de.

drdt < HH .
vt < Wyl g
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Since f is in LE(R), we can split the integral and the we find that

/Oy Ff(t)dt = /Rf(x)eiwdx — /Rf(:v)d:v = Ff(y) — Ff(0).
O

Corollary 6.1.15. Let f be any function in LE(R). We define ka: R — C such that
for all x in R it holds that fi(x) = (—iz)kf(x). If we assume that fy, is in LE&(R), then
Ff isin C*(R) and the following identity holds for all y in R:

F 1% (y) = Ffily).

In particular, if f is supported by a compact subset, then F f is a smooth function in R.

Proof. We notice that if j is any integer in {1;...;k}, for all z in R it holds that
|z <1+ |z|". In particular, we have that

o’ | f(x dangNH + 1(R) -
[lab r@lde < |, + 1l

Having said that, the proof is consist of the iterated application of lemma 6.1.14. As
for the second statement, it obviously follows by the fact that f; is in LL(R) for all &
in N. O

Proposition 6.1.16. Let f be a function in LE(R) supported by a compact subset.
Then, there exists a function g : C — C that is analytic in the complex plane and such
that F f is the restriction to R of g. In particular, Ff is an analytic function.

Proof. Let us define g : C — C such that

9(2) = / f(z)eda.

We claim that the function g is well defined. Let M be a positive real number such that
f is supported by [—M; M]. For all z in C the function h,(z) := e **% is continuous; in
other words, h, is in L¥((—M; M)). Since f is in LE((—M; M)), it is immediate to see
that g is well defined. Moreover, the dominated convergence theorem implies that g is
a continuous function.

We claim that g(z)dz is a exact differential form. Let v : [a; b] — C be a close path.
We have that

L g(2)dz = / () ()it = / b ( / Z f(rc)e‘m“)v’(t)dw> dt.

Since the function f(z)e~®Y"7'® is continuous and [—M; M] x [a; b] is a compact set,
we can apply Fubini’s theorem to switch the order of integration. Hence, we have that

o= [ s ([ o) ar= [ s ([ es) an

Let = be any point in [—M; M]. Since the function j,(z) := e~ is holomorphic in the

complex plane, j,(2)dz is an exact differential form, i. e.

/e_mzdz = 0.
¥
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6.1. Fourier transform in L'
So, we can conclude that

in other words, g(z)dz is an exact differential form. Morera’s theorem implies that g is
an holomorphic function. So, g is an analytic function in the complex plane

. O
FExample 6.1.17. We show another way to compute the Fourier transform of the function

) = )
We notice that ,
fl(z) = 2" =

Nors = —zf(x).

Since f and f’ are in L'(R), we can consider the Fourier transform at left hand side
and right hand side; joining 6.1.12 and 6.1.14, for all ¥ in R the following identity holds
true:

[(Ff'(y) = yF f(y).

(6.1)

Since we know that the space of the solutions of (6.1) is a one dimensional vector space
and f is a solution of (6.1), we can conclude that there exists a real number ¢ such that

Ff=cf.

To conclude, we notice that

7 =TI = [

6.1.4 Inversion Fourier theorem

Lemma 6.1.18. Let f, g be functions in Lg(R)
i R it holds that

Then f * g is in LE(R) and for all y
[Ff *gl(y)

= [FfW)][Fgy)].
that . .

Proof. We have shown in 3.2.7 that f x g is in L&(R). If y is any real number, it holds

e (o) ([0
_ /R Flx)e ( /R g(t)e_iytdt) dx
_ /R f(x) ( /R g(t)eiy(t”)dt> dz.

If we denote s :=t + x, we have that

= [ ([ st i) .
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Chapter 6. Fourier transform

We notice that
R2\f(x)g(s-w)e_wsldxd8==IHfI*IQIHLuR)SZHfHLuR)HQHLuR)

So, we can use Fubini’s theorem and switch the order of integration; we obtain that

F () /f(/s—WWst
/U} &ﬁm)W@
/ £ g(s)e=5ds

= [Ff*gl(y).

Definition 6.1.19 (Fourier anti-transform).
Let g be any function in L:(R?). For all x in R, we define

F* f(x) ::/Rg(x)ei@;pdx.

Remark 6.1.20. If g is any function in L{(R), we notice that F*g(y) = Fg(—y) for all
y in R. Hence, F* : LL(RY) — Cy(R?) is a linear and continuous operator with same
properties of F.

