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Introduction

The purpose of this thesis is to study the moduli problem for smooth projective curves.
We will outline the construction of Mg: the (coarse) moduli space for smooth projective
curves of genus g. We will follow the proof by Mumford [GIT] and Gieseker [Gie82] that
uses Geometric Invariant Theory (GIT).

These notes will outline the path followed to construct Mg, introducing the main tools
used for the central construction.

0.1 The general problem

In algebraic geometry classification is a key question. Given a class of varieties, we could
consider them up to an equivalence relation. For example, we could consider closed sub-
varieties of Pn up to projective transformation or varieties on a fixed field of dimension
1 up to isomorphism. The main goal is to construct a moduli space which is a space
whose “points” are in bijection with these varieties up to a chosen equivalence relation.
Furthermore, we want to encode how these varieties vary continuously. A moduli problem
is essentially this kind of classification problem.

We consider maps C → S for general S, whose fibers are varieties we are interested to
classify. We define famililes such maps C → S with some additional properties depending
on the context. We will consider families up to some equivalence relation ∼S . This relation
will match the relation mentioned above when S = Spec k. We could define a pullback
of classes over maps T → S making sure that properties we used to define families are
still verified. Usually the pullback is a base change. We define a moduli problem as a
contravariant functorM : Sch→ Set

M(S) := {families over S}�∼S
M(f? : T → S) := f? :M(S)→M(T ).

In this setting the initial varieties up to equivalence areM(Spec k).
In order to study this functor we ask if it’s representable i.e. if there existsM ∈ Sch and

a natural isomorphism η : M → Hom(−,M). In this case we sayM is a fine moduli space
for M. We obtain M(Spec k) = Hom(Spec k,M) and the construction of M is exactly
the answer to our question. In this setting every family F over a scheme S corresponds to
a unique morphism f : S → M and we also have F = f?U where U = η−1

M (IdM ) is called
the Universal Family.

Unfortunately, it turns out that such a fine moduli space does not exist in almost every
situation, neither in the case of smooth projective curves of fixed genus. We could try to
weaken the condition of representability and this leads to the introduction of coarse moduli
spaces. This solution was adopted by Mumford and then Gieseker more than 40 years ago.

Definition (Coarse Moduli Space). Let η :M→ Hom(−,M) be a natural transformation
such that:
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6 0.2. Geometric invariant theory

• ηSpec k :M(Spec k)→ Hom(Spec k,M) is bijective,

• for each scheme N and ν : M → Hom(−, N), there exist a unique morphism of
schemes f : M → N such that ν = hf ◦ η where hf : Hom(−,M) → Hom(−, N)
induced by f .

The first assumption maintains the requirement on k-points as before but we replace
representability with a weaker request: now the existence of a universal family is not
assured. The focus of the thesis is now on constructing coarse moduli spaces, in particular
those of smooth projective curves of genus g.

We look for a discrete invariant and we reduce to study objects with fixed invariant’s
value: for instance the degree or the rank of vector bundle (clearly invariant under iso-
morphism), the Hilbert polynomials for closed subschemes of Pn and genus of curves. In
this regard, a central role is played by the flatness of families (a classical requirement for
moduli problems): often fibres of a flat map f : C → S (S connected) have the same
invariant’s value.

Introducing coarse moduli spaces we sacrifice the existence of a universal family, but
we can still define a local version. For a moduli problemM we say that a family F over a
scheme S has the local universal property if for any family G over T and any k-point
t ∈ T , there exist a neighbourhood t ∈ U ⊂ T and a morphism f : U → S such that
G|U ∼U f?F . In that case, by taking T = Spec k, we have a surjection of k-points of S
ontoM(Spec k). Assume moreover that we have a group acting on S in such a way that
k-points corresponding to the same element in M(Spec k) are identified. We would like
then to “quotient” S to obtain a moduli space. We have the following:

Proposition. Let F be a family with the local universal property over a scheme S. Fur-
thermore, suppose that there is an algebraic group G acting on S such that two k-points s,
t lie in the same G-orbit if and only if Ft ∼ Fs. Then:

• any coarse moduli space is a “categorical quotient” of the G-action on S,

• a “categorical quotient” of the G-action on S is a coarse moduli space if and only if
it is an orbit space.

This proposition deals with the action of groups on schemes and its thesis will be clearer
after the reading of next section.

0.2 Geometric invariant theory

Given an algebraic group G acting on a scheme X, we are now interested in defining a
quotient scheme. To constructMg we need to study the action of linearly reductive groups,
which are groups for which every finite representation is completely reducible.

A first notion is given by a categorical quotient via a universal property. Unfortu-
nately, this first notion gives us a scheme that, in general, is far from the topological notion
of quotient. Specifically, we do not obtain a geometric quotient i.e. a quotient where the
preimage of each point is a single orbit.

Looking at the sheaf of regular function we have an action on OX(U) (where U ⊂ X
open and invariant). We would like regular function on quotient to be exactly G-invariant
regular functions on X. With that idea, we introduce the notion of good quotient. It
turns out that any good quotient is indeed a categorical one.

In order to obtain that the quotient is a variety, we have to answer the following
question: when are the G invariants of a finite generated k algebra finitely generated?
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That’s exactly Hilbert’s 14th problem and we will use the theorem of Nagata in the case
of a rational action of a linearly reductive group. We can now define a GIT quotient for
affine schemes.

Given G reductive acting on an affine scheme we define X//G := Spec O(X)G. This
turns out to be a finite type scheme over k. X//G is a good quotient and an affine scheme.
As mentioned before, when a group acts on affine schemes in general a geometric quotient
does not exist. The main obstacle is that the action is not closed, i.e. not every orbit is
closed. With this in mind, we define Xs ⊂ X stable points as an open subset where the
restriction of GIT quotient is geometric.

We are interested in defining a GIT quotient for quasi-projective varieties. If X is
projective, we can write X = Proj (R(X)) where R(X) = k[xi]�I(X). Let’s suppose this
action is linear i.e. it’s a restriction of the classical action of GLn+1 on Pn. We have:

X 99K X//G := Proj (R(X)G).

We introduce Xss (semistable points) as the open set where the map is defined.
Consider now a line bundle L → X. We can define a linearization of a given action

on X. Roughly, it is an action on L such that: L→ X is G-equivariant and it is linear on
fibres of L. In such a way we generalize our action:

Gy R(X,L) :=
⊕
r≥0

H0(X,L⊗
r
)

and we set X//LG := Proj (R(X,L)G). In the same way as before, we define Xss(L) and
Xs(L) as respectively semistable and stable point relative to a given linearization. We
have the following:

Theorem (Mumford). Let G be a reductive group acting on a quasi-projective variety X
with a linearization for L. Then X//LG is quasi-projective and there is a good quotient
φ : Xss(L)→ X//LG of the G-action on Xss(L). Furthermore there is Y s ⊂ X//LG open
such that φ−1(Y s) = Xs(L) and φ|Xs(L) is a geometric quotient.

To conclude this exposition of GIT, we will state a numerical criterion which is the
“typical” result used to determine (semi)stability of points. First of all, we define Hilbert-
Mumford weight µ(x, λ). Consider a one-parameter subgroup (1-PS) λ : Gm → X that we
can lift to an action on An+1. This is a representation of torus and we define µ(x, λ) as
one specific weight of this representation.

Theorem (Hilbert-Mumford Critereon). Let G be a reductive group acting linearly on a
projective scheme X ⊂ Pn. Then, for x ∈ X(k), we have:

x ∈ Xss ⇐⇒ µ(x, λ) ≥ 0 for all 1-PSs λ of G.
x ∈ Xs ⇐⇒ µ(x, λ) > 0 for all 1-PSs λ of G.

The ⇒ implication is easily verified, because a (semi)stable point is such for every
subgroups. The converse means that if G is reductive it has enough 1-PSs to detect points
in the closure of an orbit.

0.3 Construction of moduli space of curves

We would construct a moduli space Mg for projective smooth curves of genus g. To be
precise we consider the moduli problemMg : Sch/k → Set:

Mg(S) := {proper, flat families C → S whose geometric fibres are
smooth, connected 1-dimensional schemes of genus g} .
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We restrict from the beginning to the category of finite type schemes over k (that we call
Sch/k), usually these functors are deifned for general schemes but we do not need this
generalty. It’s well known that this functor is not representable due to the existence of
non-trivial automorphism of curves. We could rigidify the problem by adding some extra
structure in such a way that no non-trivial automorphisms of an underlying curve can fix
the extra structure.

Given a curve C, we have the v-canonical embedded φ : C → Pn provided by the ample
line bundle K⊗

v

C (for v ≥ 3). This allows us to see the curves as points of Hilbert scheme
Hilbp(x)

n for suitable n and p of degree 1 (they depends on v and g).
Roughly we consider the locally closed subscheme Hv ∈ Hilbp(x)

n made of curves on Pn
of fixed genus such that the restriction of OPn(1) is K⊗

v

C .
The map φ defined above is not unique: clearly it depends on a basis in H0(C,K⊗v

C )
and all differents embeddings are obtained acting with PGL(n + 1) on Pn. This action
induces an action on Hilbp(x)

n and it restricts on Hv because the conditions that define Hv

are invariant under automorphisms of Pn.
Our goal is to quotient Hv by PGL(n+ 1) obtaining a geometric quotient (i.e. in some

sense an orbit space) for smooth curves, according to the proposition stated in the first
section.

For the final step, we will study (semi)stability of points in Hv. Using a numerical
criterion by Gieseker we will prove that the quotient is geometrical.

Acknowledgement: I would like to thank my advisor Prof. Mattia Talpo, for the
help he has given me with the thesis work.



Chapter 1

Introduction to moduli problems

Classify geometric objects is an everyday topic in mathematics: we classify them from high
school. In this chapter, we will approach the problem from an algebraic geometry point of
view.

In the first part we will explain the problem. Starting from a general point of view we
will give a specific setting to the moduli problem. We will try to give several examples, in
particular we focus on elliptic curves. This is a well-known example and a starting point
for the main construction of the thesis.

1.1 Basic ideas

Fixed a category C we could consider a specific class of objects A we are interested in
classifying them. Some examples are circles in the euclidean plane, real three-dimension
manifolds equipped by a metric, holomorphic surfaces or elliptic curves. The category
fixed for these examples could be respectively: the category of algebraic sets in the plane,
Riemannian manifolds, complex manifolds and finite type scheme over k.
We are interested to classify them up to a fixed equivalent relation ∼, that came out from
the nature of the problem. This often corresponds to classify them up to isomorphism in
the chosen category.
In our case we can consider them up to the followings:

A ∼ category C
circles congruence algebraic sets in A2

real three-mainfolds with metrics isometry Riemannian manifolds
holomorphic surfaces biholomorphism complex manifolds

elliptic curves isomoprhism finite type scheme over k

Notice that a priori A could not be a set, but we can avoid dealing with this set-theoretical
drawback because in our cases it is always a set.
A�∼ is just a set without any structure that contains a point for every object up to the
equivalent relation we have considered. Our intuition tells us that isomorphism classes
could change by “deforming” them. Consider for example the real surfaces with a given
metric, we could change the metric “smoothly” and we would like not to lose this informa-
tion. We would like to encode this on the set A�∼. Roughly this is done giving to this
object a structure such that it becomes an element of the category C.
Riemann introduced in 1857 the term “moduli space” to refer to this, where moduli refer
to something that moves.

Problem 1.1 (Classification problem). Fix a class of geometric objects A (in a category

9



10 1.2. Fine moduli space and universal family

C) and an equivalence relation on these. How can we give to A�∼ a geometric structure
that encodes how the objects are (in some sense) “near”?

In order to study this problem in algebraic geometry, we introduce the notion of family.
We will see that it is particularly suitable.

Definition 1.2 (Family). Given a class of objects in a fixed category C. We say that a
surjective map f : X → S (where f , X, S are intended in C) is a family if the fibres of this
map are objects in A.

We should not consider this as a rigorous definition for families, we will see soon that
usually there are some extra requirements. The idea under this definition is that the fibre
of a flat morphism varies “continuously” and this will tell us what to be “near” means for
algebraic varieties (and scheme in general).

Suppose that there exists a family f : X →M such that the fibres of the morphism are
exactly the equivalence classes of A. A�∼ is represented, in some sense, by the points of
M . This is the idea of what we call “moduli space” (M) and “universal family” (X →M).
This example is useless but illustrates the idea:

Example 1.3. Suppose we are interested in classifying circles in the real plane (A) up to
rigid movements (∼). It is clear that the radius length define uniquely the elements in the
equivalence classes. So we have a bijection between A�∼ and R+.
Consider an equilateral cone C defined by x2 + y2 = z2 and cut it with the plane z = 0.
Call C+ the semi-cone in z > 0.
We can define the height map (from the plane z = 0) as

C+ → R+

(x, y, z) 7→ z.

The fibre of a point z0 is exactly the circle of radius z0. It is therefore clear that this map
represents in some sense a “universal family” and that R+ is the “moduli space”.

1.2 Fine moduli space and universal family

We lose now the very general setting and we start working with schemes. We restrict to
Sch/k: the schemes of finite type over k. Usually these functors are defined for general
schemes but we do not need this generalty.

Without pretending to be formal, we can reformulate the classification problem:

Problem 1.4 (Moduli problem). We call moduli problem a contravariant functor M :
Sch/k → Set such that:

M(S) = {families f : X → S that satisfied defined propreties and
eventually more structure}

M(g : S → T ) = f∗ :M(T )→M(S),

Where f∗ is the base change.
In order to have a well-defined functor, we ask that properties and extra structures are
stable under base change.

We notice that the setM(Spec k) is what we called A�∼. This brings us back to the
original problem.
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Notation 1.5. Let F → S be a family, and suppose s ∈ S be a set-theoretic point of S, we
call Fs → Spec k(s) the family under the base change Spec k(s) → S. This is simply the
fibre of s.

From now on we will study classification problems simply considering the functors that
define them. This allows us to give a suitable definition of moduli space.

Definition 1.6 (Fine moduli space). Consider a moduli problemM : Sch/k → Set, we say
that a k-scheme of finite type M is a fine moduli space if there is a natural isomorfism
betweenM and Hom(_,M).

If such a fine moduli space exists, we obviously have thatM(Spec k) = Hom(Spec k,M)

i.e. there is a 1:1 correspondence between k-points of M and the equivalence classes A�∼.
In this situation, we have a natural isomorphism η:

Hom(S,M) = hM (S) M(S)

Hom(T,M) = hM (T ) M(T )

ηS

M(f) hM (f)

ηT

The natural transformation determines an element U = ηM (IdM ) ∈ M(M) that define
completely the transformation (thanks to Yoneda’s lemma).

Definition 1.7 (Universal family). LetM be a moduli problem. Thanks to Yoneda lemma
we have that M representM if and only if there exists U ∈ M(M) such that the following
holds: for every F ∈M(S) there exists a unique g ∈ Hom(S,M) such that F = g∗U .
In this case we call U the universal family.

Thanks to standard techniques of category theory, the remark below is an immediate
consequence.

Remark 1.8. If such a fine moduli space (or universal family) exists, it is unique up to a
canonical isomorphism.

An example is worth more than a thousand words. We recall an object we already know
in a slightly different context and that we will resume it in chapter 4: the Grassmannian.

Example 1.9. It is well known that Grassmannian Gr(d, n) classify the subspaces of di-
mension d (or the quotients of dimension n− d) of a fixed space of dimension n, where the
equivalence relation is the equality of subspaces.
We can construct it classically as a differential (or holomorphic) manifold. It is possible to
construct it in an algebraic setting, emulating the classical case. The construction works
also for the tautological subbundle i.e. the subbundle of kn × Gr(d, n) whose fibre over a
point is the subspace the point represents. We define a moduli problem suitable for this
situation. Fix S ∈ Sch/k and consider the short exact sequences

0→ K → OnS → Q→ 0,

where K and Q are locally free sheaves on S and the rank of Q is d. We say that two exact
sequences of this kind are equivalent if there exist isomorphisms α and β such that

0 K OnS Q 0

0 K′ OnS Q′ 0

α β
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commute.
Hence the moduli functor of interest is:

Gr(S) := {exact sequences of locally free sheaves on S 0→ K → OnS → Q→ 0} / ∼
Gr(h : S → T ) := h∗ : Gr(T )→ Gr(S).

It turns out that it is representable by a scheme, we call it Gr(d, n). Moreover, the
tautological subbundle is the universal family.

There are plenty of examples of moduli spaces. The following families have more
structure but it is still very easy.

Example 1.10. Suppose k algebraically closed. Consider the problem of classify the ordered
set of distinct four k-points (p1, p2, p3, p4) ∈ P1

k up to the natural action of GL2.
It is well known that for every three distinct points on P1 there exists a unique Möbius
transformation that send them to 0, 1, ∞. Hence A�∼ are the k-points of P1 \ {0, 1,∞}.
We encode now this problem with the formalism just defined. The following functorM :
Sch/k → Set is suitable for our problem:

M(S) = {(f : X → S, σ1, σ2, σ3, σ4) | f is proper and flat,

f−1(s) ' P1 for every s k-pointand σi are section of f
}
/ ∼

M(g : T → S) = g∗ :M(S)→M(T ),

where (f : X → S, σ1, σ2, σ3, σ4) ∼ (f ′ : X ′ → S, σ′1, σ
′
2, σ
′
3, σ
′
4) if there exists an isomor-

phism g : X → X ′ such that f = f ′ ◦ g and σ′i = g ◦ σi.
It is an easy verification thatM(Spec k) = A�∼.
In this case it is clear that we have generalized our problem replacing Spec k with S ∈
Sch/k, hence the requirements are consequently adjusted: the idea of introduce σi and the
hypothesis f−1(s) = P1 seems reasonable.
Anyway the hypothesis f proper and flat is quite obscure. These are added to obtain that
M is representable. We will see in a while why we need flatness.
To conclude the example we exhibit the universal family, that in this situation is the trivial
one. Consider the map

f : P1 \ {0, 1,∞}×k P1 → P1 \ {0, 1,∞}
(s, t) 7→ s

and define the sections such that: σ1(s) = (s, 0), σ2(s) = (s, 1), σ3(s) = (s,∞), σ4(s) =
(s, s).
These define an element ofM(P1 \ {0, 1,∞}) that is an universal family.

In general, it turns out that the existence of a fine moduli space is rare and there are
several reasons why this could not occur.

We state here a basic request for a representable functor.

Proposition 1.11 (gluing property). Suppose that M is a representable functor, the fol-
lowing map is a bijection (between sets).

{a ∈M(S)} → { (fi)i | fi ∈M(Si) and fi|Si∩Sj
= fj|Si∩Sj

}

Where Si is an open covering of S and the map is induced by the pullback via the inclusion
Si ⊂ S.
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The proof is immediate thanks to the representability ofM. This proposition can be
used to exclude the existence of a fine moduli space. Several problems can occur when
we are trying to construct a fine moduli space. One problem that we could have is the
existence of automorphisms of the objects we are classifying.

Problem 1.12 (Problem with automorphisms). Let k be algebraically closed. Consider a
moduli problemM such thatM(S) are map X → S that satisfied some property. Moreover,
suppose that there exists an element B ∈M(Spec k) that admit a non-trivial automorphism
φ : B → B. We have that these settings often prevents that there exists a fine moduli space.