Theorem 6.1.21 (Inversion Fourier theorem).
Let f be any function in LE(R); if Ff is in L&(R), then for almost every x in R the
following identity holds true:

@) = 5= | Fr@)e™iy = 5P FA)

Proof. Let g : R — R be any function with the following properties:
e gisin C(R)NLF(R) N LE(R);
o F*gisin LL(R);
e g(0)=1.

Step 1: We claim that
lim / g(0y)F f(y)e™Vdy = / Ffy)e™dy. (6.2)
—VJR R

We notice that the following statements hold true:

e since g is continuous and g(0) = 1, for all = in R, for almost every y in R we have
that

lim g(6y) F f(y)e™ = Ff(y)e'™;
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6.1. Fourier transform in L'

e for all x in R for all y in R, for all positive real number 9, we have that

9N FF)e™ | < gl ooy IFF W]
that is a suitable domination in L'(R).

Hence, (6.2) is an immediate consequence of the dominated convergence theorem.
Step 2: Let § be a positive real number and x any point in R. We have that

Am@WMMW@:Amm(Aﬂm%W}M@.

We notice that

z T— HgH 1
[ st sen=ojasa = ([ 1ola) ( [ l6nlas) = 17w 2

In particular, we can use Fubini’s theorem and switch the order of integration. If we
recall definition 1.0.2, we obtain that

/R g(Oy)F f(y)e™dy = / ft) ( / g(5y)6iy(‘r‘t)dy) dt

/f ]-"01 ](x—t)dt.

If we join 6.1.6 and 6.1.20, we have that

§[Fod@-0= 370 (50 =t ola - 0,

therefore, we obtain that

AM@VﬂwWMWjéﬂWMPwu—ﬂﬁzV*mﬂ@~

As shown in 3.2.16, { f * 05(F"g) }s>0 converges toward || F*g|| 1 f with respect to Lt
norm. In particular, there exists an infinitesimal sequence {0, }nen such that for almost
every x in R it holds that

lim [f 05, (Fg)l(x) = 1779l 1 g f(2).

n—+oo

Then, for almost every x in R the following identity holds true:
| FH@ = 17 Gl £0)

If we consider g(y) = e*y?, joining 6.1.20 and 6.1.10, we have that

z2
Frg(x) =e 2V2m;
80, [|[F*gl 11 () equals 27 and the theorem is completely proved. O

Remark 6.1.22. As shown in 6.1.9, f if L{(R) does not imply that Ff is in L&(R).
However, in order F*F f make sense, it has to be assumed in theorem 6.1.21.

Remark 6.1.23. We can easily show that the Fourier transform is a linear, injective
operator between L{((—m; 7)) and Cy(R). Since the F is obviously linear, it is enough
to show that if f is in LE(R) is such that Ff(y) = 0 for almost every y in R, then f(z)
is equal to 0 for almost every x in R. Actually, since we can apply the inversion Fourier
theorem (see 6.1.21), the conclusion is trivial.
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6.2 Fourier transform in L2

Our purpose is to find a suitable definition of Fourier transform for all f in L4(R).

Lemma 6.2.1. Let f be any function in LE(R) N LA(R). Then, it holds that
H‘FfHLQ(R) = Var HfHH(R) )

in particular, F f is in LA(R) and F : LE(R)NLA(R) — LA(R) is a linear /2w -Lipschitz
operator.

Proof. Let g be any function with the following properties:
e gisin C(R)N L¥(R) N LL(R);
o F*gisin LZ(R);
e 9(0)=1;
e ¢ is even, nonnegative and monotonously decreasing in [0; +00).

We notice that if y is any point in R and 47, 65 are positive real number such that d, is
greater than d;, then we have that

9(yd1) > g(yda),
lim g(dy) = 9(0) = L.

Thanks to Beppo Levi’s theorem and our assumption on g, we have that

6135549(5y)[Ff(y)][ff(y)]dy = /R[ff(y)]ff(y)dyZ 1F F1 72w

Let ¢ be any positive real number; it holds that

a1zl ay= [ aton) [ sareae) ( [ ey
_ /R 9(5y) ( /R f(x)e‘”%x) ( /]R me“ydt) dy
L (oo )
We notice that

/W 9(@y)| 1 ()| |T(0)| dydadt = (/R\f(x)]dx)2 (/R |g(5y)\dy>

2 HgHLl(R)
=1l —5

Then, we can switch the order of integration and, if we recall definition 1.0.2, we obtain

that
/ 9(5y) |F £ ()2 dy = / fa ( ”ydy) dudt

ZS/RQf( Frogl(t — x)dwdt.
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If we join 6.1.6 and 6.1.20, we have that
/ 9(69) | FF ) dy = / F@) T osF gl(t — 2)dadt
R R2
—ARWNQGWWW-

As shown in 3.2.16, we have that {f * 05(F*g)}s>0 converges toward f [[F*g|| 1) with
respect to L? norm. Hence, if we use Holder’s inequality, we notice that

i | [ 60) 17700 = 173l [ F7 010

[T [+ @67 )0) = 170y S )]

< i 1l ooy £ 5 (05" 9) = 179l ooy £

=0.

= lim
6—0

L2(R)

This is enough to state that

2 " 2
||-7:f||L2(R) = ||F gHLl(R) ||fHL2(R)2 :

To conclude, if we consider g(z) := e~z , then we have that F*g(y) = v/2me 2 ; in
particular, it holds that [|F*g|| ;1) = 27. O

Theorem 6.2.2. There exists a linear and continuous operator denoted also with
F : LA(R) — LA(R) that extends the Fourier transform defined in LE(R) N LE(R) and
such that if f in any function in LA(R) it holds that

H]:fHL?(R) = Var HfHLZ(R)2 :

In other words, F can be extended to an isometry on LZ(R) (up the factor v/2m).

Proof. Tt’s easy to see that LL(R)NLZ(R) is dense in LE(R). In fact, if f is any function
in LZ(R), for all n in N we define

fa(z) = f(x)]l[—n;n] (z).

Then {f,}nen is a sequence in LE(R) N L&(R) that converges toward f with respect to
L? norm. In lemma 6.2.1, we have shown that

F: Le(R)N LA(R) — LA(R)

is a linear v/2m-Lipschitz operator. Since it is uniformly continuous and L (R) N LA (R)
is dense in L%(R), F can be extended by continuity to a linear operator that we will
also denote with F on LZ(R). Hence, if f is any function in LZ(R) it holds that

||~7:f||L2(1R) =Varm ||f||L2(R)2 :
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Remark 6.2.3. We can slightly modify lemma 6.2.1 and corollary 6.2.2 to show that F*
admits a linear v/2m-Lipschitz extension to LZ(R), denote also with F*, such that if f
is any function in LZ(R) it holds that

H]:*fHLZ(R) = Var ||fHL2(]R) :

Remark 6.2.4. It’s immediate to see that both F and F* are injective operators on
LA(R).

Lemma 6.2.5. Let f be any function in LA(R). Let us assume that for almost every y
in R there exists L(y) in C such that

_ oy
Then, it holds that L(y) = F f(y) for almost every y in R.

Proof. Let n be any natural number. We define

fu(@) = f(@) L.

Since f, is in LZ((—n;n)), it holds that {f, }nen is a sequence in LE(R). We notice
that for all natural number n, for all y in R it holds that

Flaly / ful)e ™ dy = / Fx)e iy,

We know that {f,}nen converges toward f with respect to L? norm. As shown in
6.2.2, we have that {F f, },en converges toward F f with respect to L? norm. Up to
subsequences, not relabelled, we can assume that the convergence is pointwise for almost
every y in R. This is enough to conclude that L(y) = Ff(y) for almost every y in
R. O

Lemma 6.2.6. Let [ be any function in C*(R) N LE(R); if f is in LE(R) N LE(R),
then Ff is in LE(R).

Proof. Thanks to lemma 6.1.12, if y is any point in R it holds that
1) = iyFf(y)-
Since [’ is in Li(R) N LA(R), lemma 6.2.1 implies that Ff’ is in LZ(R). If we define

9y) = A+ D [FfW)l,

we have that g is in LA(R). If we use Holder’s inequality, we obtain that

[ 17y < ( / rg<y>|2dy)é ( [ 2dy>%

that is finite. O

1
1+ |yl

Theorem 6.2.7. Let f be any function in LE(R); then, for almost every x in R the
following identity holds true:

[F*Ffl(z) =2nf(x). (6.3)
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Proof. Thanks to 6.1.21 and lemma 6.2.6, we know that formula (6.3) holds for all
fin CHR). If Idz> denotes the identity of LA(R), we have shown that F* o F is a
2m-Lipschitz operator on LZ(R) that coincides with 2r7dp2 on C}(R), that is a dense
subset of LZ(R); so, they coincide on L4(R). O

Proposition 6.2.8. Let f,g be functions in L:(R); then, f - g is in Lt(R) and for
almost every x in R it holds that

Ff - gl(w) = 5 1Ff = Fol(a)

Proof. First of all we notice that, if f, g are in LZ(R), then Ff and Fg are both in
L4(R); so, Ff x Fg is well defined and it is in L:(R), as shown in 3.2.11.