We use some terms that will be clearer after chapter 2, anyway it is possible to under-
stand the ideas simply assuming to deal with the correspondent’s classical notions.

Proof. Define G =< φ >, it acts on B. Suppose that there exists a categorical quotient
B/G of B. Consider now an action of G on a scheme X, this define a diagonal action of
G on B × X, again suppose that there exists a quotient (B × X)/G. For example, The
first request is satisfied when φ has finite order, B = Proj A and the action is induced by
an algebra automorphism of A.
The family B ×X → X go to the quotient in two different ways:

(B ×X)/G→ X/G

B × (X)/G→ X/G.

Every fibre of these two families is B. If the moduli problem is representable by M , both
families are obtained from the universal family by a base change with the constant map
X/G → M . In general we have that these two families are not isomorphic, this implies
that the function is not representable.

This is an intrinsic problem that will occur in the main construction of the thesis, we
need a new and more comprehensive notion of moduli space.

1.3 Coarse moduli spaces

In this section, we will weaken the idea of moduli space, as promised. This will resolve the
problem 1.12. We define:

Definition 1.13 (Coarse moduli space). let M be a moduli problem, we say that M ∈
Sch/k is a coarse moduli space for M if there exists a natural transformation η : M →
Hom(_,M) such that:

• ηSpec k :M(Spec k)→ Hom(Spec k,M) is bijective.

• for every N ∈ Sch/k and ν :M→ Hom(_, N) there exists a unique map f : M → N
such that

M Hom(_,M)

Hom(_, N)

η

ν
f∗

.

In that case we say thatM is coarsely represented by M .
Let us unravel this definition a little. The first point says that the points of M still

represent the equivalence classes of our initial problem. The second one says that there is
still a natural transformationM→ Hom(_,M) and M gives the best approximation with
Hom functors (but it is not necessary an isomorphism).

Obviously we have:
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Remark 1.14. A fine moduli space is a coarse moduli space.

Moreover, it follows easily from the second property that:

Remark 1.15. Given a moduli functorM there exists at most a unique coarse moduli space
that represent it.

The introduction of coarse moduli spaces resolves the problem with automorphisms. In
general there are still several problems that can occur. We state some classical examples
where a coarse moduli space does not exist.

Remark 1.16 (Jump phenomena). We explain this phenomena with an example. Fix k = k
and a moduli functor M. Suppose that there exists a family F → S and t ∈ S(k) such
that

Fs ∼ Fs′ for all s, s′ ∈ S(k) \ {t},
Fs � Ft for all s ∈ S(k) \ {t} .

We have that does not exist a coarse moduli space forM.
The idea is that there is a “jump” in the fibre of F → S.
This phenomenon tells us that the fibre is not continuous in some sense. Often it is possible
to avoid this requiring that families are flat. We will see that in our case this hypothesis
is required.

Proof. Suppose that there exists a coarse moduli space M for the problem, there ex-
ist a natural morphism η : M → Hom(_,M). We have ηS(F) ∈ Hom(S,M) and
ηSpec k(s)(Fs) ∈ Hom(Spec k,M) (through the composition Spec k(s) → S). Thanks to
the hypothesis we have that ηSpec k(s)(Fs) are the same k-point for all s ∈ S(k) \ {t} and
ηSpec k(t)(Ft) is a different point: this implies that the map Hom(S,M) should be constant
on S(k) \ {t} and send t to another point, this is absurd.

Another problem is the following:

Remark 1.17 (Unbounded problem). Again, we explain this with a sort of example. Con-
sider an easy generalization of example 1.10: instead of fixing 4 points, we fix an arbitrary
number n of points (hence the functor is the same, except that we can have an arbitrary
number of sections). It is possible to prove that, if we fix n a moduli space there exists.
If we consider the generalized problem, the scheme that represents it should be an infinite
disjoint union of objects in Sch/k: that is not a finite type scheme.
In general: suppose that we are studying a moduli functor whose at priori depends on an
arbitrary fixed number (as a dimension or a rank). Suppose moreover that this number is
invariant on families and that it is possible to construct a fine moduli space if we fix it.
We have that if we do not fix this number, the moduli space of the problem should not be
a finite type scheme.

Often we avoid this phenomenon by fixing the discrete invariants of the problem.
We will see that in our case of interest such a coarse moduli space exists.

1.4 The functor Mg

This section is devoted to the definition of the functorMg and the analysis of the problem
for g = 0, 1.

In the first subsection we deal with the classification of elliptic curves, a starting point
for the main construction.
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1.4.1 A classical example: elliptic curves

This example is the start point for the main construction of the thesis, we state it here
and discuss the classical solution. It will lead us through the next subsections.

Definition 1.18 (Elliptic curves in classical algebraic geometry). We define an elliptic
curve as a Riemann surface, connected and compact, of genus 1 with a specified point.

Thanks to classical theory every compact Riemann surface has an algebraic realization.
So every elliptic curve can be viewed as a submanifold of P2 given by the closure of an
equation of the form y2 = p(x) in C2, where p is a polynomial of degree 3 without multiple
roots.

On the other hand, also the converse is true: it is a straightforward verification that
every equation of this kind defines a holomorphic manifold in P2 and it is possible to verify
that the genus of a surface of this kind is 1.

This is not the unique description we can give to elliptic curves: these can be described
as complex tori.

Remark 1.19. Let C be an elliptic curve, it is holomorphic to a complex tori i.e. a quotient
C�Λ where Λ is a discrete subgroup of C. In this description the marked point corresponds
to the origin.
Rescaling the lattice Λ does not change the isomorphism class (in the holomorphic sense)
of the torus. Hence we can suppose Λ =< 1, τ >Z where τ ∈ H (i.e. in the =(z) > 0
semiplane of C).

This analogy is well known also because we can give a group law to an elliptic curve,
that corresponds to the usual sum modulo Λ on the torus. We avoid proving these classical
results, a reference for elliptic curves is [Sil09].

From a classical point of view, we could ask if there exists a manifold that parametrizes
all elliptic curves up to biholomorphism, the answer is positive.

Thanks to the previous remark, we have that τ determines the isomorphism class of an
elliptic curve. We would now understand when two different values of τ define the same
elliptic curves. Consider the following action:

SL2(Z)×H → H((
a b
c d

)
, τ

)
7→
(
aτ + b

cτ + d

)
,

This is obtained by performing, first of all, a change of basis and then normalizing one
generator of the lattice to 1 (i.e. rescaling the lattice). Two points of H conjugated by
an element of SL2(Z) represent the same isomorphism class. It is well known that the
converse holds i.e. two points of H that represent the same elliptic curve are conjugated
by SL2(Z) (reference [Sil09]).

This introduces one of the principal ideals we will use. Given a moduli problem, we
could try to construct spaces X (whose points represent objects we want to classify) such
that there exists a group action G×X → X that conjugate points that represent the same
equivalence classes. And then we move our focus to quotient X by the action of G.

In the case of elliptic curves, the quotient is given by the j invariant.

Definition 1.20 (j invariant). Consider the following map:

j : H → C

τ 7→ 1728
g2(τ)3

g2(τ)3 − 27g3(τ)2
,
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where:

g2(τ) = 60
∑

(n,m)∈Z2\{(0,0)}

1

(m+ nτ)4
and g3(τ) = 140

∑
(n,m)∈Z2\{(0,0)}

1

(m+ nτ)6
.

The series g2, g3 absolutely converge and the map is well defined (i.e. denominator never
vanishes).
Alternatively, it can be defined from the coefficient of the elliptic curve in the form y2 =
x3 + ax+ b, this will allow us to define the invariant for every base field k.

It turns out this invariant classify elliptic curves:

Theorem 1.21 (C as moduli space of elliptic curves). j : H → C is the quotient map for
the action of SL2(Z): it is surjective and two points have the same image if and only if
are conjugated by an element of the group. Moreover it is a topological quotient. We have
that points of C represent the class of isomorphism of elliptic curves and the holomorphic
structure encode how continuously these change. For this reason we can think to C as a
moduli space.

We do not prove these classical results, it is possible to find it again on [Sil09].
We try now to import the idea of family in this classical example. We define the

following:

Definition 1.22 (Legendre family). Consider elliptic curves of the forms y2 = x(x−1)(x−
λ) for λ ∈ C \ {0, 1} (because the polynomial at right hand side has to be square free).
This define a family with parameter λ:

X =
{
elliptic curves of the form y2 = x(x− 1)(x− λ)

}
⊂ P2 × (C \ {0, 1})

C \ {0, 1} .

φ

We write Xλ for the fibre of the family over λ.

The following remark is not difficult:
Remark 1.23. Every isomorphism class of elliptic curves is a fibre of the Legendre family,
moreover:

Xλ ∼ Xλ′ ⇔ λ′ ∈
{
λ, 1− λ, 1

λ
,

1

1− λ
,
λ− 1

λ
,

λ

λ− 1

}
.

We have an action of the symmetric group S3 where the generators act as follow:

S3 × C \ {0, 1} → C \ {0, 1}

(τ, λ) 7→ 1

λ

(σ, λ) 7→ λ− 1

λ
,

where τ is a transposition and σ is a cycle. We avoid to verify that it is well defined.
We are instinctively inclined to quotient the space C \ {0, 1} in order to have a space

that classify the elliptic curves. We can use the invariant j to construct the map:

C \ {0, 1} → C
λ 7→ j(

{
y2 = x(x− 1)(x− λ)

}
).

That turns out to be surjective and a topological quotient. We will deepen the implication
of these results in an algebraic context in the last part of the chapter. We conclude here
our rundown on the classical theory of elliptic curves. We are now ready to translate the
problem into an algebraic setting.
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1.4.2 The moduli space of curves of fixed genus

We already said that there is a correspondence between holomorphic and algebraic settings
for elliptic curves, to better understand the parallelism we recall more precise parallelism.
Notations are coherent with [Har77], Appendix B.

Given a finite type scheme over C X, we define Xh the associated complex analytic
space. It is an object of AnaC the category of analytic spaces that are locally zeros of
holomorphic function in Cn. Similarly, if F is a coherent sheave over X, we define Fh the
associated coherent analytic sheaf. Definitions can be found in [Har77].

There is a continuous map φ : Xh → X that send points of Xh to closed points of X
and there is a natural map φ−1OX → OXh

. This allows us to redefine Fh = φ∗F .
We can hence define a functor:

h : Sch/C→ AnaC
X 7→ Xh

and another one, that we call with the same name:

h : Coh/X → Coh/Xh

F 7→ Fh.

We have several parallelism between these two:

• X is separated over C ⇔ Xh is Hausdorff;

• X is connected in the Zariski topology ⇔ Xh is connected;

• X is reduced ⇔ Xh is reduced;

• X is smooth over C ⇔ Xh is an holomorphic manifold;

• X is proper over C ⇔ Xh is compact.

Thanks to φ, we have natural maps:

αi : H i(X,F)→ H i(Xh,Fh).

The final (and fundamental) theorem that establishes the parallelism is the following. We
will not use it directly but it allows us to generalize some ideas that involve cohomology.

Theorem 1.24 (Serre, GAGA-theorem). Let X be a projective scheme over C, the functor
h : Coh/X → Coh/Xh is an equivalence of category. Furthermore,

αi : H i(X,F)→ H i(Xh,Fh)

are isomorphism for all i.

We have now that elliptic curves on C correspond to connected proper smooth curves
of genus 1 on C with a fixed point. We can generalize our problem to an arbitrary field k
and to an arbitrary genus.

We focus on the situation when k is algebraically closed, we define:

Definition 1.25 (Mg).
Mg(S) = {proper and flat families f : X → S whose geometric fibres are:

smooth, connected, of dimension 1 and genus g}
Mg(h : T → S) = h∗ :Mg(S)→Mg(T ),

where h∗(
{
X

f−→ S
}

) = {g∗X = XT → T}.
It is easy to check that the properties of the families are preserved by base change.
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Moreover, for a more comprehensive definition, we define:

Definition 1.26 (Mg,n).
Mg,n(S) = {proper and flat families f : X → S and n sections σi : S → X.

Where the geometric fibres of f are:
smooth, connected, of dimension 1 and genus g} / ∼

Mg(h : T → S) =h∗ :Mg(S)→Mg(T ),

where h∗ is the pullback as before. We have moreover that two families (f : X → S, σ1, . . . , σn)
and (f ′ : X ′ → S, σ′1, . . . , σ

′
n) are equivalents if there exist an isomorphism η : X → X ′ such

that the following diagrams commute:

X X ′

S

η

f
f ′

X X ′

S

η

σi
σ′i .

It is easy to check that the properties of the family are preserved by base change.

Remark 1.27. We obviously have thatMg,0 =Mg.

The example 1.10 is the moduli problemM0,4 because the unique curve with genus 0
is P1.

We can observe that:

• The reason why we specify the genus g in Mg (and also n in Mg,n) is to resolve
unbounded problem (Remark 1.16).

• The reason why we ask flat families is to avoid the “jump” phenomenon (Remark
1.17).

• The moduli space Mg does not admit a fine moduli space due to the existence of
curves with non-trivial automorphisms (Problem 1.12).

We prove briefly the third point giving examples of curves with non-trivial automorphism
of finite order. For every genus g > 0 we can consider the hyperelliptic curve (or elliptic if
g = 1) of the form:

Cg : y2 = f(x),

where f is a polynomial of degree 2g+ 1 with distinct roots. This define a projective curve
of genus g. For this curve we have an automorphism:

Cg → Cg
(x, y) 7→ (x,−y),

that is non trivial if Char k 6= 2 (we will suppose that in the construction). Now we are in
the same situation as the problem 1.12. It is possible to construct a non-trivial isotrivial
families over C, this is automatic thanks to theorem 2.6.15 in [Ser06].

We study now the example of elliptic curves from an algebraic point of view.

1.4.3 A revisited example: elliptic curves

We would like to classify now the elliptic curves with a fixed point, i.e. to study the
problemM1,1. This situation is actually very similar to the classical case. It is immediate
to observe that, thanks to homogeneity of C, the classes ofM1,1 are in bijection with the
classes of isomorphism of elliptic curves as sets.
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Theorem 1.28. The coarse moduli space of the functor M1,1 is A1. Moreover to an
elliptic curve C corresponds on A1 the k-point given by j(C).

We would like to find a strategy to emulate the classical construction via the quotient
of H by PGL2(Z). This is the aim of the next section.

1.5 Local universal family and action of groups

The last section of this chapter has the aim to explain the link between the study of
moduli problems and the action of groups on schemes, which will be the subject of the
next chapters. It is not strictly needed for the final construction and we state here some
theorem that uses objects we will define in chapter 2. The reader could come back after
the reading of chapters 2 and 3 for a better understanding.

We know that a universal family does not exist for a functor that is not representable.
We could try to weaken the definition. Suppose that k is algebraically closed, a possibility
is the following:

Definition 1.29 (Local universal family). LetM be a moduli problem and F be a family
over S. F is called a local universal family if for every family G on T and every t k-point
of T , it exists U ⊂ T and a map f : U → S such that G|U ∼ f∗F .

Next results use the action of an algebraic group on a scheme: we do not define it
formally now, the reader could suppose to deal with classical notions of group and quotient.

Theorem 1.30. Let F be a local universal family on a reduced scheme S. Let G act on S
such that two k-points s, t of S lie in the same G(k)-orbits if and only if Ft ∼ Fs.

• If a coarse moduli space exists, it is a (the) categorical quotient of S by G.

• Suppose that the categorical quotient exists. It exists a coarse moduli space if and
only if the categorical quotient is an orbit space (at level of k-points).

The intuition behind these results came from several classical examples. Again we use
the elliptic curves, we recall the last part of section 1.4.1.

Example 1.31. Consider the Legendre family X → A1 where X ⊂ P2×A1 in analogy with
the classical case. We have that this is a local universal family. Moreover, given G = S3,
the action

S3 × A1 → A1

(defined similarly to the classical setting) satisfied the hypothesis of the previous theorem.

It is easy to prove that the quotient A
1
�S3

is an orbit space, hence is a coarse moduli space.

For the sake of completeness, we could state a more general version of the previous
theorem:

Theorem 1.32. Let F be a local universal family on S, let G act on S such that two points
f, f ′ : T → S lie in the same G(T )-orbits if and only if f∗F ∼ f ′∗F . The followings hold:

• If a coarse moduli space exists, it is a (the) categorical quotient of S by G.

• If the categorical quotient exists. It exists a coarse moduli space if and only if the
categorical quotient is an orbit space.
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Proof. We claim this bijective correspondence:

{ natural transformations η :M→ hM} ↔ {G-invariant morphisms f : S →M}
η 7→ ηS(F).

In order to prove that ηS(F) is G-invariant we have to prove that the first diagram com-
mute:

G×k S S

S M

σ

π2 ηS(F)

ηS(F)

G(T )× S(T ) S(T )

S(T ) M(T )

σ(T )

π2(T ) ηS(F)(T )

ηS(F)(T )

.

Thanks to Yoneda’s lemma that’s equivalent to prove the second diagram commute for
every T . The good definition is now proven if for every couple of T -points f, f ′ in the same
G(T )-orbit we have that ηS(F) ◦ f = ηS(F) ◦ f ′.
Thanks to the naturality of η we have:

ηS(F) ◦ f = ηT (f∗F) = ηT (f ′∗F) = ηS(F) ◦ f ′.

Where the second equality is provided by hypothesis.
To prove the bijection we give an inverse map. Given a map g : S → M we recover a
natural transformation η : M → hM . For every G over T ∈ Sch/k let’s define Ut ⊂ T
an open neighbourhood of t were we can apply the local universal property: it exists
ht : Ut → S such that G|Ut

∼ h∗tF . To construct the transformation we would like to glue
togheter the maps g ◦ ht : Ut →M . It’s enought to prove that ∀s, t k-points in T we have
(g ◦ ht)|Ut∩Us

= (g ◦ hs)|Ut∩Us
.

(ht|Ut∩Us
)∗F = (h∗tF)|Ut∩Us

∼ G|Ut∩Us
∼ (h∗sF)|Ut∩Us

= (ht|Ut∩Us
)∗F ,

this implies that ht|Ut∩Us
and hs|Ut∩Us

are element of S(Ut ∩ Us) in the same G(Ut ∩ Us)-
orbit, given that g is G-invariant.
We can glue them. We still have to prove that it is a natural transformation. We need
that for every maps v : T → V the following commute:

M(V ) hM (V )

M(T ) hM (T )

ηV

M(v) hM (v)

ηT

.

We omit this verification.



Chapter 2

Group schemes and algebraic groups

In this chapter, we will give an introduction to group schemes. In particular we will start
from a general point of view and moving forward in the chapter we will be more and more
specific.

In the first section we will deal with general schemes and in the second one we will define
algebraic groups. In the very final part we will moreover suppose that k is algebraically
closed.

2.1 Group schemes

We start with some general and natural notions about group schemes. The fundamental
reference for this subject is [GIT]. The general setting will be soon abandoned and we will
deal with algebraic groups.