Let f, g be any functions in C.(R); if we use 6.1.21 and we generalize 6.1.18 with
the operator F*, we obtain that for almost every x in R it holds that

f(z) - glx) = @[P?M (P Fg(x) =~ [F(Ff * Fo)l(a).

(27)?

Hence, for almost every z in R the following identity holds true:

[Ff-gl(z) = [F(F(Ff*Fg))(z).

1
(2m)?
Since F f x Fg is in LL(R), we can use theorem 6.1.21 and we obtain that the following
inequality holds for almost every x in R:

1
Ffogl(z) = 5 [Ff* Fol(a).
Let us consider the operator H; : LA(R) x LA(R) — Cy(R) such that
Hi(f;9) =FFf-g

As shown in 6.1.2, we can state that it is well defined; if we join Holder’s inequality
and 6.1.4, we obtain that H; is continuous. Similarly, we can consider the operator
Hy : LZ(R) x LA(R) — C(R) such that

Hy(f39) = 5-Ff  Fy

Thanks to proposition 3.2.13, we can state that F f x Fg is uniformly continuous; in
particular, Hy is well defined. As for the continuity, it follows immediately from 6.2.2
and 3.2.11. Since C,(R) x C.(R) is a dense subset in LA(R) x L4(R) where H; and H,
coincide, they coincide everywhere. O

6.3 Application of Fourier transform to PDE
Definition 6.3.1. Let ug : R — C be any function. Let us consider the following
partial derivative equation:

ou 0*u ,
a(t,l’) = @(t,ﬂf) if (t7l') € (O,T) x R

u(0;z) = ug(x) ifreR

(6.4)

We say that (6.4) is the heat equation in R.
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Chapter 6. Fourier transform

Definition 6.3.2. Let uy : R — C be any function; let T be any positive real number.
We say that u : [0;T) x R — C is a solution of (6.4) if it has the following properties:

e u is continuous in [0; 7)) x R;
e for all (¢;x) in (0;7) x R, there exists
0?*u
@(E x)
and it is continuous in (0;7") x R;

e for all (t;z) in (0;T) x R, there exists

ou
E(tv l’)

and it is continuous in (0;7") x R;
e for all (t;2) in (0;7) x R the following identity holds true:

0%u ou
@(tﬁ) = E(tw),

e for all x in R it holds that
uw(0; ) = up(x).

The purpose of this section is to find reasonable hypothesis on ug to make sure that
there exist a time 7" and a solution u for equation (6.4) in [0;7") x R. Then, we will
study the regularity of u of the solution.

Definition 6.3.3 (Heat kernel).
Let us define the function ¢; : R — R such that

»

x

e 4
Var

Let t be any positive real number; for all z in R we define

g1(x) =

2

e 1
At

8

gi(v) =0 s91(z) =

:

The function ¢ : (0; +00) x R — R such that ¢ (t;

~—

= g¢(x) is called heat kernel.

Remark 6.3.4. The Fourier transform can be used to solve formally the problem (6.4).
Let us consider the equation

0?u ou
@(t,ﬂﬁ) = E(t,w)-

If we denote as Fu the Fourier transform in z and we apply the formulas described in
6.1.12 and 2.3.2, we find that

0%u ou 0Fu

@(t;y) = f&(@y) = ——(ty).

— 2 . —
v Fu(t;y) =F 5
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6.3. Application of Fourier transform to PDE

Since we are looking for a function u that is continuous in [0; 7") x R, we have that for
all y in R, the function Fu is a solution of the following Cauchy problem:

0Fu
W(t; y) = —y* Ful(t;y);

Fu(0;y) = Fuo(y).

(6.5)

Therefore, for all (¢;y) in (0; +00) x R we obtain that
Fult;y) = Fuo(y)e ™.