Definition 2.1 (Group scheme). A group scheme over S is a structure (G,m, i, e) where
G is an S-scheme and we have tree maps of S-schemes m : G ×S G → G, i : G → G and
e : S → G that satisfied the followings:

G×S G×S G G×S G

G×S G G

(Id,m)

(m,Id) m

m

G G×S G G

S G G

(i,Id)

m

(Id,i)

e e

S ×S G G×S G G×S S

G

(e,Id)

'
m

(Id,e)

' .

Without confusion, we say that G is an S-group.

The three maps m, i, e correspond respectively to the structure operation, the inverse
map and the neutral element in the usual group theory. We could also see this scheme as
his functor of points:

Remark 2.2 (Group scheme as functor). Consider the functor of pointsG(_) = Hom(_, G) :
Sch/S → Set and fix an S-scheme T . Using the diagrams of the definition above and the

21
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property of fibred product we obtain:

G(T )×G(T )×G(T ) G(T )×G(T )

G(T )×G(T ) G(T )

(Id,m(T ))

(m(T ),Id) m(T )

m(T )

G(T ) G(T )×G(T ) G(T )

{?} G(T ) G(T )

(i(T ),Id)

m

(Id,i(T ))

e(T ) e(T )

{?} ×G(T ) G(T )×G(T ) G(T )× {?}

G(T )

(e(T ),Id)

'
m(T )

(Id,e(T ))

' .

If a functor satisfies these diagrams, we say that it is a group functor.
We notice that these maps give to G(T ) the structure of a classical group, where m(T )
is the operation, i(T ) the inverse and e(T )(?) ∈ G is the neutral element. This situation
arise also to the converse. A representable functor Sch/S → Set gives us a group scheme
if it satisfy the diagrams.

A base change of a group scheme is still a group scheme:

Proposition 2.3 (base change of a group). Let G be an S-group and T → S a map.
G×S T is a group scheme with the following structure maps.

Multiplication: GT ×T GT = G×S G×S T
(m,id)−−−−→ G×S T.

Inverse: GT = G×S T
(i,id)−−−→ G×S T.

Neutral element: T = S ×S T
(e,id)−−−→ G×S T.

Similarly to the group theory notion, we can define subgroups and actions:

Definition 2.4 (Subgroup). Let G be a S-group. We say that a closed S-subscheme H
of G is a subgroup of G if it is an S-group with compatible group laws.

Definition 2.5 (Action). Let X be a scheme over S. An action of G over S is a map
σ : G×S X → X such that:

S ×S X G×S X

X

(e,Id)

' σ

G×S G×S X G×S X

G×S X X

(Id,σ)

(m,Id) σ

σ

We can change the base of an action:

Remark 2.6. With the same notations of the previous definition. Consider a map T → S,
we define:

σT : GT ×T XT = G×S X ×S T
(σ,Id)−−−→ X ×S T = XT .

It is easy to see that this define an action of GT on XT .

Looking back to basic group theory we could define the analogous of the orbit and the
stabilizer of a point. In this context a point is a map T → X. The following definitions
are quite natural if we consider the base change of the action just defined.
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Definition 2.7 (Orbit). We split this definition in two parts. Let f : S → X be a
S-morphism (an S-point). The set-theoretic image of

(id, f) : G = G×S S → G×S X
σ−→ X

is the orbit of f .
In general, let f : T → X be an S-scheme morphism, we define the orbit of f as the orbit
of fT = (f, id) : T → XT under the action of σT .
Alternatively, we could consider σ ◦ (Id, f) : G ×S T → X and define the orbit as the set
theoretic image of:

ψf = (σ ◦ (Id, f), π2) : G×S T → X ×S T.

We call it o(f).

Definition 2.8. We define the stabilizer as the following fibred product:

S(f) T

G×S T X ×S T

y
(f,Id)

ψ

.

Remark 2.9. We can notice that S(f) has a structure of scheme and O(f) does not in
general. We will put on it anyway in suitable situations.

With the following definition we add another piece to the puzzle:

Definition 2.10 (Invariant morphism). Let G act on X, we say that a map f : X → Y is
an invariant morphism if the following commute:

G×S X X

X Y

σ

π2 f

f

where π2 is the projection on the second factor.

Definition 2.11 (Invariant locally closed subsets). Let Y i−→ X be a locally closed subset,
we say that it is G-invariant if the map σ ◦ (Id, i) : G× Y factorize as in the diagram:

G×S Y G×S X X

Y

(Id,i) σ

i .

In this case it is defined an action of G on Y .

The final aim of this chapter is to quotient scheme by the action of a group scheme.
Before going on with our specific case of interest, we state a first immediate notion of

quotient.

Definition 2.12 (Categorical quotient). Consider a G-invariant map π : X → Y of S-
schemes. We say that π is a categorical quotient if for any S-scheme Z and any invariant
S-morphism f : X → Z it exists a unique map g : Y → Z such that the following commute:

X Y

Z

π

f
g

.
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Thanks to standard techniques of category theory, the remark below is an immediate
consequence of the definition.

Remark 2.13. If a categorical quotient exists, it is unique up to a canonical isomorphism.

We have that:

Proposition 2.14. Let (Y, φ) be a Categorical quotient of X by G. We have:

• X reduced =⇒ Y reduced;

• X connected =⇒ Y connected;

• X irreducible =⇒ Y irreducible.

Proof. We have that the map φ factorize by a closed immersion:

X
π−→ Y ↪→ Y

Where, respectively in the three situations, Y is:

• Yred and the map factorize because X is reduced.

• The connected component that contains π(X) (is contained in only one component
because X is connected).

• The irreducible component that contains π(X) (is contained in only one component
because X is irreducible).

Consider now:
G×S X X

X Y

σ

π2 π

π

If we compose the two maps with Y ↪→ Y it commutes. Closed immersions are monomor-
phism, hence we have that the diagram commute: this prove that π is G-invariant.
The universal property gives us a map g : Y → Y such that the following commute:

Y X Y

Y

ππ

π
gi .

Applying again the universal property we have that i ◦ g : Y → Y is the identity. Hence
we have that i and g are isomorphism (again, this follow because i is a monomorphism).
This implies that Y is isomorphic to Y i.e. the thesis.

2.2 Algebraic groups

We do not need to work with this generality, hence we focus on the case S = Spec k,
where k is an arbitrary field for the moment. From now on, every scheme in Sch/k will be
supposed to be of finite type over Spec k.

We will write ×k (or × when it is clear from context) instead of ×Spec k, to not weigh
down formulas.
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Definition 2.15 (Algebraic group). Let k be a field. An algebraic group G over k is an
algebraic k-scheme (a finite type scheme over k) that is a group scheme over Spec k.

Remark 2.16. The map e : Spec k → G is just a point of G with residue field k. Without
the chance to confuse, we will refer to e as a set-theoretic point of G.

We can improve a little the functorial interpretation given in remark 2.2:
Remark 2.17 (Algebraic groups as functor). As before, consider the functor of points
G(_) = Hom(_, G) : Sch/k → Set, we have the same diagrams we avoid to rewrite.
We restrict the functor to the subcategory of affine schemes, we obtain G(_) : k-AlgF →
Set where k-AlgF are the category of finitely generated algebras on k (we use the same
notation without confusion). A scheme over k is determined by the restriction of its functor
of points to affine schemes over k (proposition VI-2, [EH00]). This allows us to see the
group as a functor k-AlgF → Set.

Classically the idea of algebraic group came from well know groups whose multiplication
law is defined by algebraic formulas i.e. polynomial expressions. Here a list of classical
example we will work with.
Example 2.18 (Trivial group). Consider Spec k, the trivial maps:

m : Spec k ×k Spec k → Spec k
i : Spec k → Spec k
e : Spec k → Spec k.

Define a group structure (we omit verifications). This has only one element and it is the
initial and terminal object of the category of algebraic groups.
Example 2.19 (Additive group Ga). Let k be a field, it has an additive structure. We can
can view this as A1 with this structure:

m: A1 ×k A1 → A1 defined by: k[t]→ k[t]⊗k k[t]

(a, b) 7→ a+ b t 7→ 1⊗ t+ t⊗ 1

i: A1 → A1 defined by: k[t]→ k[t]

a 7→ −a t 7→ −t
e: Spec k → A1 defined by: k[t]→ k

? 7→ 0 t 7→ 0.

We omit to verify that this actually is an algebraic group and that, looking to k-points,
the group law corresponds to the usual sum.

Similarly we can do for multiplication.
Example 2.20 (Multiplicative group Gm). As before, k∗ can be view as the k-points of
Gm = Spec k[t, t−1]. We define the group law:

m: Gm ×k Gm → Gm defined by: k[t, t−1]→ k[t, t−1]⊗k k[t, t−1]

(a, b) 7→ a · b t 7→ t⊗ t
i: Gm → Gm defined by: k[t, t−1]→ k[t, t−1]

a 7→ a−1 t 7→ t−1

e: Spec k → Gm defined by: k[t, t−1]→ k

? 7→ 0 t 7→ 0.

We omit to verify that this actually is an algebraic group and that, looking to k-points,
the group law corresponds to the usual product.



26 2.2. Algebraic groups

An important example is the following:

Example 2.21 (Linear group GLn). We can identify n×n-matixes as k-points of k[{xi,j}1≥i,j≥n].
The general linear group are matrices whose determinant does not vanish. Define

p(xi,j) = det

x1,1 . . . x1,N
...

. . .
...

xN,1 . . . xN,N

 ,

it’s clear that the invertible matrices are the k-points of GLN := k[{xi,j}1≥i,j≥n]p(xi,j).
Consider now the map:

k[{xi,j}1≥i,j≥n]p(xi,j) → k[{xi,j}1≥i,j≥n]p(xi,j) ⊗k k[{xi,j}1≥i,j≥n]p(xi,j)

xi,j 7→
n∑
k=1

xi,k ⊗ xk,j .

It induced the a morphism m : GLn×k GLn → GLn. If we considered the map at k-points,
it is the usual matrix multiplication. We avoid to explicit the inverse map, we only say
that it is obtained constructing the inverse with the cofactor matrix.
e is the k-point that corresponds to the identity matrix. Again, we will not write down
the straightforward verifications.

As last example, we give a subgroup of GLn:

Example 2.22 (Special linear group GLn). As expected, SLn is defined as the closed sub-
scheme of GLn defined by the ideal I = (p(xi,j) = 1) (i.e. determinant equal to 1). The
k-points correspond to matrix in the special linear group.
The operation laws derive from the ones for GLn. We omit again boring verifications. It
is clear that SLn is a subgroup of GLn.

Given these examples, we could think that the k-points of an algebraic group with
Zariski topology are actually a topological group, this is not true (because the topology on
the product is not the usual one). The parallelism is well done in a lot of situations and, in
general, the algebraic structure is obviously more rigid. For instance, a notion that came
from topological groups is homogeneity :

Definition 2.23 (Inner automorphism). Let G be an algebraic group and g : Spec k → G
a k-point. Define the map:

Lg : G = Spec k ×k G
(g,Id)−−−→ G×k G

m−→ G.

Given an action σ of G on X, we write without ambiguity:

Lg : X = Spec k ×k X
(g,Id)−−−→ G×k X

σ−→ X.

Remark 2.24. We have:

• Lg is an automorphism of G (with inverse Lg−1).

• For every couple of k-points s, g we have neighborhoods g ∈ Ug, s ∈ Us such that
Lsg−1 : Ug → Us is an isomoprhism. This property is called homogeneity.

We will state some useful property of algebraic group.

Proposition 2.25. Every algebraic group is separated.
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Proof. We have to prove that the diagonal subscheme ∆(G) ⊂ G×k G is closed. consider

G×k G
(id,i)−−−→ G×k G

m−→ G,

topologically ∆(G) is the inverse image of e through m ◦ (Id, i). Hence ∆(G) is closed
because e is a closed point.

Proposition 2.26. A connected algebraic group is irreducible.

We prove it only when k = k, this is our case of interests.

Proof. Let X be a finite type scheme over k. We know that X is irreducible if and only
if the restricted topological space on closed points is irreducible. Every closed point is a
k-point because k = k, hence we would like to prove that G(k) with the restricted topology
is irreducible.

Suppose it is not, there exists at least a k-point t that belong to only one irreducible
component and there exists another point s that belong at least to two irreducible compo-
nents. Lst−1 is an automorphism that send t on s hence t and s should belong to the same
number of irreducible components. This is absurd and proves that X is irreducible.

In the last results it has been useful to deal with k-points, which give us a more practical
and easier interpretation. In general, it is quite convenient and more down to earth to use
k-points. A suitable situation happens when k is algebraically closed and the group is
reduced. The following classic proposition justifies the previous sentence:

Proposition 2.27. Let X and Y be reduced and finite type scheme over k. A morphism
of k-scheme f : X → Y is solely determined by the map induced on closed points.

This, in some sense, implies that is easier to deal with reduced algebraic groups.
We could ask now if every algebraic group G is reduced: the answer is negative, and it

is easy to construct a counterexample.

Example 2.28. Cosider G = Spec k[t]�(tp) where Char k = p, we define the following maps:

m: G×G→ G defined by: k[t]�(tp)→
k[t]�(tp)⊗

k[t]�(tp)

t 7→ 1⊗ t+ t⊗ 1

i: G→ G defined by: k[t]�(tp)→
k[t]�(tp)

t 7→ −t

e: Spec k → G defined by: k[t]�(tp)→ k

t 7→ 0.

It is easy to verify that it is an algebraic group.
We notice that it is a subgroup of Ga through the closed immersion Spec k[t]�(tp) ↪→ k[t].

Definition 2.29 (Group variety). A group variety G over k is an algebraic group over k
that is reduced. The name came from the fact that G is a variety i.e. it is reduced and
separated (every algebraic group is separated).

Even if G is not reduced, Gred has a natural group structure if Char k = 0 or k = k.
In particular it is a group variety.
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Remark 2.30 (Group structure on Gred). We have a map

Gred ×k Gred → G×k G
m−→ G.

Given by the closed immersion Gred → G. If Char k = 0 or k = k, the fibred product of
reduced k-schemes is reduced. The universal property of Gred give us a map m′:

Gred ×Gred G

Gred

m

m′ .

Similarly, we can construct an inverse map i′ and a neutral element e′. We avoid verifying
that it is an algebraic group, it is an easy verification.

Example 2.31. Consider a field k such that k = k and Char k = 0. Let Spec k[x]
(xp) be the

algebraic group constructed in the previous example. We have that Gred is the trivial
group.

We give now a description of the orbit and stabilizer of k-points. We suppose k = k
because it is our case of interests and proofs are easier.

Proposition 2.32 (Orbit of a k-point). Suppose k = k. Given a k-point x, its orbit o(x)
is the set theoretic image of

G = G×k Spec k
(Id,x)−−−→ G×k X

σ−→ X.

It is a locally closed subset of X. Therefore we can give to o(x) a structure of reduced
scheme, we call it G · x.

Proof. The image of this morphism is a constructible set ([Har77]Es. 3.19). This implies
that there exists an open subset U ⊂ o(x) of o(x) (this is an easy consequence of lemma
1.1 of [An12], that is just a topological statement). For every closed point y ∈ o(x) there
exists g ∈ G such that y ∈ g · U . This implies that ∪g∈Gg · U ⊂ G · x is a constructible
set that has exactly the same closed points of G · x. Thanks to Nullstellensatz these two
coincides, hence we have the thesis.

The proof of this proposition tells us the following.

Remark 2.33. Suppose k = k. We have that G · x is locally closed.
This means that the closed points of the image determine completely the orbit.

Moreover we have:

Remark 2.34. Suppose k = k. Consider now the action on k-points

G(k)×X(k)
σ(k)−−→ X(k),

we observe that the k-points of G · x are the image of G(k)× {p} under the map σ(k).

Proposition 2.35 (Stabilizer of k-points). Given a k-point p, we call the stabilizer Gp:

Gx Spec k

G X

y
p

σ◦(Id,p)

.

Gx → G is a subgroup.
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Proof. Spec k p−→ X is a closed immersion, it follows that Gx → G is a subgroup.

Remark 2.36. Suppose k = k. As before, consider the action on k-points:

G(k)×X(k)→ X(k).

We have that the k-points of Gx are exactely StabG(k) x.

These two results help us to see an algebraic group as simply the group of k-points
with more structure. We see now a further and fundamental result in this direction.

We would like to find a more suitable condition for G-invariants map. Once again, we
would like to verify the invariance only for k-points of G.

Consider a G-invariant map f : X → S and let g be a k-point of G, we have that:

f ◦ Lg : X = Spec k ×k X
(g,Id)−−−→ G×k X

σ−→ X
f−→ S

is f thanks to G-invariance. The converse is true if k = k and G is reduced:

Proposition 2.37. Let G be a reduced algebraic group acting on X. Suppose that k = k
and let f : X → S be a morphism where S is separated. If for every t ∈ G(k) holds that
f = f ◦ Lg, we have that f is G-invariant.

In order to prove this proposition, we recall the following lemma on the schematic
image. We have that:

Lemma 2.38. Let f : X → Y be a morphism of k-schemes. Suppose that Im(f) is
quasicompact and quasiseparated. Let Z be an arbitrary k scheme and consider the product
map f × Id : X × Z → Y × Z. Then, we have Im(f × Id) = Im(f)× Z.

The lemma follows from the definition of schematic image.

Proof. (Proposition 2.37) The map of inclusion

h :
⊔

p∈G(k)

p→ G

has schematic image G (because closed points are dense and G is reduced) that is quasi-
compact and separated.

Consider h× Id :
⊔
p∈G(k) p×X → G×X, according to the previous lemma we have:

Im(h× Id) = G×X.

Consider the diagram:
G×X X

X S,

σ

π2 h

h

the maps h ◦ σ and h ◦ π2 coincide on a closed subscheme Z ⊂ G×X. We have that the
map ⊔

p∈G(k)

p×X −→ G×X

factorize by Z. By the universal property of the schematic image, we have a map

G×X = Im(h× Id) −→ Z ↪→ G×X.

This implies that Z = G×X, hence the thesis.
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We cannot avoid including the hypothesis G reduced:

Example 2.39. Let k be a field such that Char k = p. Consider the algebraic group G =
Spec k[x]

xp and the action given by the inclusion G ⊂ Ga:

σ: G× Spec k[t]→ Spec k[t] defined by: k[t]→ k[t]⊗k
k[x]

(xp)

t 7→ t⊗ 1 + 1⊗ x.

G has only a k-point, the identity e. Moreover it is easy to verify that Le = Id. Hence,
for every map f : X → S, we have f ◦ Le = f . It is now enough to find a map that is not
G-invariant: for instance Id : X → X.

We fix now these notation:

Definition 2.40. Given g ∈ G(k) we write g · f for the composition f ◦ Lg.
Let U ⊂ X be an invariant open subset, we write O(U)G for the invariant functions of
O(U).

2.2.1 Representation and coalgebra interpretation

In this subsection we will introduce the analogous for finite dimensional group’s represen-
tation in algebraic context. We give particular attention to the affine case.
We fix, once for all, a k-vector space V of finite dimension. We define:

GL(V ) : k-AlgF → Set
R AutR(V ⊗k R) (AutR are the R linear automorphisms)

Va : k-AlgF → Set
R V ⊗k R

Fix a basis of V , it easy to see that:

Remark 2.41. GL(V ) is isomorphic to the functor of points of GLn (restricted k-AlgF ).