Let g; : R — R be as in definition 6.3.3 for all ¢ in (0;+00). Let us denote Fg, the
Fourier transform in z. If we join 6.1.10 and 6.1.6, for all (¢;y) in (0; +00) x R we have
that

Fultyy) = Fuo(y)e ™" = [Fuo(y)][Fg(y)].
If we use the formula described in 6.1.18, for all (t;y) € (0;4+00) x R we obtain that

Ful(t;y) = [Fuo(y)l[Fu(y)] = [Fuo * gi](y)-

Since the Fourier transform in injective, for all (t;y) € (0; +00) X R we have that

u(t;y) = uo * gi(y)-

Despite the resolution described in 6.3.4 is only formal, it suggests a formula for the
solution. The aim of the next theorem is to give reasonable hypothesis that make the
procedure described in 6.3.4 a rigorous proof.

Theorem 6.3.5 (Existence of a solution for heat equation in R).
Let up : R — R be any continuous function such that uy is in L>°(R). Let t be any
positive real number; let g; be as in 6.5.3. Let us define the function u : (0;+00) xR — R
such that
w(tiz) = {uo@:) if (t:2) € {0} x s
[up * g (x) if (t;x) € (0;400) x R.

Then, u is well defined and it is a solution of (6.4) in the sense of definition 6.5.2.
Moreover, u is a smooth function in (0;+00) x R.

Proof. Step 1: Let g; be as in definition 6.4. We notice that ||gi|| ;1) = 1; hence, it’s
easy to see that if ¢ is any positive real number, then it holds that

||gt||L1(R) = 1.

If we join the fact that wug is in L>°(R) and proposition 3.2.11, we can state that ug * g;
is well defined for all positive real number ¢.

Step 2: If (¢;x) is any point in (0;+00) x R, the continuity of w in (¢;z) is an
immediate consequence of theorem 2.3.1. If we join the fact that ug is a continuous
function and corollary 3.2.20, we obtain that for all z in R the function u is continuous
in (0;z).

Step 3: Let k£ be any positive integer. We notice that there exists a polynomial py
of degree k such that for all  in R for all ¢ in (0;400) it holds that

W(t;x) = D (x; %) 9:(x);
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Chapter 6. Fourier transform

k

in particular, we have that % is in L}(R) for all ¢ in (0; +o00) for all k¥ in N. Thanks
x
to corollary 3.2.15, we have that for all ¢ in (0; +00) it holds that ug * g; is in C*°(R)

and for all k£ in N for all x in R the following identity holds true:

Fuoxg) oy _ {uo ) akgt} (2).

ozk oz
In particular, for all (¢;z) in 0; +00) x R we have that
0% (ug * gy) y? — 2t
—— () = — dy. 6.6
@) = [ e~k =y (6.6

Step 4: Let x be any point in R. Let k& be any nonnegative integer. We notice that
there exists a polynomial g such that for all ¢ in (0; +00) for all y in R it holds that

k

Gt N B xi e~
wo(z — 1) 2 (1) = u(z y)qk(,ﬂ) .

It’s easy to see that there for all ¢5 in (0; +00) there exist a polynomial ay.;, and a real
number € greater than ¢, such that for all y in R for all ¢ in (¢y — &;ty + €) it holds that

We define Sy, : R — R such that

<
»

Q
N
<

<)

6k;to (y) = | Ot (y)

:

We define i, : R — R such that

k
Vi;to (y) = Z Bi;to (y)
=0

We notice that if ¢ is any integer in {0;...;k}, then 7y, is domination for %itg,f in
LY ((tg — &;tg +¢) x R). Since ug is in L®(R), we can use theorem 2.3.2. Hence, we can
state that for all k in N, for all z in R, for all ¢ in (0; +00) there exists 2% (t; z) and it

: i
is equal to

o kg,
S (B2) = /RuO(ﬂf ~Y) g (LY)dy.
In particular, for all (¢;z) in (0; +00) x R it holds that
ou / y? — 2t
—(t;z) = [ uolx — —dy. 6.7
oy Biw) = | ol y)Sﬁﬁ y (6.7)

Step 5: If we join (6.6) and (6.7), the following identity holds for all (¢;z) in
(0; +00) x R:

Ju y? — 2t 0%u

—(t;x) = [ up(x — —dy = t;x).

g1 5) = [ e~ =y = G s2)

Therefore, we can state that u is a solution of (6.4) in the sense of definition 6.3.2.

Step 6: As for the regularity, we can slightly modify the procedure shown in details
in step 3 and in step 4 to prove that u is in C*°((0; +00) x R). O
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Harmonic functions

7.1 Definitions and main properties
Definition 7.1.1 (Laplace operator).

Let A be any open set in R%; let f : A — R be any function in C?(A4). We define the
Laplacian of f as the function Af : A — R such that

Remark 7.1.2. We recall that

5,
Af=>" ax]; = div(Vf).

i=1 i

Definition 7.1.3 (Harmonic function).
Let A be any open set in R let f : A — R be any function in C?(A). We say that f is
an harmonic function if Af(z) =0 for all z in A.

Definition 7.1.4 (Mean value properties).

Let A be any open set in R%; let f : A — R be any continuous function. We say that f
has the mean value property on the spheres if the following identity holds for all closed
balls B(zg;7) completely contained in A:

1
f(xO) B Area (aB<x07 T)) /(98(380;7’) f(x)da(x)

We say that f has the mean value property on the balls if the following identity holds
for all closed balls B(zo; ) completely contained in A:

1
f(x[)) - Vol (B(SL’(], T’)) /B(xo;’r‘) f(w)dl.

Lemma 7.1.5. Let v be any positive real number; let o be any point in R%. Let

f:B(zg;r) = R be a continuous function. Then, the following identity holds true:
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Chapter 7. Harmonic functions

Proof. It can be proved by considering polar coordinates in R%; as a matter of facts, it
is a consequence of the Coarea formula. n

Proposition 7.1.6. Let A be any open set in R%; let f : A — R be any continuous
function. f has the mean value property on the spheres if and only if it has the mean
value property on the balls.

Proof. Let us assume that f has the mean value property on the spheres. Let B(z;7)
a closed balls completely contained in A. Then, it holds that

/ S [(f . Fa)iota) ) dr

= /Orf(xo)Area (0B(xo; p)) dp

f (o) /0 " dondp
f(wo)oécﬂ’d
f(zo)Vol (B(zo;7)) .

Let us assume that f has the mean value property on the balls. Let B(zg;7) be a closed
balls completely contained in A. Then, it holds that

agr® f(zo) = / f(z)dz.

B(zo;r)

If we derive, we obtain that

s faw) = [ fla)iota)

To conclude, we notice that
agdr®=t f(zo) = Area (0B(xo;7)) f(0).

]

Remark 7.1.7. From now on, we will denote the mean value property on the spheres
and the mean value property on the balls as mean value property.

Proposition 7.1.8. Let A be any open set in R%; let f : A — R be any harmonic
function. Then f has the mean value property.

Proof. Let B(xo; R) be any closed balls completely contained in A. We define the
function ¢ : (0; R] — R such that

= ! x)do(x
9lr) = Area (0B(zo;7)) /(‘«)B(xo;r)ﬂ )do (@)

We claim that for all  in (0; R) it holds that ¢’(r) = 0. We notice that

1 1
Area (0B(zo; 1)) /33(;30;7«) f(@)do(w) = Area (S971) Jgin

f(zo + ry)do(y).
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If we apply theorem 2.3.2 and the theorem of the divergence, we obtain that

0= e (St o)

<V f(xo+ry),y > do(y)

1
Area (S4-1) /Sd_l

1
_— di d
1

e — A =
rArea (S4-1) /13(0;1) fl@oFry)dy =0

because f is harmonic. In particular, we have that ¢ is a constant function; since f is
continuous in xzg, then it that

lim g(r) = f (o).
This is enough to conclude that g(r) = f(x¢) for all  in (0; R]. O

Theorem 7.1.9. Let A be any open set in R%. Let f : A — R be any continuous
function with the mean value property. Then f is an harmonic smooth function in A.

Proof. We will carry out the proof assuming that A is R%. Let p : R? — R be any
smooth function with the following properties:

e it is supported in B(0;1);

e there exists a smooth function g : [0; +00) — R such that for all y in R? it holds
that p(y) = g(ly|);

. /R p(z)d = 1.

If we join 3.2.11 and 3.2.14, we obtain that f % p is a well defined smooth function in
R?. Let x be any point in R?. The following identities hold true:

fxp(r) = /Rd flz —y)p(y)dy

= /01 (/@B(O;T) flz = y)p(y)da(y)> dr
_ /O o) ( /a RS y)da(y)) dr
:A}m(émmﬂww@)w

/01 g(r)dagr®™ f(z)dr

(z) /B o) p(y)dy

().

f
f
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Chapter 7. Harmonic functions

Hence, f is a smooth function. As shown in 7.1.8, we have that

d 1 1
it (ST L") = ST g S0

Since f has the mean value property, for all x5 in R? for all 7 in (0; +00) it holds that

/ Af(x)dx = 0;
B(zo;r)

this is enough to state that f is harmonic. O

Proposition 7.1.10 (Maximum principle).