Thanks to remark 2.17 we can work with the category k-AlgF instead of Sch/k, this is
the reason why we avoid define GL(V ) on Sch/k.
There are multiple way to define a representation of V .

Definition 2.42 (Algebraic group representation). Let G be an algebraic group, we can
see it as a functor of points. We define a representation as:

• a homomorphism of group valued functor, ρ : G→ GL(V );

• an action of G on the functor Va, σ : G × Va → Va. Such that ∀R ∈ k-AlgF , G(R)
act linearly on V ⊗k R.

Where an action of a group functor is exactly a functor that satisfies the equivalent
usual commutative diagrams in the definition of action for scheme groups.

We omit to prove the equivalence of these two: the proof is the transliteration of the
classical case, with classical groups and actions.

We are now interested in another way to describe a representation of affine groups:
through the co-module description. First of all, we observe that affine groups are Hopf
algebras.
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Let G be an affine group, his structure is defined by the maps m, e and i. Given that
a map between affine schemes is defined by the map induced on global section, we could
define G using his global section. We write ∆, ε, S for the dual respectively of m, e and i.
We have the following diagrams:

O(G)⊗O(G)⊗O(G) O(G)⊗O(G)

O(G)⊗O(G) O(G)

Id⊗∆

∆⊗Id

∆

∆ ,

O(G) O(G)⊗O(G) O(G)

k O(G) k

S⊗Id Id⊗S

ε ε

∆ ,

k ⊗O(G) O(G)⊗O(G) O(G)⊗ k

O(G)

ε⊗Id Id⊗ε

' '
∆ .

This gives a structure of Hopf algebra, but we are not interested to elaborate further.

Definition 2.43 (Co-module). Let G be an affine algebraic group. A co-module is a map
r : V → V ⊗O(G) such that the followings commute:

V ⊗O(G)⊗O(G) V ⊗O(G)

V ⊗O(G) V

Id⊗r
r⊗Id

r

r ,

V ⊗ k V ⊗O(G)

V

Id⊗ε

Id
r .

These diagrams are dual to the ones that define the action, we have that:

Proposition 2.44. Let G be an affine algebraic group, there is a correspondence

{Actions of G on V } ↔ {co-module maps r : V → V ⊗O(G)}

σ 7→ V
Id⊗1−−−→ V ⊗O(G)

σ(O(G))(1)−−−−−−−→ V ⊗O(G).

Proof. We omit to verify that the map is well defined. Fix now a representation: consider
the functors valued on Spec R and a map f : Spec R→ G. We have maps:

G(O(G))× (V ⊗k O(G)) V ⊗O(G)

G(R)× (V ⊗k R) V ⊗R

f∗ f∗ .

This implies that the map G(R)× (V ⊗kR)→ V ⊗R is completely defined by the value of
σ(O(G))(1) : V ⊗kO(G)→ V ⊗kO(G). This map is O(G) linear, therefore it is defined by
the restriction to V . This implies that the map of the thesis is injective. The surjectivity
came similarly defining the action using the diagram above. We omit the details.

The aim of the last part of this section is to study representations of the torus.

Definition 2.45 (Torus). An algebraic group G is an algebraic torus if G = Gnm for some
n > 0.
Furthermore we can define

X∗(T ) := Hom(T,Gm),

called character group.
X∗(T ) is an abelian group, induced by the group structure of Gm, this explain the name.
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We compute now X∗(Gm), it will be useful in the next theorem.

Proposition 2.46. The morphism

θ : Z→ X∗(Gm)

n 7→ (z 7→ zn),

is an isomorphism of groups.

Proof. Let φ∗ : k[t, t−1] → k[t, t−1] be such that φ(t) = tn, this define a group morphism
because φ ◦m = m ◦ (φ, φ) (we omit the easy veritication).
θ is a group morphism because we have θ(a) · θ(b) = θ(a+ b). The map is clearly injective.
The only non-trivial veritication is about surjectivity. Let φ : Gm → Gm be defined by the
map:

φ∗ : k[t, t−1]→ k[t, t−1]

t 7→
m∑

i=−m
ait

i.

This define a group morphism, hence m∗(φ∗(t)) = φ∗(t)⊗ φ∗(t):
m∑

i=−m
ait

i ⊗ ti =

m∑
i=−m

m∑
j=−m

aiajt
i ⊗ tj .

This implies clearly that at most there is only one index such that ai 6= 0. This implies
that the map is defined by t 7→ ait

i. Given that φ ◦ e = e we have that ai = 1, hence the
thesis.

We are now ready for the last result of this section:

Theorem 2.47 (Representation of a torus). Let ρ : T → GL(V ) be a representation, there
is a weight space decomposition

V =
⊕

χ∈X∗(T )

Vχ,

where Vχ = {v ∈ V | t · v = χ(t)v ∀t ∈ T} are the weight spaces.

Proof. First of all we prove it for T = Gm. Consider r, the relative co-module of a
representation ρ : Gm → GL(V ):

V ⊗ k[t, t−1]⊗ k[t, t−1] V ⊗ k[t, t−1]

V ⊗ k[t, t−1] V

Id⊗r
r⊗Id

r

r ,

V ⊗ k V ⊗ k[t, t−1]

V

Id⊗ε

Id
r .

Define the space:
Vm = {v | r(v) = v ⊗ tm } ,

this is a Gm-invariant subspace of V . Moreover, we can write r(v) =
∑
fm(v)⊗ tm, where

fm : V → V is a linear map. We prove in the following that fm is a projection in Vm.
Applying the first diagram to v we obtain easily that r(fm(v)) = fm(v)⊗tm and fm ◦fm =
fm. Using the second diagram we have easily that v =

∑
fm(v). These result implies that

the linear maps fi are projectors and decompose the space into Gm-stable subspaces:

V =
⊕
m∈Z

Vm.

This prove the case T = Gm. Consider now T = (Gm)n, we can generalize the proof
introducing Vm1,...,mn in a similar way. The proof follows using the same arguments.
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We immediately have that:

Corollary 2.48. Let ρ : Gm → GL(V ) be a representation. There exists a basis of V such
that this map can be write as

Gm → GLn

t 7→

t
k1 . . . 0
...

. . .
...

0 . . . tkn .


Where ki are integers.

We prove now a result we will use later. Despite it is not well integrated here, we prove
it now because we use the co-module structure.

Proposition 2.49. Let G act on an affine scheme Spec A. Suppose that f ∈ A is G-
invariant, thanks to definition 2.11 we hace an action on Spec Af . It turns out that

(Af )G =
(
AG
)
f
.

Proof. Consider a
f i
∈ (Af )G, we have by definition that the following commute:

O(G)⊗Af Af

Af k[x]

rf

1⊗Id

x→ a

fi

x→ a

fi
,

where rf is the co-module map of the restrinction.
We have that

1⊗ a

f i
= rf

(
a

f i

)
=
r(a)

f i
.

This implies that 1⊗a = r(a) in O(G)⊗Af , i.e. there exists j such that (r(a)−1⊗a)f j =

0 ∈ O(G) ⊗ A. Now we have that af j ∈ A is G-invariant and we write a
f i

= afj

f i+j . Hence
we have that every element of (Af )G can be written as an G-invariant element of A up to
factor f , the thesis follows easily from this.

We finish with the following natural remark, that generalizes what introduced before:

Remark 2.50. Consider an action G ×k X → X, even if G and X are not affine, we have
that O(G) is a Hopf algebra and that O(X) is a co-module.
If X is affine, we have that this co-module structure induce an action G ×k X → X and
vice versa.

We give the following definition, we will use it in the next chapter:

Definition 2.51 (Rational action). Let σ : G×X → X be an action, we say that G act
rationally on X if every f ∈ O(X) is contained in a finitely generated k-subspace of O(X)
that is G-invariant.





Chapter 3

Quotient of schemes

Once introduced the first results about algebraic groups, we are now interested in quo-
tienting schemes by the action of a group. We already gave the definition of categorical
quotients. Now we would like to push the requests further, with the final aim to get closer
to an orbit space.

The last section will be devoted to Hilbert-Mumford criterion, which will be fundamen-
tal for the final construction.

The references for this chapter are the first chapters of [GIT] and [Mil17].
In the whole chapter, we will assume that k is algebraically closed.
We start with a set-theoretic proposition:

Proposition 3.1 (Orbits and invariant maps). Let f : X → Y be a G-invariant map and
x be a k-point of X. We have that the set-teoretic image of G · x is a closed point.

Proof. The closed points of G ·x maps to a unique point p. Given that these closed points
are dense in G · x, we have f(G · x) = p. The thesis is now satisfied thanks to continuity
of f .

Recalling that we are looking for an orbit space, we define:

Definition 3.2 (Closed action). We say that an action σ : G ×k X → X is closed if
∀x ∈ X(k) G · x is closed.

Thanks to the previous proposition, the categorical quotient can be an orbit space only
if the action is closed.

This situation leads us to investigate more about orbits:

Proposition 3.3. Let x be a k-point of X. The boundary of an orbit G · x \ G · x is a
union of orbits of closed points of strictly smaller dimension.

In particular, the orbits of closed points of minimal dimension contained in G · x are
closed ∀x ∈ X(k).

Proof. The set G · x \G · x is G-invariant, hence is a union of orbits.
G ·x is open in G · x (Thanks to the proof of proposition 2.32), this implies that the orbits
in the boundary are of strictly lower dimension.
Consider now the orbits of minimal dimension, if the closure of any of these is not the orbit
itself we obtain an orbit of strictly lower dimension: this implies that orbit of minimal
dimension are closed.

Proposition 3.4. Let x be a k-point of X.

dimG = dimG · x+ dimGx.

35
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Proof. The point of the proof is the flatness of:

σx : G→ G · x.

First of all, we can suppose that G and X are reduced (because the dimension does not
change reducing schemes). Now we have that σx is flat at every generic point of G ·x, hence
there is an open and dense set U ⊂ G · x where σx is flat. Given that G act transitively
on G · x, we have that σx is flat. The thesis follows now from the dimension formula for a
flat morphism.

Proposition 3.5. Consider on X(k) the Zariski topology, the function

X(k)→ N
x 7→ dimG · x

is lower-semi-continuous. Hence we have also that

X(k)→ N
x 7→ dimGx

is upper-semi-continuous.

Proof. We give only a sketch of the proof. Let P be the fibred product of the diagram:

P X

G×X X ×X

φ

∆

(πX ,σ)

.

Consider the fibres φ−1(x) such that x ∈ X(k). We have that these correspond to G · x
under the map P ↪→ G ×X. Now we have that the dimension of the fibre is lower-semi-
continuous. The second thesis is obvious thanks to the previous proposition.

In order to understand these propositions we give an easy example:

Example 3.6. Consider Gm that act on A2 in this way:

Gm × A2 → A2

(t, (x, y)) 7→ (t · x, t−1 · y).

Formally, this action arise from the following morphism (we omit verifications):

k[x, y]→ k[t, t−1]⊗k k[x, y]

x 7→ t⊗ x
y 7→ t−1 ⊗ y.

It is easy to compute the orbits of closed points:

• x = (α, β) where α 6= 0, β 6= 0. The orbit is the set teoretic image of:

Gm → A2

t 7→(t · α, t−1 · β).

Giving a scheme structure to the orbit we obtain the subscheme Spec k[x,y]
(xy−αβ) ↪→

Spec k[x, y]. This is the hiperbola xy = αβ.
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• p = (α, 0) where α 6= 0. As before we have the map:

Gm → A2

t 7→(t · α, 0).

This time the orbit subscheme is Spec k[x,x−1,y]
(y) ↪→ Spec k[x, y]. Intuitively the punc-

tured line y = 0.

• p = (0, β) where β 6= 0. That’s simmetrical to the previus case: Spec k[x,y−1,y]
(x) ↪→

Spec k[x, y]. This is the punctured line x = 0.

• p = (0, 0). Similarly to the previous cases, the orbit is Spec k[x,y]
(x,y) ↪→ Spec k[x, y] i.e.

the closed point (0, 0).

The first and last kind of orbits are closed. The closure of G · (α, 0) with α 6= 0 is the line
y = 0: Spec k[x,y]

(y) → Spec k[x, y] i.e. G · (α, 0)∪G · (0, 0). G · (0, 0) is closed and of minimal
dimension. This agrees with proposition 3.3.
The stabilizer of the first three orbits type is the trivial group Spec k ↪→ Spec k[t, t−1]. On
the other hand, the stabilizer of (0, 0) is the whole group Gm. This agrees with proposition
3.4.

Given that not every action is closed and the categorical quotient cannot be an orbit
space. We introduce now a weaker notion of orbit space, we will see later that if it exists
it is categorical.

Definition 3.7 (Good quotient). Let G be an algebraic group acting on X. Y ∈ Sch/k
(i.e. of finite type over k) with a G-invariant map π : X → Y is said to be a good quotient
if:

i) π is surjective;

ii) ∀U ⊂ Y we have that the induced map π∗ : OY (U) → OX(π−1(U)) is the natural
inclusion OX(π−1(U))G ⊂ OX(π−1(U)) (Observe that the open set π−1(U) is G-
invariant);

iii) if W is a closed and G-invariant subset of X, π(W ) is closed;

iv) for all W1, W2 disjoint, invariant and closed subsets of X, we have that π(W1) ∩
π(W2) = ∅;

v) π is an affine morphism.

i), iii) and iv) are reasonable requests for a quotient. Request ii) introduce a new
important point of view. Instead of looking only to a quotient at points level, we are now
interested in regular function on the scheme. In particular, we ask that regular functions
on the quotient are exactly the ones that are G invariant.

Proposition 3.8. Let π : X → Y be a G-invariant map that satisfied condition from i) to
v) in the definition above (everything but affine). We have that π is a categorical quotient.
In particular, good quotients are categorical.

Proof. Consider a G-invariant map f : X → Z, we would like to prove that this factorize
in a unique way by a map h : Y → Z. We construct h covering Z by a finite (because Z
is of finite type) number of affine sets {Ui}I and then we define hi : Vi → Ui where Vi are
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a suitable covering of Y .
Given {Ui}I we define:

Vi := Y \ π(X \ f−1(Ui)).

Vi are open sets: X \ f−1(Ui) is closed and G-invariant, hence condition iii) applies. By
construction we easily verify that π−1(Vi) ⊂ f−1(Ui).
We prove now that Vi is an open cover of Y . Suppose it is not, hence ∩Iπ(Wi) 6= ∅.
Consider a k-point p in the preimage of the interseciton, We must have G · x ∩Wi 6= ∅
(thanks to condition iv)). Thanks to the G-invariance of G · p and Wi we have that
G · p ⊂ Wi for every i: this is a contradiction given that ∩IWi = ∅ (because {Ui} is a
cover).
We construct now hi : Vi → Ui. There exists a unique map h∗i such that the following
commute:

OZ(Ui) OY (Vi)

OX(f−1(Ui))
G OX(π−1(Vi))

G

h∗i

f∗ π∗'

It is therefore clear that these morphisms glue togheter and define a global and unique
h : Y → Z.

The request v) in the definition is needed to glue properly good quotients: it will be
clear after the next proposition.

Proposition 3.9 (Local on the target). Let π : X → Y be a good quotient and U an open
subset of X, π : π−1(U) → U is a good quotient. Moreover, given a cover {Ui}i∈I such
tat π−1(Ui) → Ui is a good quotient we have that the map π : X → Y is a good quotient.
Hence, to be a good quotient is local on the target.

Proof. This proposition follows easily from the fact that every property that defines a good
quotient is local on the target.

Recalling the importance of closure of orbits, we have:

Lemma 3.10 (Orbits and good quotients). Let π : X → Y be a good quotient:

• if y ∈ Y is a closed point, π−1(y) contain a unique closed orbit of a closed point.

• let x1, x2 ∈ X closed points,

G · x1 ∩G · x2 6= ∅ ⇔ π(x1) = π(x2).

Proof. For the first point: it follows easily from requirement iv) of good quotients.
We prove now the second statement. We have that π(x1) = π(G · x1) and π(x2) = π(G · x2)
because φ is G-invariant. Therefore, if G · x1 ∩G · x2 6= ∅ we have that π(x1) = π(x2).
The opposite direction follows from the requirement iv) of good quotients, where the closeds
sets are W1 = G · x1 and W2 = G · x2.

It is therefore natural to define:

Definition 3.11 (Geometric quotient). Let π : X → Y be a good quotient, we say that it
is a geometric quotient if ∀p ∈ X closed point, we have that π−1(p) is a unique orbit of a
closed point.

Thanks to lemma (3.10) we obviously have:

Corollary 3.12. Let G act on X. Given a good quotient π : X → Y , if the action is
closed then π is a geometric quotient.
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3.1 Affine GIT quotient

We are now ready to construct good quotients in the affine case. Before going on we
illustrate the simple case of a finite group acting on an affine scheme over k. This case will
lead us to the general situation where G is an algebraic group.

Actually, a finite group can be viewed like a discrete algebraic group whose points are
disconnected copies of Spec k. In this sense, we will generalize the construction.

Theorem 3.13. Let G be a finite group acting on Spec A, where A is a finitely generated
k-algebra. We have that AG is a finitely generated k-algebra and

Spec A→ Spec AG

is a geometrical quotient.

Proof. The principal idea of the proof is that AG ⊂ A is integral. For every a ∈ A we have
that ∏

g∈G
(x− g(a)) ∈ AG[x]

This implies that the map Spec A→ Spec AG is closed and surjective. We omit the easy
verifications that are needed to conclude the proof.

It is clear that is not possible to generalize the proof when G is an algebraic group
because there are no chances to construct the polynomial we used in the previous theorem.
Moreover, if G is not finite, we do not even know if AG is a finitely generated algebra.

The latter problem is related to the 14th Hilbert problem. In general, it is not true
that AG is finitely generated, Nagata gave a counterexample. He also proves the theorem
in a particular situation:

Theorem 3.14 (Nagata). Let G be a linearly reductive algebraic group acting rationally
on an affine finite type scheme over k, say Spec A. AG is a finitely generated algebra.

Where we define:

Definition 3.15 (Linearly reductive group). G is said linearly reductive if every finite-
dimensional linear representation is completely reducible (i.e. it decomposes as a direct
sum of irreducibles).

We do not prove this result, the reader can find it in [Nag59].
Examples of linearly reductive groups are torus and GLn (in characteristic 0).
Asking that AG is finitely generated is not the only requirement we have. In order to

obtain a good quotient we need the following.

Lemma 3.16. Let G be a linearly reductive group, we have that for every representation
G → GLn and any non-zero v ∈ An G-invariant vector, there exists a non-zero f ∈
k[x1, . . . , xn]G such that f(v) 6= 0.

This lemma tells us that a linearly reductive group is geometrically reductive but we
are not interested in elaborating further. A reference for this lemma is [Kem00].

Lemma 3.17. Let A be a k-algebra equipped by a rational of a lineally reductive group G.
For any I ⊂ AG ideal we have that:

IA ∩AG = I.
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We do not prove this result that involves Reynolds operator, a reference is again
[Kem00].

Given that we will not deal with reductive groups, from now on we will omit the word
“linearly” and we will write “reductive” instead of “linearly reductive”.

Remark 3.18. Here AG can be interpreted in a double way:

• AG = O(Spec A)G i.e. the G-invariant function on Spec A,

• AG = {a ∈ A | ∀ g ∈ G(k) g · a = a}.

Thanks to proposition 2.37 there is no difference in our setting (k is algebraically closed).

We restrict now our interests to reductive groups G that acts rationally, to avoid
that Spec AG is not a finite type scheme over k. Similarly to the finite case we can define:

Definition 3.19 (GIT affine quotient). Let X be an affine scheme of finite type over k
and G be a reductive algebraic group acting ractionally on X. We define the GIT quotient :

π : X → Spec OX(X)G := X//G

Given by the inclusion OX(X)G ↪→ OX(X). Thanks to Nagata theorem we have that
X//G is a k-scheme of finite type.

We prove now that the GIT affine quotient is a good quotient. We need a lemma.

Lemma 3.20 (Regular functions separate G-invariant closed subsets). Let G be a reductive
group acting rationally on an affine scheme X. If W1, W2 are two disjoint closed subsets
of X, it exists f ∈ O(X)G such that f|W1

= 0 and f|W2
= 1.

Proof. Given that W1 and W2 are disjoint, there exists g ∈ O(X) such that g|W1
= 0 and

g|W2
= 1. In general, g is not G-invariant, but there exists a finite dimensional k-vector

G-invariant subspace V ⊂ O(X) that contains it. Let h1, . . . , hn be a basis of V . We easily
notice that we can suppose hi = gi · f . Consider now the map:

H : X → An

x 7→ (h1(x), . . . , hn(x)).

Given that hi = gi · f we have H|W1
= 0 and H|W2

= v 6= 0. Define now an action:

G→ GL(V )

g 7→

hi 7→ g · hi =
∑
j

ai,j(g)hj

 .

We can write it as G→ GLn were g 7→ (aij(g))i,j .
Obviously we have that H : X → An is G-invariant. We apply now lemma 3.16 to the
vector v (that is G-invariant) obtaining a homogeneous polynomial P ∈ k[x1, . . . , xn]G such
that P (v) 6= 0 and P (0) = 0. The thesis is now easily satisfied by f = P◦H

P (v) ∈ O(X)G.

We are now ready to the following:

Theorem 3.21 (GIT quotient is a good quotient). The GIT affine quotient defined above
is a good quotient.
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Proof. Obviously the map X → X//G is G-invariant. We verify now the surjectivity. It is
enough to prove it at level of k-points, thanks to Chevalley’s Theorem. Let y ∈ X//G(k)
be defined by the ideal my = (f1, . . . , fn)O(X)G ∈ O(X)G. Thanks to lemma 3.17 we have
that:

(f1, . . . , fn)O(X)GO(X) ∩ O(X)G = (f1, . . . , fn)O(X)G .

This implies that (f1, . . . , fn)O(X) ( 6= O(X)) contract to my, hence the map is surjective.
In order to prove ii) it is enough to verify it on a base of Spec O(X)G. Consider Yf where
f ∈ O(X)G, we have that:

OY (Y )f =
(
O(X)G

)
f

= (O(X)f )G = OX(π−1(Yf ))G

where the second equality is given thanks to proposition 2.49. Requirement iv) is given by
the previous lemma as follows. Let W1 and W2 be closed invariant subset, and consider f
as in the thesis of the proposition. We have that f ∈ O(X)G, f|π(W1) = 0 and f|π(W2) = 1,
hence π(W1) ∩ π(W2) = ∅.
Moreover, this implies also requirement iii) as follow. Suppose that π(W ) is not closed,
there exists a k-point p ∈ (π(W )) \ π(W ). Thanks to the surjectivity there exists a closed
point q ∈ X(k) such that π(q) = p: applying the previous result to the disjoint closed sets
W and q the requirement iii) follows.
The last requirement is π affine: this is obvious because it is a map between affine schemes.

It is not true that affine GIT quotients are geometric quotients. For instance in the
example 3.6 this does not happen.

Example 3.22. Consider the action of Gm on A2 as in example 3.6. In order to calculate
O(A2)Gm we can apply proposition 2.37. Given g ∈ Gm(k) = k∗, we have:

L#
g : k[x, y]→ k[x, y]

p(x, y) 7→ p(g · x, g−1 · y).

It is now easy to see that a polynomial p(x, y) ∈ k[x, y] is Lg invariant ∀t ∈ Gm(k) = k∗ if
and only if it is a polynomial in xy.
The GIT affine quotient is

π : A2 → A1

(α, β) 7→ α · β,

induced by the natural inclusion k[xy] ⊂ k[x, y].
It is easy to see that this quotient is a good quotient but it is not a geometric quotient. The
preimage of the k-point (t) ∈ Spec A1 contains three orbits: G · (α, 0), G · (0, α), G · (0, 0)
(for α 6= 0).
The counterimage of a closed point (t − a) ∈ A1 with a 6= 0 is Spec k[x, y] ⊗k[xy] k =

Spec k[x,y]
xy−a ↪→ Spec k[x, y]. This is, as seen before, a closed orbit.

We can observe that if we restrict to the open A1 \ {0} of A1. We have that the map

A2 \ π−1(0)→ A1 \ {0}
(α, β) 7→ α · β

induced by π is a geometric quotient.
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Led by the previous example, we will prove that we can restrict to an open subset of
the GIT quotient to obtain a geometric quotient. In particular, we are interested in points
whose orbit is closed.

Definition 3.23 (Stable points). We say that a closed point x ∈ X is stable if G · x is
closed and dimGx = 0.

According to the definition of stable points in [GIT], the second condition is not re-
quired. We will see in the next theorem that actually is not needed. Modern algebraic
geometers often required this, with the aim to use geometrical intuition: this assumption
provides dimG · x = dimG as expected.

We are now able to restrict to a good quotient:

Proposition 3.24. Let π : X → Y be a good quotient. Stable points are open in the
restricted topology on X(k). We can define the open Xs ⊂ X whose closed points are
stable.
Xs is G-stable and Y s := π(Xs) is an open subset of Y such that π−1(Y s) = Xs. Moreover
π : Xs → Y s is a geometric quotient.

Proof. First of all we prove that we can define Xs. Let x ∈ X(k) be a stable point and
define X+ = {x ∈ X(k) | dimGx > 0} (this is closed thanks to prop 3.5). We have that
there exists f ∈ O(X)G such that:

f(X+) = 1 f(G · x) = 0.

Given z ∈ Xf (k) we prove now that it is stable. We have that dimGz = 0, it remain to
prove thatG·z is closed. Suppose there exists w ∈ G · z\G·z. We have that f(w) = 1, hence
w ∈ Xf (k) and w /∈ X+. This implies that dim(G·w) = dimG−dim(Gw) = dim(G·z) and
so this is absurd thanks to proposition 3.3. Hence every stable point has a neighbourhood
whose k-points are stable. This implies the first thesis. Moreover Xf (k) is G-stable, hence
Xs is stable.
Given that f is G-stable, we have that π(Xf ) = Yf and π−1(Yf ) = Xf . This implies that
Y s := π(Xs) is an open subset of Y such that π−1(Y s) = Xs. Moreover we have that
π : Xs → Y s is a geometric quotient.

Recalling the previous example is easy to see that Xs = A2 \ ({y = 0} ∪ {x = 0}) and
Y s = A1 \ {0}.

3.2 Projective GIT quotient

We have seen the construction of GIT quotient for affine schemes, looking at G-invariant
sections. For projective schemes, the situation is more complicated.
First of all, we could remember that good quotients are local on the target and use it.
We could try to cover X with open affine invariant subsets, applying then the previous
construction and finally glueing them together. The problem is that we cannot find such
open subsets a priori without extra effort because they could not exist and in general there
is not a canonical way to choose them.

In this section, we focus on projective schemes. We will use this notation without
recalling them every time: G is a reductive group that acts on a projective scheme X.

Thanks to the projectivity of X, there exists a homogeneous ideal I(X) of k[x0, . . . , xn]
such that

X = Proj
k[x0, . . . , x2]

I(X)
↪→ Pn.
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We write R(X) = k[x0,...,xn]
I(X) a graded k-algebra finitely generated.

Suppose that we could lift the action on X to an action on R(X). Given f ∈ R(X)G

we have that D+(f) ⊂ X is an affine G invariant set, this allows us to glue together the
GIT affine quotient.

At this purpose, we are interested to lift it directly to k[x0, . . . , xn]. We define:

Definition 3.25 (Linearization of theG-action onX). Consider the linear action ofGLn+1

on Pn. A linear G-equivariant projective embedding is a group morphism G → GLn+1

and a G-equivariant embedding X ↪→ Pn, where the action on Pn is given via the group
morphism. In this situation we say that the G-action on X ↪→ Pn is linear.

Consider the following diagram

X̃ = Spec R(X) An

X = Proj R(X) Pn
π

given by the natural map Spec A → Proj A (where A is a graded ring). We call X̃ and
An respectively the affine cone of X and Pn.

If we have a linearization of the G-action, we can obviously extend it to An and X̃.
Thanks to G ↪→ GLn+1, we have that G acts on k[x0, . . . , xn] and R(X) homogeneously.
We have that R(X)G =

⊕
iR(X)Gi and it is a graded finitely generated algebra (G is

reductive). We define:

Definition 3.26 (GIT projective quotient). Given a linear action on Proj R(X)→ Pn we
define the GIT quotient as a rational map:

X = Proj R(X) 99K Proj R(X)G = X//G,

induced by the inclusion R(X)G ⊂ R(X).

Remark 3.27 (X//G is of finite type). We notice that R(X)G is a finite type algebra on k.
The action of G is rational because the action of G is induced by the action of GLn and G
is reductive. Hence we can apply Nagata’s theorem.

Obviously, there are multiple ways to find an embedding X ↪→ Pn: these define a priori
different GIT quotients. Let’s suppose to have a very ample line bundle L over X and a
choice of a base of the vector space H0(X,L). It is well known that these define a not
degenerate closed embedding (i.e. the image is not contained in a linear subspace)

X ↪→ Pn.

Vice versa, given a not degenerate closed embedding, it is induced by the very ample line
bundle O(1)|X and the base i∗xi.

It is easy to prove that the GIT quotient does not depend on the base up to a linear
transformation. It turns out it strongly depends on chosen line bundle, we define:

Definition 3.28 (GIT quotient given by L). Let L be a very ample line bundle on X and
fix a base of H0(X,L), this determine a closed embedding X ↪→ Pn. Suppose that G acts
linearly, with the same construction (and notations) see above we can define

X = Proj R(X) 99K Proj R(X)G = X//LG.

The quotient map constructed is defined only on an open set, we define:
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Definition 3.29 (Semistable points). We define Xss = X \ V+(R(X)G) the semistable
set.

Xss is the biggest open set where the git quotient is defined.

It follows from standard algebraic geometry arguments that:

Remark 3.30. x ∈ Xss if and only if exists an homogeneous f ∈ R(X)G such that f(x) 6= 0
in k(x) (the residue field of x).

We can now state the first result of this section:

Proposition 3.31. Consider a linear G-action on X ↪→ Pn, the morphism

π : Xss → X//G

is a good quotient.

Proof. As mentioned before, we want to cover Xss by affine and G-stable open subset.
Suppose Y = X//G and f ∈ R(X)G, we have that Yf ⊂ Y is an open stable subset.
π−1(Yf ) = Xf , we have

Spec R(X)(f) → Spec (R(X)G)(f)

given by the restriction of R(X)G ⊂ R(X). As proved in proposition 2.49, we have
that (R(X)G)f = (R(X)f )G. The action is homogeneous hence we have (R(X)G)(f) =

(R(X)(f))
G. Now the map π|Xf

: Xf → Yf is exactly the GIT affine quotient defined in
the previous section. Good quotients are local on the target and

Xss = ∪f∈(R(X)G)hXf ,

where (_)h are the homogeneous elements. We have that π : Xss → X//G is a good
quotient.

We give now an easy example of GIT projective quotient.

Example 3.32. Let Gm act on Pn in the following way:

Gm × Pn → Pn

(t, [x0, . . . , xn]) 7→ [t−1 · x0, t · x1, . . . , t · xn].

We avoid describing it by ring maps, it is easy to see that the action restricts to Ui ⊂ Pn
coordinate open subsets.

We have that R(X) = k[x0, . . . , xn]. Similarly to the example 3.6, it is easy to see that
R(X)G = k[x0x1, x0x2, . . . , x0xn]. The GIT projective quotient is

Proj R(X) 99K Proj R(X)G
∼−→ Pn−1

[x0, . . . , xn] 7−→ [x0x1, . . . , x0xn]

induced by the inclusion R(X)G ⊂ R(X). Its easy to prove that Xss = D+(x0) \
{[1, 0, . . . , 0]}. We can write the map from Xss ' An \ {0}:

An \ {0} → Pn−1

(a1, . . . , an) 7→ [a1, . . . , an].

This quotient actually coincide with the definition of projective space.
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Emulating the same observation made for affine GIT quotient, we would define an open
subset of of stable points of Xss where the action of G is closed. We proceed in a slightly
different way, we will find again the usual description briefly.

Definition 3.33 (Stable points). A point x ∈ X(k) is said stable if:

• dimGx = 0,

• there exists f ∈ R(X)G+ homogeneus such that x ∈ Xf and the G-action on Xf is
closed.

Similarly to the affine case, the condition on dimGx is not strictly required, but it is
assumed.

Remark 3.34. We have that:

• stable points are open (in X(k)), we can hence define Xs ⊂ X the open subset whose
closed points are stable;

• Xs is G-stable;

• Xs ⊂ Xss.

Proof. The set of points in X(k) with dimGx < 1 (i.e. = 0) is open because the map
x 7→ dimGx is upper semi-continuous (proposition 3.5). Stable k-points are exactly the
intersection of {x ∈ X(k)|dimGx < 1} and ∪Xf (k) for f as in the definition of stable
points. This prove that stable k-points are open in the restricted topology and G-invariant.
The second thesis follows from this last sentence.
The third thesis is now immediate.

Similarly to the affine case, we would like to obtain a geometric quotient of Xs.

Theorem 3.35 (Geometric quotient). There exists Y s ⊂ Y an open subset such that:

• π−1(Y s) = Xs,

• π|Xs : Xs → Y s is a geometric quotient.

Proof. Define as Xc the union of Xf with f ∈ R(X)G+ such that the G-action on Xf is
closed. Moreover we define Yc as the union of Yf for the values of f chosen before. We
have a map π : Xc → Yc that is a geometric quotient.
Xs ⊂ Xc is obtaining by intersection with the locus of points with stabilizer of dimension
0. We define Y s = π(Xs).
We have that π−1(Y s) = Xs because π : Xc → Yc is a geometric quotient. Moreover we
have that π(Xc \Xs) = Yc \ Y s is closed in Yc thanks to property iii) of good quotients:
this implies that Y s is open in Yc and hence in Y . This proves the thesis.

Before moving on we recall the last example we made. In that case, we obtain the map

Xss = An \ {0} → Pn−1

(a1, . . . , an) 7→ [a1, . . . , an]

and the stability of every k-point of Xss is immediate.
The final part of this excursus on GIT projective quotient aims to state some criteria

to verify the stability of k-point.
The first criterion links the definitions of stable points in the affine and projective case.
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Proposition 3.36 (Criterion for stability). Let x be a semistable k-point. x is stable if
and only if the followings hold:

• G · x is closed in Xss,

• dimGx = 0.

Proof. First of all we prove that a stable point has a closed orbit in Xss. Let x be stable
and y ∈ G · x ∩Xss. Suppose that y /∈ G · x, hence the orbit G · y has dimension strictly
smaller than the orbit of x (proposition 3.3). This implies that y cannot be a stable point
because dimGx = dimG−dimG ·x > 0. The contradiction arise from the fact that y ∈ Xs

(because π(y) = π(x) ∈ Xs).
Conversely, let x ∈ Xss(k) be a point with closed orbit and dimGx = 0. Consider f ∈
O(X)G such that x ∈ Xf . Define Z = {z ∈ Xf | dimGx > 0}, it is closed on Xf thanks
to proposition 3.5.
Thanks to lemma 3.20 we have that there exists h ∈ O(Xf )G such that h|Z = 0 and
h|G·x = 1. Suppose that X = Proj A, we can write O(Xf ) = Spec (Af )0, hence h = h′

fn

such that h′ ∈ AG (thanks to proposition 2.49). We have that Xfh′ ∩ Z = ∅ and hence
every orbit in Xfh′ has zero dimensional stabilizer. This implies that every orbit in Xfh′

is closed, otherwise the closure contain an orbit of strictly lower dimension, but this is
impossible.

Consider now a linear G-action on X ↪→ Pn. We link (semi)stability of points in X to
the (semi)stability of a point in the cone An+1.

Let x ∈ Pn be a k-point of X, we call x̃ ∈ An+1 a lift of x if it is in the preimage of x
under the projection An → Pn. We have:

Theorem 3.37 (Topological criterion). Let x̃ ∈ An+1 be a non-zero lift of x. The follow-
ings hold:

• x is semi stable if and only if 0 /∈ G · x̃ ⊂ An+1,

• x is stable if and only if dimGx̃ = 0 and G · x̃ is closed in An+1.

Proof. We start with the fist statement. Suppose that x is semistable, there exists f ∈
R(X)G such that x ∈ Xf . We see easily that the constant function fG·x̃ 6= 0, this conclude
one implication. For the other side, we use proposition 3.20 with the closed sets {0} and
G · x̃: this provides an f ∈ R(X)G (that can be chosen homogeneous) such that x ∈ Xf .
We prove now the second statement. We can suppose (for both directions of the proof)
that x is semistable because it is obvious in both cases. We know that x ∈ Xss(k) is stable
if and only if G · x ∩Xss is closed and dimGx = 0. Let f ∈ R(X)G homogeneous be such
that x ∈ Xf , and consider the map

p : Z :=
{
z ∈ X̃ | f(z) = f(x̃)

}
→ Xf .

This is a finite map and p(G · x̃) = G · x, moreover the preimage of G · x is a finite union
of orbits in An with the same dimension (hence closed and disjoint, otherwise we can use
proposition 3.3). This proves the equivalence of the second thesis.

Observe that the previous result does not depend on the lift, hence the theorem before
is true for an arbitrary lift x̃.

This last proposition will be very useful in the next section:

Proposition 3.38. Let x and x̃ be as before. x is stable if and only if dimG · x = 0 and
φx̃ : G→ An is proper.
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Proof. We omit this proof, a reference is [GIT], proposition 2.2.
We only say that this proposition holds because there is an equivalence between closed
orbits and proper orbit maps.

3.3 The criterion for stability

The criteria for (semi)stability we stated are still difficult to handle. In this section, we
focus on a criterion that will help us to verify (semi)stability. The setting of this section
is as before: X is projective with a G-action equipped with a linearization.

The ideas in this section are inspired by the generalization of an easy situation: the
linear action of a subgroup of GLn+1 on Pn.

We fix again a notation we will use in this section: σ is the action of G on a projective
scheme over k X ⊂ Pn. We fix an embedding X ↪→ Pn and a linearization given by a
map G → GLn+1. We assume that G is reductive, sometimes we will repeat that on the
statements to underline the importance of this hypothesis.