Let A be any bounded open set in R%; let f : A — R be any function such that it is
continuous in A and it is harmonic in A. Let xy be in A any maximum or minimum
point for f. Then xq is in OA. Moreover, if we also assume that A is connected and
there exist maximum or minimum points in A for f, then f is a constant function.

Proof. First of all, we notice that f admits maximum and minimum in A. Let zy be a
maximum or minimum point for f; let us assume that zg is in A. If we denote as A the
connected component of A containing x,, we claim that f is a constant function in A.
Let us define

B={zeA| f(z)= f(zo)}.
It’s immediate to see that B is a closed non-empty set. Since f(xy) is maximum or
minimum for f and f has the mean value property, if z is any point in B there exists a

radius 7 such that for all 3 in B(z;) N A it holds that [f(y) = f(z); in other words, B
is an open set. This is enough to state that B equals A. O

Corollary 7.1.11. Let A be any open set in R?; let ug;uy : A — R be continuous
functions. Let us assume that uy and uy are harmonic in A. If ug(x) > ui(x) for all x
i OA, then the inequality holds for all x in A. If we also assume that A is connected
and there ezists o in A such that ug(zo) = ui(xo), then ug and uy coincide in A.

Proof. If we apply proposition 7.1.10 with ug — w1, then thesis follows immediately. [

7.2 Harmonic and holomorphic functions

Proposition 7.2.1. Let A be any open set in C. Let f: A — C be any holomorphic
function. Then, if we identify as A the corresponding open set in R?, then Rf and Sf
are harmonic functions in A.

Proof. Since f is holomorphic in A, for all (z;y) in A the Cauchy-Riemann’ equations
hold true:

ORf, . O3f,
%(ﬂﬁjy) = 8—(33,y),
ORF 5 f

o (z;9) = —a—x(:v;y)-

We recall that Rf and S f are smooth functions. If we derive with respect to z, we
obtain that

IPRf  0*Sf  OPSf _8251%]”_

ox2  Oydxr Oxdy 0% '
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if we derive with respect to y, we obtain that

ISf  O*Rf  OPRf _82%f
oy2  Oydr Oxdy Oy

[]

Theorem 7.2.2. Let A be any simply connected open set in C. Let u : A — R be an
harmonic function. There exists an holomorphic f : A — C such that Rf = u.

Proof. Let us define define g : A — C such that

ou Ou
g(x;y) = %(:v,y) - ’La—y(w,y)-

We claim that ¢ is an holomorphic function. Since u is in C?(A), we can switch the
order of derivation and we obtain that

Mg  Pu  Pu &Sy

oy  Oydx Oxdy  00x

Since u is harmonic, we have that

Mo _ 0 _ 3
or  0z2 oy2 Oy

Let 2y be any point in A. Since A is a simply connected open set, there exists an
holomorphic function f : A — C such that f(zy) = u(zo) and for all z in A it holds
that f’(z) = g(z). In particular, we have that

_Ou  Ou  ORf ORf

! —_ — Y = — — .
P = 9y " o oy
In other words, we have that VRf = Vu and Rf(z0) = f(20) = u(z). Since A is
connected, we obtain that f and u coincides in A. m

Remark 7.2.3. In theorem 7.2.2 it is necessary to assume that A is simply connected. If
Ais C\ {0} and u : A — R is such that u(z) = log(]z]), it’s easy to see that u is an
harmonic function, but it cannot be the real part of an holomorphic function f between
A and C. In fact, u is locally the real part of a branch of the complex logarithm.

Remark 7.2.4. In theorem 7.2.2, the function Sf is called harmonic conjugate of w.
Thanks to Cauchy-Riemann’ equations, we notice that

_ORFOSf  ORfOSS

O pr— p—
< VRf, VSf > % O + 3y Oy 0

In other words, VR and VS f are always orthogonal.

Corollary 7.2.5. Let A be any open set in R?; let u: A — R be an harmonic function.
Then u s analytic.