We will see that the stability of a k-point can be verified by looking at the induced
action of one-parameter subgroups. This idea came from differential geometry and the
next remark, before that we introduce a straightforward definition.

Definition 3.39 (Induced action). Let H η−→ G be a homomorphism of algebraic groups.
The action of G on X induces an action of H:

H ×X (η,Id)−−−→ G×X σ−→ X.

Moreover, if G→ GLn+1 is a linearization, it induces a linearization H η−→ G→ GLn+1:

H × An+1 G× An+1 GLn+1×kAn+1 An

H ×X G×X GLn+1×X X

(η,Id)

(η,Id)
,

where the omitted maps are the obvious ones.

We can now state:
Remark 3.40. Let x be a k-point of X. Consider a subgroup H

i
↪−→ G, if x is a (semi)stable

point for the action of G we have that it is a (semi)stable point under the action of H.

Proof. If x is semistable respect toG, it exists f ∈ R(X)G homogeneous such that f(x) 6= 0.
x is hence semistable respect to H.

Let x be stable respect to G, using the caracterization given on corollary 3.38 we have
that φx̃ is proper and dimGx̃ = 0, where x̃ is a lift of x.
Consider the following:

H ×G Gx̃ Gx̃ Spec k

H G An

y

π2

π1
y

x̃

i φx̃
,

we notice that φx̃ ◦ i is the orbit map of x̃ respect to the action of H, this show that
Hx̃ = H ×G Gx̃. i is a closed immersion hence proper, this implies that φx̃ ◦ i is proper.
It remain to prove that dimHx̃ = 0. This is true because π2 is a closed immersion, hence
dimHx̃ ≤ dimGx̃ = 0.
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We could now ask if it is possible to find an implication in the inverse sense. Precisely,
we ask if it is enough to verify (semi)stability of point for suitable subgroups H ⊂ G to
prove the stability with respect to G.

It turns out we could verify stability via one-parameter subgroups.

Definition 3.41 (One parameter subgroup). Let G be an algebraic group. A group map
map λ : Gm → G is called a one-parameter subgroup.
For brievity we will simple refer to 1-Ps.
We say that λ is trivial if it is constant with value e.

This definition raise from the analogy between S1 and Gm. In differential geometry,
the homomorphism S1 → G are the one-parameter subgroups that are not injective.

Observe that, as in differential geometry, it is not true in general that λ is injective, we
will see that a non-trivial 1-Ps factorize by a closed immersion. This is the reason why we
call them subgroups.

Proposition 3.42. Let λ : Gm → G be a non-trivial 1-Ps we have that exists an homo-
morphism λ′ : Gm → G that is a closed immersion such that:

Gm G

Gm

n·

λ

λ′

where n· is the map Gm → Gm given, at level of k-points, by t→ tn.

Proof. First of all, let’s prove that the image is closed. Call Z the image of λ. We have
that Z is a constructible set and similarly to proposition 2.32 we can prove that it is
locally closed. Moreover, Z has a structure of algebraic group compatible with G. Z is
reduced (because Gm is reduced) and Z (with the reduced structure) is a subgroup of G
(we omit the easy verification with group laws). The inclusion map Z ↪→ Z is an open
immersion. Consider the union of the non-trivial cosets of Z in Z: we have that Z is the
complementary of this open set in Z, hence it is closed in Z. This proves that Z is closed
in G.
Consider now the map Gm → Z, it is a map between reduced groups on a closed field and
it is surjective. Hence Z is a quotient of Gm.
Let Y ⊂ Gm be the kernel of this morphism, this is on the form Spec k[t,t−1]

(f(t)) , beacuse Gm
has dimension 1. Consider the k-points of Y , these are all solutions of a polynomial whose
roots are a multiplicative group. This implies that every root has finite order, hence f can
only be a product of factors of the following kind: ti − 1, for i ∈ Z. Using compatibility
with multiplication is not difficult to show that f = tn − 1. It is easy to verify that

0→ Spec
k[t, t−1]

(tn − 1)
↪→ Spec k[t, t−1]

n·−→ Spec k[t, t−1]→ 0

is an exact sequence, for more details see [Mil17], chapter 7. This implies the thesis.

Definition 3.43. Let λ : Gm → G be a 1-Ps, we write λx : Gm → X for the orbit map of
a closed point x ∈ X under the action induced by λ.
With a slightly abuse of notation we write λx̃ : Gm → An+1 for the action induced by a
fixed linearization (clear from context) of σ.
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Example 3.44. We recall the corollary 2.48. This implies that a 1-Ps of GLn, up to a base
change, is defined by:

Gm → GLn

t 7→

t
k1 . . . 0
...

. . .
...

0 . . . tkn

 .

Where ki are integers. It is easy to see that the image of this map is closed. Define
k = gcd(ki), we have that the map factorize by k·. With the same notation of the previous
proposition can define a 1-Ps that is a closed immersion:

λ′ : Gm → GLn

t 7→

t
k1
k . . . 0
...

. . .
...

0 . . . t
kn
k

 .

Proposition 3.45. Let G be a linearly reductive group, X be a projective scheme and
suppose we have a linear action Gy X. For all x ∈ X(k), we have that:

x is G-semistable⇒ x is λ-semistable ∀ non-trivial 1-Ps λ of G;
x is G-stable⇒ x is λ-stable ∀ non-trivial 1-Ps λ of G.

Proof. Let λ be a 1-Ps, recalling the setting of the previous proposition, we have that λ′

is a closed immersion. Hence by remark 3.40 x is λ′-(semi)stable.
To conclude the proof it is enough to notice that the map Gm

n·−→ Gm is surjective (it
corresponds to an integer extension of rings). Hence x is λ (semi)stable if and only if it is
λ′ (semi)stable.

We would prove the vice versa, this is the aim of the next sections.

3.3.1 Limits and one parameter subgroups

Fix a one-parameter subgroup λ : Gm → G. Let x be a closed point of X, in order to verify
(semi)stability we have to deal with the closure of the orbit λx̃(Gm). For this purpose we
define a notion of limit, his utility will be soon clear.

As in the previous subsections, we will assume k is algebraically closed.

Definition 3.46. Let Y and Z be finite type schemes over k. Suppose that Z is separated,
y0 ∈ Y (k) is a closed but not open point (i.e. is not connected to the rest of the scheme)
and that we have a map f : Y \ {y0} → Z of k-schemes. We write

lim
y→y0

f(y) = z0

where z0 ∈ Z, if there exists a dashed arrow in the following diagram:

Y \ {y0} Z

Y Spec k

f

i
f

,
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such that f(y0) = z0.
If such z0 does not exist we say that the limit does not exist.
We can notice that, since Z over k is separated, if z0 exists it is unique. Furthermore z0 is
closed i.e. a k-point (because in these hypotheses the image of a closed point is closed).

Remark 3.47. With the same notation of the definition, we notice that if Z over k is proper,
this limit exists.

Remark 3.48. Suppose y0 as in the definition above, we have that y0 ∈ Y \ {y0}.
Let f be as below, for topological reasons we have that

lim
y→y0

f(y) ∈ f(Y ).

The reason why we have introduced the notion of limit will be clear with the following
example.

Consider the open immersion Gm ⊂ P1, where P1 \ Gm are two closed points that we
call 0 and ∞. Fix x ∈ X(k), we have:

Gm X

P1 Spec k

λx

i
λx

.

X over k is proper, hence we can extend the map to 0 and ∞ in a unique way.
Given that P1/k is proper and X/k is separated, we have that the image of P1 under

the diagonal map is closed. λx(Gm) ⊂ λx(P1), we have two possibilities:

• limt→0 λx(t) ∈ λx(Gm) and limt→∞ λx(t) ∈ λx(Gm). This means that λx(Gm) =
λx(P1) i.e. the orbit of x is closed,

• at least one between limt→0 λx(t) and limt→∞ λx(t) does not belong to λx(Gm). This
means that the orbit of x is not closed.

Consider now the situation where, thanks to a linearization of G, the action of Gm extend
to An+1. We know from corollary 2.48 that there exists a base e0, . . . , en ∈ kn+1 such that
the action (defined at level of k-points) is the following:

Gm × An+1 → An+1

(t,
∑

aiei) 7→
∑

triaiei.

Where ri ∈ Z are called weights.
An+1 is not proper, hence is not true that the orbit map φx̃ : Gm → An+1/k extends to P1

as before.
Anyway, It remains true the following:

Proposition 3.49. Let λ be a 1-Ps of G. Any point in the boundary λx̃(Gm) \ λx̃(Gm) is
equal to limt→0 λx̃(t) or limt→∞ λx̃(t).

Proof. Consider an affine chart An+1 → Pn+1, by composition we have a map Gm →
Pn+1. This extends to a map P1 → Pn+1: the image of this map is closed and hence
λx̃(Gm) \ λx̃(Gm) ⊂ An+1 ⊂ Pn+1 is the image of an element of P1. This conclude the
proof.
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We define now an important quantity for stability of points.

Definition 3.50 (Hilbert-Mumford weight). Let x̃ be a lift of x ∈ X(k). Using the same
notation as above, we define:

µ(x, λ) := −min {ri : xi 6= 0} .

This weight depends on the chosen linearization of the action, we have fixed it at the
beginning of the section. But it is clear that does not depend on the lift of x.

We have that:

Theorem 3.51. Let λ : Gm → G be a 1-Ps and x̃ be a lift of x; then:

• µ(x, λ) < 0 ⇔ limt→0 λx̃(t) = 0.

• µ(x, λ) = 0 ⇔ limt→0 λx̃(t) exists and is not 0.

• µ(x, λ) > 0 ⇔ limt→0 λx̃(t) does not exists.

Proof. Consider the action:

Gm × An+1 → An+1

(t,
∑

aiei) 7→
∑

triaiei.

Fix x̃ = (a0, . . . , an), the limit in 0 exists if the map

k[x0, . . . , xn]→ k[t, t−1]

xi 7→ triei

factorize by k[t], in this case the limit is given by the contraction of 0 ∈ Spec k[t]. From
these observation the thesis follows easily.

The union of these two results give us a criterion for stability under 1-Ps.

Theorem 3.52 (Critereon for stability for 1-Ps). Fix a linearization of the action Gy X.
Let λ : Gm → G be a 1-Ps; then:

• x ∈ X(k) is semistable for the action of Gm ⇔ µ(x, λ) ≥ 0 and µ(x, λ−1) ≥ 0.

• x ∈ X(k) is stable for the action of Gm ⇔ µ(x, λ) > 0 and µ(x, λ−1) > 0.

Where λ−1 : Gm
i−→ Gm

λ−→ G (here i is the inverse group map of Gm).

Proof. It follows easily from the topological criterion.

We are now ready for the general criterion.

3.3.2 Hilbert-Mumford criterion

In this section we will prove the following:

Theorem 3.53 (Hilbert-Mumford criterion). Suppose that k = k. Let G be a linearly
reductive group, X be a projective k-scheme and suppose we have a linear action Gy X.
For all x ∈ X(k), we have that:

x is G-semistable⇔ µ(x, λ) ≥ 0 ∀ non-trivial 1-PS λ of G.
x is G-stable⇔ µ(x, λ) > 0 ∀ non-trivial 1-PS λ of G.
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We start by introducing a bit of notation useful in the proof of the criterion.
We will refer to:

R := k[[t]] i.e. the formal power series
K := k((t)) = Frac(k[[t]]) i.e. the formal laurent series.

The introduction of R could lead us to the definition of "formal neighbourhood", we skip
this because is not useful for our purpose, anyway everything is well explained in [Har77].

The natural inclusion R ⊂ K induces a set teoretic map:

G(R) = Homk(Spec R,G) −→ G(K) = Homk(Spec K,G),

where G is an algebraic group. This map is a homomorphism of groups and an
inclusion. The former is obvious, to prove the latter consider the diagram:

Spec K G

Spec R Spec k.

i

Thanks to the valuative criterion of separateness (G is always separated, prop. 2.25), we
have that given a K-points it exists at most a unique R-points such that the diagram
commute. Consider the map Spec k → Spec R given by the map R→ k that send t to 0,
this define another map ω (by composition):

ω : G(R) −→ G(k)

Given f : Spec K → G that is also an R-point of G, it is easy to see that

lim
t→s

f(t) = ω(f),

where s is the closed point in Spec R.

Definition 3.54 (< λ >). Let λ be a 1-Ps, we define:

< λ >: Spec K → Gm
λ−→ G

where the first map is induced by inclusion k[t, t−1] ⊂ K.

We state now a theorem we will not proof, it will be central in the proof of the criterion.

Theorem 3.55 (Cartan-Iwahori decomposition). Let G be a reductive group over k, where
Char k = 0. We have that for every p ∈ G(K) there exists λ and b1, b2 ∈ G(R) such that:

p = b1· < λ > ·b2

viewed in the group G(K).

Before going on we give an easy example of this theorem:
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Example 3.56. Suppose G = GLn, the R-points are matrices with coefficients in R and
determinant in R∗. Similarly, the K-points are matrices with coefficients in K and deter-
minant not 0.

Let A be a K-point of GLn, there exists an element δ ∈ R such that δ ·A has coefficients
in R.

R is a principal ideal domain: thanks to Smith decomposition, there exist S and T
R-points such that

S δA T =

α1 · · · 0
...

. . .
...

0 . . . αn

 ,

where αi|αi+1. There exist xi ∈ R∗ such that δ · αi = tki · xi. We call X the diagonal
matrix with coefficients xi, we have:

A = S−1X

t
k1 · · · 0
...

. . .
...

0 . . . tkn

T−1 = S−1X < λ > T−1.

Where λ is the 1-Ps specified by ki in the given base. S−1X and T−1 are R-points: this
conclude the example.

We state now a slightly powerful version of the valuative criterion of properness.

Lemma 3.57. Let f : X → Y be a morphism of finite type, with X noetherian. f is
proper if for every complete discrete valuative ring A forming a commutative diagram

Spec Frac(A) X

Spec A Y

f

there exists a unique dashed arrow making the diagram commutative.

This lemma is proven in [EGAII] proposition 7.3.9 and 7.3.8.

Corollary 3.58. With the same notations of the previous lemma, suppose that Y is a
k-scheme. We have that f is proper if and only if for every square diagram

Spec K X

Spec R Y

f

there exists a unique dashed arrow making it commutative.

Proof. We have that R has to be a complete DVR that contain the field k. Using the
Cohen structure theorem, it is not difficult to see that R has to be k[[t]]; this proves the
corollary.

In order to prove the criterion, we will use corollary 3.38. The following result is the
core of the proof.

Proposition 3.59. Suppose that k = k. Fix a linearization of the action of a reductive
group G on a projective variety X. Let x be a k-point of X and fix a lift x̃. We have that:
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• φx̃ is not proper ⇒ there exists a non-trivial 1-Ps λ of G such that µ(x, λ) ≤ 0.

• 0 ∈ G · x̃ ⇒ there exists a non-trivial 1-Ps λ of G such that µ(x, λ) < 0.

Proof. Given that φx̃ is not proper, there exist maps η, µ such that the following diagram
commute (thanks to the previous corollary)

Spec K G

Spec R An+1

η

φx̃

µ

,

but it does not exist a dotted arrow. To avoid an heavy notation, we will write φx̃ ◦ η
instead of µ because we have the inclusion G(R) ⊂ G(K).
Due to the proposition 3.55 there exist ρ1, ρ2 in G(R) and a non-trivial 1-Ps λ such that

η = ρ1· < λ > ·ρ2.

Define bi = limt→s ρi(t) for i = 1, 2, these are two k-points.
Consider the map b−1

2 · λ · b2 : Gm → G given by composition with right and left multipli-
cation. We can write:

η = (ρ1 · b2) · (b−1
2 · < λ > ·b2) · (b−1

2 · ρ2) = (ρ1 · b2) · (< b−1
2 · λ · b2 >) · (b−1

2 · ρ2),

where the second equality follows immediately by the definition of < λ >. The reason why
we conjugate by b2 will be clear later.
For every k-scheme T we have an action at level of T points G(T ) × X(T ) → X(T ).
Moreover, given T → S a map of k-schemes, by functoriality we have maps X(S)→ X(T )
and G(S)→ G(T ) compatible with action. This allow us to see any S-point as a T -point.
For this reason the k-point x̃ can be seen as a R or K-point, thanks to the obvious map.
It is easy to verify that φx̃ ◦ η = σ̃(η, x̃) where x̃ is seen as K-point, from now on we will
avoid to specify σ̃ and we will simply use · . Merging this equation with the previous one
we have:

(ρ1 · b2)−1 · (φx̃ ◦ η) = (< b−1
2 · ·λ · b2 >) · (b−1

2 · ρ2) · x̃.

We choose now suitable coordinartes for An+1, such that the action of the 1-Ps (b−1
2 ·λ · b2)

is diagonalizable.
Moreover, a Spec A-point f of An+1 = Spec k[x0 . . . , xn] is defined by the image of xi in
A, we call these Xi(f) ∈ A. Hence we have

Xi((ρ1 · b2)−1 · (φx̃ ◦ η)) = Xi((< b−1
2 · ·λ · b2 >) · (b−1

2 · ρ2) · x̃),

for all i ∈ 0, . . . , n.
We remember now that a diagonalized action of Gm on An+1 is defined by the ring map

k[x0, . . . , xn]→ k[x0, . . . , xn]⊗k k[t, t−1]

xi 7→ xi ⊗ tri ,

where ri are the weight of the action. Thanks to the choice of the basis we have

Xi((ρ1 · b2)−1 · (φx̃ ◦ η)) = triXi((b
−1
2 · ρ2) · x̃),

for all i ∈ 0, . . . , n. The left hand side is an element of R (there is an R-point of G that
act on an R-point of An+1), hence Xi((b

−1
2 · ρ2) · x̃) ∈ t−riR.
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Consider the k-algebra map R → k that send t to 0, it sends ρ2 to b2, hence it sends the
R-point (b−1

2 · ρ2) · x̃ to x̃ (thanks to the compability of the action). This implies that

Xi((b
−1
2 · ρ2) · x̃) = Xi(x̃) + tzi,

where zi ∈ R, for every i ∈ 0, . . . , n.
Hence we have ri ≥ 0 whenever Xi(x̃) 6= 0, this implies that

µ(x, b−1
2 λb2) = −min {ri|ri weight such that Xi(x̃) 6= 0} ≤ 0.

The second point follows similarly, suppose 0 ∈ G · x̃, there exists a K-point of G η such
that

lim
t→s

φx̃ ◦ η(t) = 0.

With the same steps of the previous point, we have again that

Xi((ρ1 · b2)−1 · (φx̃ ◦ η)) = triXi((b
−1
2 · ρ2) · x̃).

This time, the R-point at left hand side has coordinate in tR. Hence Xi((b
−1
2 · ρ2) · x̃) ∈

t−ri+1R, we conclude as before.

We recall the criterion:

Theorem 3.60 (Hilbert-Mumford criterion). Suppose that k = k and Char k = 0. Let
G be a linearly reductive group, X be a projective k-scheme and suppose we have a linear
action Gy X. For all x ∈ X(k), we have that:

x is G-semistable⇔ µ(x, λ) ≥ 0 ∀ non-trivial 1-PS λ of G.
x is G-stable⇔ µ(x, λ) > 0 ∀ non-trivial 1-PS λ of G.

Proof. It follows immediately from the propositions 3.45 and 3.59.





Chapter 4

Intermezzo: Hilbert and Picard
schemes

This chapter is devoted to the introduction of Hilbert and Picard schemes. We will outline
the construction of Hilbert scheme and in particular we will describe the immersion in the
Grassmannian. Moreover, we will define Picard scheme. This chapter aims to state some
classical results we will use in the next chapter. For this reason proofs are substantially
omitted. A reference for the constructions is [FGAexp]. First of all, we start recalling the
example of Grassmannian in chapter 1.

4.1 Plücker embedding

We recall briefly what the Grassmannian functor is:

Gr(S) := {exact sequences of locally free sheaves on S
0→ K → OnS → Q→ 0} / ∼

Gr(h : S → T ) := h∗ : Gr(T )→ Gr(S).

Before stating the embedding, we define:

Definition 4.1 (Projective space). let V be a vector space on k, we define:

P(V ) = Proj Sym(V ).

Where SymV has a natural structure of algebra on k.
In such a way, k-points of P(V ) are equivalence classes of nonzero linear forms on V .

In a certain sense, the algebraic projectivization P(V ) is dual to the standard one. We
define:

Proposition 4.2 (Algebraic Plücker embedding). Consider the map defined at level of
k-points as:

ι : Gr(d, V )→ P

(
d∧
V

)

(q : V →W ) 7→ [

d∧
q :

d∧
V →

d∧
W ],

it is an element of the dual because
∧dW ' k.

This map is a closed embedding between schemes.

57
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4.2 The Hilbert scheme

The Hilbert scheme is roughly a scheme that parametrizes the closed subset of Pn, it is a
fine moduli space of a functor. We give a brief overview of the construction. The Hilbert
scheme is a particular case of Quot scheme, we avoid handling the general definition despite
it is easy to generalize the construction.

Definition 4.3 (Hilbert functor). Fix a base scheme S, consider the functor Hilb :
Sch/k → Set:

Hilb(T ) := {Closed S-subschemes Y ⊂ PnS ×S T | Y → T is flat}
Hilb(g : T → V ) := g∗.

The functor is well defined because base change of closed immersion and flat maps are still
respectively closed immersion and flat maps.
Alternatively, it is possible to define the functor as

Hilb(T ) =
{
Coherent quotient sheaf q : OPnS×T → F such that F is flat over T

}
/ ∼,

where q : OPnS×T → F is equivalent to q′ : OPnS×T → F
′ if there exist an isomoprhism of

OT -sheaves α : F → F ′ such that

OPnS×T F 0

OPnS×T F ′ 0

α

commutes.

It is not difficult to check that the two descriptions are equivalent.
We are interested in the case S = Spec k, from now on we will consider only schemes

over k.
We remember the following definition:

Definition 4.4 (Hilbert polynomial). Let F be a coherent sheaf over Pn, we can define
the Hilbert polynomial as:

Φ(m) = χ(F(m)) =
n∑
i=0

dimkH
i(Pn,F ⊗OPn(m)),

where the dimensions are finite because F is coherent over a projective scheme.

We have that the following holds:

Theorem 4.5 (Invariance of Hilbert polynomial by flat families). Let F be a coherent
sheaf over PnT and suppose that F is flat over T .
Consider now the map pt : Pn×k Spec k(t)→ Pn×k T where t is a point of T . Ft = p∗tF is
a coherent sheaf over Pn that has an Hilbert polynomial Φt(x). We have that the function

T → Q[x]

t 7→ Φ(m)

is locally constant.
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This say that the functor naturally decompose:

Hilbn =
∐

p(x)∈Q[x]

Hilbp(x)
n .

Our focus shift now to represent Hilbp(x)
n . A subscheme of Pn is simply defined by

an homogeneous ideal sheaf I(X) ⊂ k[x0, . . . , xn], we can notice that there exists a big
enought m such that I(X)m generate I(X)l≥m as k[x0, . . . , xn]-module. This implies that
the subscheme X it is uniquely defined by a subspace of k[x0, . . . , xn]m (i.e. homogeneous
polynomials of degree n). The next theorem is a stronger result in this sense.

Theorem 4.6 (m-regularity). Fix a polynomial p. There exists an m0 such that for every
m ≥ m0 and every X ⊂ Pn closed subset with Hilbert polinomial p, we have that:

• I(X)m generate I(X)≥m as k[x0, . . . , xn]-module.

• H i(X, I(X)(m)) = 0 and H i(X,OX(m)) = 0 for all i > 0.

Let X ⊂ Pn be a closed subset with Hilbert polynomial p, the map

resX,m : H0(Pn,O(m))→ H0(Pn, i∗OX(m))

is surjective and dimkH
0(Pn, i∗OX(m)) = p(m).

The latter follows from the second point of the last theorem, the former follows from
the long exact sequence of 0→ I(X)→ OPn → i∗OX → 0.

This lead us to define an embed Hilbp(x)
n in the Grassmannian functor Gr(l, s). Where

l = dimk k[x0, . . . , xn]m =
(
m+n
m

)
and s = p(m) for a big enough m.

We need to generalize this idea to families, the details can be found in [FGAexp], section
5.5.

Proposition 4.7. Consider a family given by the quotient q : OPnS×T → F where F is flat
on T and the Hilbert polynomial of F is p. Let G be the kernel of q and πT : PnT → Spec T
the natural map. We have the following exact sequence:

0→ πT∗G(m)→ πT∗OPnT (m)→ πT∗F(m)→ 0

of locally free sheaves with rkπT∗OPnT (m) =
(
m+n
m

)
and rkπT∗F(m) = p(m), for an uniform

m big enough.
Moreover, via pullback π∗T it is possible to recover the initial F and G because there is a
natural map of exact sequences:

0 π∗TπT∗G(m) π∗TπT∗OPnT (m) π∗TπT∗F(m) 0

0 G(m) OPnT (m) F(m) 0

.

Thanks to the previous proposition we have easily:

Proposition 4.8 (Embedding in Gr). We have a natural transformation of functors:

α(T ) : Hilbp(x)
n (T )→ Gr

(
p(m),

(
m+ n

m

))
(T ){

family q : OPnT → F
}
7→
{
πT∗(q(m)) : πT∗OPnT (m)→ πT∗F(m) over T

}
The morphism is injective thanks to the second part of the previous proposition.
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We know that Gr is representable. We defined this map in order to prove the repre-
sentability of the Hilbert scheme exploiting the fact that Gr is representable. In particular
we will have that a closed subscheme of the Grassmannian represent it.

With this purpose we introduce:

Definition 4.9 (Relatively representable). Given two contravariant functors F,G : C →
Set we say that a map β : F → G is representable if the following holds. For every U ∈
Ob(G) and any element ξ ∈ G(U) such that the functor Hom(_, U)×G F is representable,
where × is the fibred product of functors.
If the map β is clear from the context, we say that F is relatively representable over G.

We would use the following:

Proposition 4.10. If β : F → G is representable and G is a representable functor, we
have that F is a representable functor.

In our case, we have that:

Proposition 4.11. α : Hilbp(x)
n → Gr

(
p(m),

(
m+n
m

))
is representable, and there exists a

locally closed k-subscheme

Hilbp(x)
n ⊂ Gr

(
p(m),

(
m+ n

m

))
for big enough m.

Prove this proposition would take us too far afield, a reference is [FGAexp], section
5.5.6. We will briefly state that is a closed embedding.

From the first section, we know the Plücker embedding:

Gr
(
p(m),

(
m+ n

m

))
↪→ P(

p(m)∧
k[x0, . . . , xn]m)

Thanks to the valuative criterion for properness it is possible to prove that Hilbert
schemes are proper, hence we have:

Proposition 4.12. The map

e : Hilbp(x)
n ↪→ P(

p(m)∧
k[x0, . . . , xn]m)

is a closed immersion, hence Hilbert schemes are projective.

The last question we answer in this section is:

Problem 4.13. Given a subscheme of Pn with Hilbert polynomial p(x), what is the corre-
spondent k-point of Hilbp(x)

n through the embedding e?

At level of k-points we have:

Hilbp(x)
n (Spec k)→ Gr

(
p(m),

(
m+ n

m

))
(Spec k)

{X ⊂ Pn with Hilbert polynomial p(x)} 7→
{
resX,m : H0(Pn,O(m))→ H0(Pn, i∗OX(m))

}
Hence we have:

Hilbp(x)
n (Spec k)→ P(

p(m)∧
k[x0, . . . , xn]m)

{X ⊂ Pn with Hilbert polynomial p(x)} 7→


p(m)∧

resX,m :

p(m)∧
H0(Pn,O(m))→ k

 .
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4.3 The Picard scheme

In this section we will introduce the Picard scheme, we will use it in the first part of the
next chapter. The standard reference for the construction is [FGA]. Another reference is
[GIT], section 0.4 (d).

Again we suppose to work on Sch/k.

Definition 4.14 (Picard functor). FixX an S-scheme. Define the functor PicX : Sch/S →
Set as:

PicX/S(T ) :=
{Group of invertible sheaves L on X ×S T}

{Subgroup of π∗2(K), where K is an invertible sheaf on T}
PicX/S(g : T → T ′) := g∗.

Where g∗ is the pullback and π2 : X ×S T → T is the projection. We omit to verify that
the functor is well defined.

It easy to see that:

Remark 4.15. PicX/S is a group functor, with the operation of tensoring sheaves.

We have a more suitable description of Pic functor in a particular situation:

Proposition 4.16. Suppose that there exists σ : S → X a section of π : X → S, we can
write the Picard functor as follows:

PicX/S(T ) ' {(L,Ψ) |L is an invertible sheaf on X ×S T

and Ψ : (σ ◦ f, 1T )∗(L)
∼−→ OT

}
PicX/S(g : T → T ′) = g∗.

Where g∗ is the pullback and where f : T → S.

This last formulation causes the automorphism group of (L,Ψ) to be trivial. It turns
out that if such a section exists, the functor is representable. Moreover if such a section
does not exist, we can still recover the following:

Theorem 4.17. Let X → S be flat and projective, whose geometric fibres are varieties.
There is a unique PicX/S with a natural transformation φ : PicX/S → HomS(_,PicX/S),
such that:

• φ(T ) is injective for all T .

• φ(T ) is surjective when X ×S T → T admits a section.





Chapter 5

Construction of Mg for g ≥ 2

In this chapter we will perform the final construction. finding a coarse moduli space for
the functorMg that we recall:

Mg(S) = {proper and flat families f : X → S whose geometric fibres are:
smooth, connected, of dimension 1 and genus g}

Mg(g : T → S) = g∗.

We use the construction of Hilbert scheme we recall in chapter 4. The idea of the
construction follows what was done by Mumford and then Gieseker. In particular, we will
verify the stability of curves using Gieseker’s criterion.

The chapter is naturally split into two parts. In some sense, the first part verifies that
the scheme that should be the coarse moduli space verify the universal property (the second
request in definition 1.13). The second part aims to verify the first request in definition
1.13, this is equivalent to verifying that a particular quotient is geometric, i.e. verify the
stability of closed points.

The two fundamental references we use are [GIT] and [Gie82], moreover we will use a
result in [Mum77]. The reader can found the construction also in [HM98], chapter 5. We
will use classical results about algebraic curves, a reference is [Har77].

In the whole chapter k will be an algebraically closed field and Char k = 0.

5.1 The idea of the construction

In the first chapter we constructed the moduli space of elliptic curves with the help of a
marked point. We did not specify why fixing points on curves is useful to construct moduli
space but, in general, the question is strictly related to line bundles.

Usually points are fixed to define a specific very ample line bundle that gives an em-
bedding in Pn. This allows us to see the curve as a point in a suitable Hilbert scheme.
This is the standard technique to constructMg,n.

In our case, the embedding is provided in a different way. Let C be a connected, proper,
smooth curve of genus g ≥ 2 on k (from now on, simply a curve). We use the canonical
bundle that is ample, hence a big enough power defines an embedding.

Before going on we recall some essential classical results.

Theorem 5.1 (Riemann-Roch and Serre duality). Let L be a line bundle on C, a curve
over k. The Riemann-Roch formula state that:

dimH0(C,L)− dimH1(C,L) = 1− g + degL.
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The serre duality say that there is an isomorphism H1(X,L) ' H1(X,KC ⊗ L∗)∗ (where
L∗ is the dual of L), these two implies that:

dimH0(C,L)− dimH0(C,KC ⊗ L∗) = 1− g + degL.

Where KC is the canonical bundle on C.

Theorem 5.2. Let C be a connected projective curve on Spec k of genus g. Suppose L→ C
a line bundle. Fix a basis σ0, . . . , σn of H0(C,L) (of dimension n+ 1). It defines a map:

φL : C → Pn = P(H0(C,L))

x 7→ (σ0(x), . . . , σn(x)).

If deg(L) ≥ 2g + 1, the map is a non-degenerate embedding (i.e. L is very ample).

Proposition 5.3. We have that deg(KC) = 2g − 2. Hence if g ≥ 2 the line bundle K⊗vC
is very ample for all v ≥ 3.

Proof. degK⊗vC = v · (2g − 2) ≥ 6g − 6 ≥ 2g + 1 (if g ≥ 2).

In this way we can choose a line bundle that provides an embedding without fixing
points.

Let C be a curve of genus g ≥ 2. The embedding provided by K⊗vC in Pn has degree
deg(K⊗vC ) = v(2g− 2) and the dimension of the projective space is n = dimH0(C,Ωv

C/k)−
1 = (2v − 1)(g − 1)− 1.

The degree and genus determine the Hilbert polynomial of a curve, that is:

p(x) = (2xv − 1)(g − 1).

Hence, fixed a basis of H0(C,K⊗vC ), we can view the curves as points in the Hilbert
scheme Hilbp(x)

n . Changing the basis of K⊗vC we obtain a different curve in Pn that is
conjugated to the previous one under the natural action of GLn+1 on Pn.

Consider now the subscheme Hv ⊂ Hilbp(x)
n that parametrize smooth curves embedded

in Pn viaKv
C (it is not obvious that this exists, we will prove that in the next section). Every

curve of genus g is a k-point of Hv by construction. Moreover, two k-points of Hilbp(x)
n

represent the same curve if and only if they are conjugated by an element of GLn+1.
The best candidate for our moduli space Mg is hence a quotient of Hv by GLn+1. We

ask if every point of Hv is stable under the action of GLn+1 because we need an orbit
space.

The answer to this question concern the second part of this chapter. To verify the
stability we will follow the proof made by Gieseker.

This approach cannot work in dimensions 0 and 1 because the canonical bundle has a
non-positive degree, hence it is not ample.

5.2 The action of GLn+1 on Hilbert schemes

The functor GLn+1 : Sch/k → Set act on Hilb by an affine base change, as follow:

σ(T ) : GLn+1(T )×Hilbp(x)
n (T )→ Hilbp(x)

n (T )

{f ∈ Hom(T,GLn+1)} ,
{
OPn×T

h−→ F
}
7→
{
f
∗OPn×T

f
∗
h−−→ f

∗F
}
,
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where f is defined as follows. f induce a map An+1
T → An+1

T that factorize through PnT : in
this way we have f : PnT → PnT . We omit to verify that it is well defined and that it is an
action.

Given that the two functors are both representable, we have that it induces an action
on Hilbp(x)

n .
In order to explicit it we extend the morphism to the functor

Hom

_,P

p(m)∧
k[x0, . . . , xn]m

 ,

we omit the easy verifications. It is clear that the action is (we describe it at level of
k-points):

GLn+1×P

p(m)∧
k[x0, . . . , xn]m

→ P

p(m)∧
k[x0, . . . , xn]m


(g, [q1 ∧ · · · ∧ qp(m)]) 7→ [g · q1 ∧ · · · ∧ g · qp(m)].

5.3 The functor Mg as quotient of Hv

We would like to find a functor Hv that represent smooth curves not-degenerately embed-
ded in Pn via the canonical bundle at some power v. Then define a transformation that
forgot about the immersion in Pn:

p : H(S)→Mg(S)

{a family Γ ⊂ S × Pn} 7→ {Γ→ S} .

If such a functor exists, we can also define an action of GLn+1 on Hv such that the forgetful
transformation results invariant. Moreover, we would like that Hv is representable i.e. of
the form Hom(_, Hv). We fix p(x) = (2xv−1)(g−1) as before and n = (2v−1)(g−1)−1,
we have:

Theorem 5.4. Fix v ≥ 3. There exists a locally closed immersion Hv ⊂ Hilbp(x)
n such that

any map f : S → Hilbp(x)
n factor through Hv if and only if the followings are satisfied:

1. the closed subscheme i : Γ ⊂ S×Pn induced by the pullback of the universal family is
that π : Γ→ S is smooth, (obviously proper,) and whose geometric fibre are connected
curves of genus g,

2. i∗OS×Pn(1) is isomorphic to
(
ΩΓ/S

)v ⊗ π∗(L). Where L is an invertible sheaf of S,

3. for every k-point of S, we have that Γs ⊂ Pn is not degenerate.

Hence we define Hv to be the functor determined by the three condition: it is repre-
sentable by Hv.

We give a sketch of the theorem’s proof, a reference is [GIT].

Proof. Basically we add the conditions one for time and we verify if there exists a subscheme
of Hilbp(x)

n such that the map factorize.
We start with the smoothness of Γ→ S: thanks to the proposition 1.1 and 2.1 of [SGA2]
we have that there exists an open subset U1 ⊂ Hilbp(x)

n that satisfy the property.
Moreover, the locus of connected geomeric fibres is open, thanks to [Stacks, Tag 03GX].

https://stacks.math.columbia.edu/tag/03GX
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This concludes the first request.
Consider Γ1 ⊂ U1 × Pn induced by the pullback of the universal family. It is smooth,
proper and with connected geometric fibres: thanks to theorem 4.17 we can construct
the Picard scheme PicΓ1/U1

. The maps Hom(U1,PicΓ1/U1
) are in bijecition with the line

bundles on Γ1 up to a pullback of a line bundle on U1. Consider the line bundle induced on
Γ1 by OPn(1), it corresponds to a map λ : U1 → PicΓ1/U1

. Similarly (ΩΓ1/U1
)v corresponds

to ωv : U1 → PicΓ1/U1
. We would find now a subscheme U2 ⊂ U1 such that the maps

U2 ↪→ U1
ωv

−→ PicΓ1/U1 and U2 ↪→ U1
λ−→ PicΓ1/U1 are equal, i.e. the line bundle induced

by OPn(1) and (ΩΓ1×U2/U2
)v are isomorphic up to a pullback of a line bundle on U1. The

scheme we need is just the following fibred product (where ∆ is the diagonal map):

U2 U1

PicΓ1/U1
PicΓ1/U1

×U1 PicΓ1/U1

y
(λ,ωv)

∆

,

Given that PicΓ1/U1
is separated (we refer to [FGAexp] for a proof of this), ∆ is a closed

immersion, hence U2 is a closed subscheme of U1. The subscheme U2 is therefore what
we request for the second condition and η : Γ2 = Γ1 ×U1 U2 → U2 is the pullback of the
universal family.
It remains the third request. Let L be the line bundle induced on Γ2 by OPn(1), we have
a natural map of OU2 sheaves:

H0(Pn,OPn(1))⊗OU2

h−→ η∗L.