129



Chapter 7. Harmonic functions

Proof. Let zp be any point in A; let r be any radius such that B(z;r) is completely
contained in A. Since the open balls are simply connected, we can apply theorem 7.2.2.
Let f : B(zo;7) — A an holomorphic function such that Rf = w in B(z;7). Then f is
analytic in B(zg;r), i. e. the power series

()2,
Z f (' )<Z _ Zo)n

n
neN

converges toward f uniformly in B(zp;r). If we consider the real part of the series, it is
a power series that converges uniformly toward Rf in B(zo;r). O

Corollary 7.2.6. Let A be any open set in R?; let u,v : A — R harmonic functions.
Let us assume that there exists a set U completely contained in A with the following
properties:

o it admits a cluster point zy in U;
o for all z in U, it holds that u(z) = v(z).

Let us denote as A the connected component of A that contains zy. Then f and g
coincide in A.

Proof. 1t is a consequence of the principle of analytic continuation for holomorphic
functions. ]

Definition 7.2.7. Let A be any open set in RY; let ug : 9A — C be any function. Let
us consider the following partial derivative problem:

{Au(x) =0 if v € A; (7.1)

u(z) = up(z) if z € 0A.
We say that (7.1) is the Laplace equation in A with Dirichlet boundary conditions.

Definition 7.2.8 (Solution of Laplace equation with Dirichlet boundary conditions).
Let A be any open set in R%; let uy : 94 — C be any function. Let v : A — C be any
function with the following properties:

e u is continuous in A;

e v is in C?(A) and for all z in A it holds that

e for all z in 0A it holds that u(z) = ue(z).

We say that u is a solution of the Laplace equation in A with Dirichlet boundary
conditions.

Theorem 7.2.9 (Existence and uniqueness of the solution for Laplace equation).
Let g : [—m;7) — C be any function. Let us consider the principal arguments of a
complex number Arg: C\ {0} — [—m;m). Let us define ug : 9B(0;1) — C such that

uo(z) = g(Arg(2)).

130



7.2. Harmonic and holomorphic functions

Let us define the sequence of the Fourier coefficients { ¢, }nez as in 5.1.1. Let us assume
that

D Jen] < 4o

nez

Let us define the function u : B(0;1) — C such that

u(z) = co(f) + Y [eal )"+ conlf)Z"].

neN*

The function u is well defined and it is a solution of (7.1) in the sense of 7.2.8.

Proof. Since the series at right hand side converge totally in B(0;1), it’s immediate
to see that u is well defined and continuous in B(0;1). We notice that the function
f*:B(0;1) — C such that

is well defined and continuous in 5(0; 1); moreover, it is holomorphic in B(0;1). In
particular, it is harmonic. Similarly, if we define f~ : B(0;1) — C such that

()= capn?

neN*

the definition is well posed, the function is continuous in B(0;1) and it is anti-
holomorphic in B(0;1). In particular, it is harmonic. This is enough to state that w is
continuous in B(0; 1) and it is harmonic in B(0;1). It’s immediate to see that for all z
in 0B(0;1) it holds that

u(z) = co(f) + > [ealf)2" + conlf)Z"]

neN*

=co(f) + Z [Cn(f)ei"Arg(z) + Cin(f)efinArg(z)]

neN*

= g(Arg(2)) = uo(2).

As for the uniqueness, it is an immediate consequence of 7.2.6. O

Remark 7.2.10. Let u be as in theorem 7.2.9. Since the series converges totally in
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B(0;1), for all z in B(0;1) the following identities hold true:

) =co(f)+ D leal )"+ conl(f)Z"]

neN*

- _/ t)dt + Z ( / mtdt) 2"+ (;ﬁ /_:g(t)emtdt> z"

1 —in n Zn
=5 7ﬂg(t) 1+ > ("e™ + t)] dt
L neN*
1" Cm
=5 _Trg(t) 1—1—2%(2 (ze*) )] dt
L neN*
1 /" Cam
=5 B g(t)2R <n€ZN (ze™) ) dt

I ze
= — )2 — | dt
2m 9) §R(l—ze‘”)

~ [ a5 -
B ,Wg 27 le=it — 2|
If we define the Green function in B(0;1) G : [—m; 7| x B(0;1) — R such that

L— |
27 e~ — 2|

G(t; z) =

we have shown that the solution u of (7.1) is a kind of average of the boundary datum.
As a matter of fact, this principle holds true under reasonable hypothesis on the
regularity of the open set A.
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