These sheaves have dimension n+ 1, call F the cokernel of h.
The base change with a k-point give us a map of k vector spaces of dimension n+ 1:

H0(Pn,OPn(1))
hs−→ H0(Γs,Ω

v
Γs/k

),

where the base change of η∗L is H0(Γs,Ω
v
Γs/k

) because H1(Γs,Ω
v
Γs/k

) = 0. The thesis
follows considering the open set where F restrincts to the sheaf 0.

The subfunctor Hv is invariant under the action of GLn+1 because the requirements in
the previous proposition are invariant. Hence we can restricts the action to Hv:

σ : GLn+1 ×Hv → Hv.

Given that the functor Hv is representable, we have an action of schemes GLn+1×Hv →
Hv.

We define the forgetful transformation p : Hv →Mg as said before: obviously it is well
defined and we have that the following commutes:

GLn+1 ×Hv Hv

Hv Mg

σ

p2 p

p

,

where p2 is the projection on the second factor.
It turns out that the the quotient functor is not our moduli spaceMg.
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Remark 5.5 (quotient functor). We define

p′ : Hv →M′g,

the quotient of the functor Hv via the action of GLn+1.
Hence there exists a map I such that

Hv
p′−→M′g

I−→Mg

is the map p.
We avoid proving this remark, it follows by easy set theory. Despite I is not an

isomorphism of functor, we have thatMg is a sort of sheafification ofM′g:

Proposition 5.6. The map I(S) :M′g(S)→Mg(S) is injective for every S ∈ Sch/k. For
every S and every α ∈Mg(S) there exist a open cover {Ui} of S such that α|Ui

∈Mg(Ui)
is in the image of I(Ui) for every i.

Proof. Consider φ1, φ2 ∈ Hom(S,Hv) and suppose that the induced families Γ1 ⊂ S × Pn
and Γ2 ⊂ S × Pn are isomorphic over S:

Γ1 Γ2

S

ω2

Ψ

ω1

Where Ψ is an isomorphism. Consider the diagram

Γ1 S × Pn Pn

S

ω1

p2

p1 ,

and the analogous one for Γ2. We have natural maps of sheaves over S:

H0(OPn(1))⊗OS
h1−→ ω1∗(OΓ1 ⊗OPn(1))

H0(OPn(1))⊗OS
h2−→ ω2∗(OΓ2 ⊗OPn(1)).

The second condition in the previous proposition assures that the sheaves at right-hand
sides are locally free sheaves. Moreover, the third condition says that, under base change
with a k-point s, (hi)s are isomorphisms: this implies that hi are isomorphisms.
Recall the notation P(F) = Proj (SymF). The map Ψ∗ : (ΩΓ2/S)v → (ΩΓ1/S)v give us an
isomorphism:

S × Pn = P
(
H0(OPn(1))⊗OS

)
= P

(
w2∗((ΩΓ2/S)v)

)
' P

(
w2∗((ΩΓ1/S)v)

)
= P

(
H0(OPn(1))⊗OS

)
= S × Pn.

The map has to be induced by the action of GLn+1: it is defined by an element β ∈
Hom(S,GLn+1). From this follows that β · φ1 = φ2.
We give only a sketch for the second thesis. Consider ω : Γ → S and fix an open cover
{Ui}I of S such that ω∗((ΩΓ/S)v)|Ui

are free sheaves for all i.
This implies that we can focus on the situation where ω∗((ΩΓ/S)v) is free. We call for
brevity Ev = ω∗((ΩΓ/S)v). We need a closed immersion:

Γ P(Ev)

S

,
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If we base change with a k-point s ∈ S the thesis is a matter of classical algebraic geometry
because v ≥ 3. The point is that we can extend it in a neighbourhood of s. It remains
to verify that it defines a closed immersion and that is a Ui valued point of Hv. For the
details we refer to [GIT] proposition 5.2.

We are now ready to state the last theorem of this section:

Theorem 5.7. For every v ≥ 3, a geometric quotient of Hv by GLn+1 is a coarse moduli
space ofMg.

Proof. Thanks to Yoneda’s lemma, there is a canonical bijection between natural transfor-
mations ψ′ :M′g → Hom(_, N) where N ∈ Sch/k and GLn+1-invariant maps f : Hv → N
such that:

Hom(_, Hv)

M′g Hom(_, N)

p′
f∗

ψ′

commutes.
We would like that a canonical bijection holds also between GLn+1-invariant map f :
Hv → N and Mg → Hom(_, N): this is a straightforward application of the previous
proposition. Consider the diagram:

Hom(_, Hv)

M′g Hom(_, N)

Mg

p
f∗

ψ′

I
ψ

.

Given Ψ there exists a unique f again for Yoneda’s lemma, and obviously it is GLn+1

invariant. Moreover the converse holds: for every invariant map f there exists a unique
natural transformation ψ such that the diagram below commutes. Uniqueness follows from
the injectivity of I and to construct it is enough to apply the previous proposition with
S = Hv and glue the morphisms Ui → N .
This implies that a categorical quotient π : Hv → Q satisfy the second request in definition
1.13 and we have η :Mg → Hom(_, Q). It is now obvious that η(Spec k) is an isomorphism
if and only if π is an orbit space at level of k-points: this is satisfied if π is a geometrical
quotient.

5.4 Smooth curves are stable points

To conclude the construction we will use theorem 5.7. It is enough to study the stability
of closed points of Hv in order to obtain that the categorical quotient is geometric.

In the definition 3.33 we require that stabilizers of stable points have to be zero-
dimensional. In our case GLn+1 act on projective space, so the diagonal matrixes act
trivially. This is not a problem because we can simply consider the action of the subgroup
SLn+1.
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Remark 5.8 (Action of SLn+1). Consider the action on P
(∧p(m) k[x0, . . . , xn]m

)
defined

by the subgroup i : SLn+1 ↪→ GLn+1:

SLn+1×P

p(m)∧
k[x0, . . . , xn]m

 σ◦(i,Id)−−−−−→ P

p(m)∧
k[x0, . . . , xn]m

 .

The categorical quotient over GLn+1 exists if and only if there exists the categorical quo-
tient over the subgroup SLn+1, in that case they coincide.
Hence the quotient by GLn+1 is geometrical if and only if that holds for for the action of
SLn+1.

Proof. The action of the diagonal matrices is trivial. From this and the hypothesis k = k
follows the thesis.

From now on we will consider the action of SLn+1. We define:

Definition 5.9 (Hilbert stability). Let X ⊂ Pn be a closed scheme, for every m it repre-
sents a point [X]m ∈ P

(∧p(m) k[x0, . . . , xn]m

)
defined by resmX .

We say that X is Hilbert-stable if there exists M such that [X]m is a stable k-point under
the action of SLn+1 for m ≥M .

We will use the Hilbert-Mumford criterion to verify the stability of points. The purpose
is therefore verifying the stability via 1-Ps: this is a matter of weight of Gm-representation.
In particular, fixed a k-point x of P

(∧p(m) k[x0, . . . , xn]m

)
, we would like to compute

µ(x, λ) for every 1-Ps λ.

Proposition 5.10 (1-Ps of SLn). Let λ : Gm → SLn be a 1-Ps. There exists a base change
such that this map can be write as

Gm → SLn

t 7→

t
k1 . . . 0
...

. . .
...

0 . . . tkn

 ,

where ki are integers such that
∑n

i ki = 0.

Proof. A 1-Ps of SLn is, by composition, a 1-Ps of GLn. Thanks to corollary 2.48 and
asking that the determinant of matrices is 1 we conclude easily.

Fix a 1-Ps of SLn+1, we would like to find a suitable base of the cone space

p(m)∧
k[x0, . . . , xn]m → P

p(m)∧
k[x0, . . . , xn]m

 .

First of all we perform a change of basis in such a way that the action of Gm on
Spec k[x0, . . . , xn] is diagonal. We call wi the weigh of xi for 1 ≥ i ≥ n. There is a natural
weighted basis for

∧p(m) k[x0, . . . , xn]m.

Bm =
{ ∏

xrii | where
∑

ri = m
}

is a basis for k[x0, . . . , xn]m. Define YI :=
∏
xrii where I = (r0, . . . , rn) is a multi index.
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Gm act diagonally on k[x0, . . . , xn]m with weights w′I =
∑
wi · ri respect to the basis

Bm.
Fix an arbitrary total order on indexes I (e.g. a monomial one, but is not relevant),

we define:

Zm,p(m) =
{
YI1 ∧ · · · ∧ YIp(m)

) | YIk ∈ Bm are distinct and indexes are ordered
}
.

This is obviously a basis of
∧p(x) k[x0, . . . , xn]m. Again the action of Gm is diagonal, we

call w′′I1,...,Ip(m)
=
∑

iw
′
Ii

the weights of YI1 ∧ · · · ∧ YIp(m)
).

Starting from a weighted basis of An+1 we have constructed a weighted basis for∧p(x) k[x0, . . . , xn]m.
Fix a closed subscheme X ⊂ Pn, this provide a k-point [X]m = [Q] of

P

p(m)∧
k[x0, . . . , xn]m

 ,

that corresponds to a map resmX : k[x0, . . . , xn]m → H0(X,OX(m)). Consider a lift Q and
write in in the basis Zm,p(m). From chapter 3 we know that the stability is verified looking
at the weights of the elements of Zm,p(m) that show up in Q.

The Plücker embedding says that an element z ∈ Zm,p(m) show up in Q if and only if
the images of the monomials contained in z through resmX are a basis of H0(X,OX(m)). If
such a situation occurs, we say that the set of monomials is a B-base and the weight of z
is the B-weight. This gives a new description for the stability of a point:

Lemma 5.11. [X]m is stable (semistable) if and only if for every choice of a weighted basis
of An+1 (i.e. a choice of a 1-Ps λ of SLn) there is a B-base with negative (non positive)
B-weight.

Proof. The proof is a straightforward application of Hilbert-Mumford criterion.

We can reformulate this proposition in a more suitable way, introducing filtrations.

Definition 5.12 (Weighted filtration). Let V be a vector space, a weighted filtration F is
a collection of {(Vi, wi)}0≥i≥dimV−1=n such that

V =V0 ) V1 ) · · · ) Vn ) 0

w0 ≥ w1 ≥ · · · ≥ wn,

where wi ∈ Q.

A weighted basis define a filtration:

Definition 5.13 (Compatible filtration). Let e0, . . . , en be a basis of V and fix a weight
wi ∈ Q for every element of the basis, up to a permutation we suppose that wi are ordered.
Consider w ∈ Q, we define

Uw = span {ei | wi ≤ w} .

Observe that Uw ⊂ Uv if v > w. Obviously for w = wi there is a “jump” in dimension (i.e.
dimUwi − dimUw > 0 where w < wi). Suppose that wi are all distinguished: the jumps
are of height 1, this define the filtration

V = Uw0 ) Uw1 ) . . . ) Uwn ) 0

w0 ≥ w1 ≥ . . . ≥ wn.
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We say that the weight of an element v ∈ V (we write w(v)) is the minimum wi such that
v ∈ Vi.

Suppose now that the wi are not all distinct. There are jumps of dimension bigger than
1, we can define a filtration making an arbitrary choice on ordering elements of the basis
with the same weight. We could define the weighted filtration:

V = Uw0 = span {ei | i ≥ 0}) Uw1 = span {ei | i ≥ 1}) . . .) Uwn ) 0

w0 ≥ w1 ≥ . . .≥ wn.

The arbitrary choices we made are not relevant in our treatment. Again, we define the
weight of v ∈ V as done above.

We can moreover define:

Definition 5.14 (Weight of a filtration). Given a weighted filtration F of V , we define
the total weight of F as the sum of weights in the filtration (counted with multiplicity).

The next remark gives the idea of why having a weighted filtration on a space is not
as strong as a weighted base.
Remark 5.15. Suppose that we have a weighted filtration (even with distinct weights)
induced by a weighted basis. From this, we cannot recover the initial weighted basis we
started with because there exist multiple weighted bases that are compatible.

The benefit of this new formalization is that filtration go down to the quotient in a
canonical way.

Definition 5.16 (Weighted filtration on the quotient). let φ : V →W be a surjective map
o vector space and suppose to have a weighted filtration Vi on V . Consider

W = φ(V0) ⊇ φ(V1) ⊇ · · · ⊇ φ(Vn) ⊇ 0,

Up to delete repeated spaces, this define a weighted filtration were the weight of an element
w ∈W as minv∈φ−1(w)w(v).

Coming back to our situation, we have that a weighted base of An+1 (seen as vec-
tor space) define a weighted filtration F on it. This induces a weighted filtraiton on
k[x0, . . . , xn]m and hence on H0(X,OX(m)) for every projective variety X of Hilbert poli-
nomial p(x). We define wF (m) (where the dipendence on m is explicit) as the total weight
of the induced filtration on H0(X,OX(m)).

We reformulate the stability with the new formalism.

Proposition 5.17 (Numerical criterion). let X ∈ Pn be a closed subscheme with Hilbert
polynomial p(x).
[X]m is stable (semistable) respect to the action of SLn+1 if and only if for every filtration
F of An+1 we have:

wF (m) < m · αF · p(m) respectively ≤ for semistability,

where αF is the average of weights of F .

Proof. This is simply a matter of reformulation. [X]m is stable if and only if for every
weighted basis of An+1 with total weight 0 there exists a B-basis with negative weight.
This is true if and only if for every weighted filtration of An+1 with total weight 0 and
integer weights, we have that wF (m) < 0.
Given a filtration with weights wi, we can rescale the weights w′i = β(wi−α) where α and
β > 0 are chosen such that w′i ∈ Z and the average of w′i is 0.
From an easy computation we have that w′F (m) = βwf (m) − βαmp(m): this implies the
thesis for stable point. The thesis for semistability follows in the same way.
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We face a choice: we could continue with the original proof by Gieseker or we could use
a slightly different method that avoids some calculations. We will follow the latter, which
can be found on [HM98]. Anyway, a reference for the original proof is [Gie82].

The construction uses the following reasonable theorem which, in some sense, is a
generalization of the basic idea that the dimension of homogeneous components of a graded
finite module on a finitely generated graded k-algebra is polynomial (for big enough grades).

Proposition 5.18. Fixed a weighted filtration F on An+1 and a closed subscheme X ⊂ Pn,
we have that wF (m) is a polynomial function of degree dimX for m enough big.

Moreover there exists a uniform bound on coefficients of wF (m).

Proposition 5.19. Fix a Hilbert polynomial p(x), there exist M , C such that for every
weight filtration F there exists a constant eF that satisfy:∣∣∣∣wF (m)− eF

mr+1

(r + 1)!

∣∣∣∣ < Cmr,

for every m ≥M , projective scheme X with Hilbert polynomial p(x) and dimension r.

The proofs of the previous results can be found on [Mum77], theorem 2.9.
From this, we have:

Proposition 5.20. Let X be a projective scheme of dimension r and degree d and fix a
weighted filtration F .

eF < αF · d · (r + 1)⇒ X is Hilbert stable with respect to F .

The converse also holds:

eF > αF · d · (r + 1)⇒ X is not Hilbert semistable with respect to F .

Proof. Thanks to classical theory we have that p(x) = dmr

r! + terms of lower degree, this
inplies that:

wF (m)−mαF p(m) = eF
mr+1

(r + 1)!
−mαF

dmr

r!
+ terms of lower degree

=
(eF − αF (r + 1)d)mr+1

(r + 1)!
.

The thesis follows now from proposition 5.17.

We have an uniform version of the previous result:

Theorem 5.21 (Asymptotic numerical criterion). Fix a locally closed H ⊂ Hilbp(x)
n , where

p(x) has degree r. Suppose that there exists δ > 0 such that

eF < αF · d · (r + 1)− δ

for all weighted filtraitons F associated to a k-point of H.
There is an M such that [X]m is stable for all m ≥M and all X k-point of H.

Proof. Thanks to proposition 5.19 we have the following.
Then, there exist M ′ and C ′ > 0 such that for every m ≥M ′, X ∈ Hilbp(x)

n :

wF (m)−mαF p(m) =
(eF − αF (r + 1)d)mr+1

(r + 1)!
+

+
{
term in mr, with coefficient ≤ C ′

}
+ {terms of lower degree}

From this follows the thesis.
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5.4.1 The idea of Gieseker

The strategy is now to find an auxiliary filtration of the space H0(C,OC(m)) where C is a
curve and m a big integer. This method works also with some curves that are not smooth,
but we are not interested in that case.

Fix now a smooth curve C that is embedded by a linear bundle L of degree d:

C ↪→ P(H0(C, L)) = PN .

Where the embedding is not degenerate, hence L = i∗OPN (1), and with Hilbert polynomial
p. For the moment we forgot that the embedding is given by the v-canonical, it is not useful
for the moment.

Fix a weighted filtration F on AN+1 with weights wi:

V =V0 ) V1 ) · · · ) VN = 0

w0 ≥ w1 ≥ · · · ≥ wN ,

where V = H0(C, L). Consider now an integer h ≤ N and an ordered subsequence of
(1, . . . , N): 0 = j0 < · · · < jh = N . Define the space:

Wn
k,l = Symn

(
V · Symp−l (Vjk) · Syml

(
Vjk+1

))
⊂ Symn(p+1)(V ) = H0(PN ,OPN (n(p+ 1)))

where the · is the symmetric product. The spaces define a filtration in k, l where the index
k runs from 0 to h− 1 and, for each k, l ∈ 0, . . . , p. Similarly to what done before, we can
assigns weights to this filtration: Wn

k,l has weight wnk,l = n(w0 + (p − l)wjk + lwjk+1
) (we

omit the easy computation).
Via the map resn(p+1)

C we obtain a weighted filtration Unk,l of H
0(C,OC(n(p+1))), where

an element of Unk,l has weight at most wnk,l. This filtration is coarser than the one induced
by F , hence it gives us an upper bound on the total weight wF (n(p+ 1)). Hence we have
the inequality:

wF (n(p+ 1)) ≤

(
h−1∑
k=0

p−1∑
l=0

(
dim

(
Unk,l

)
− dim

(
Unk,l+1

))
wk,l

)
+ dim

(
Unh,0

)
wh,0 =

= dim
(
Un0,0

)
w0,0 +

(
h−1∑
k=0

p−1∑
l=1

dim
(
Unk,l

)
(wk,l − wk,l−1)

)
. (5.1)

In order to obtain a bound we need an uniform estimation of dim
(
Unk,l

)
.

Proposition 5.22. Fix an Hilbert polynomial p(x) and integers p, N . Define di as the
degrees of the subsheaves of L generated by global sections in Vi. Suppose moreover that
degL ≥ 2g.
There is an M depending on these three choices but not on the weighted filtration F such
that

dim
(
Unk,l

)
= n

(
d+ (p− l)djk + ldjk+1

)
− g + 1

holds for every n ≥M and for every k and l.
Moreover, we can choose M that works for every smooth curve C ⊂ PN with Hilbert poly-
nomial p(x) and embedded by a line bundle of degree grather than 2g.

Proof. Let Li be the line bundle generated by the sections in Vi ⊂ H0(C, L) = H0(C,OC(1)).
U1
k,l generate

Mk,l = L⊗ (Ljk)p−l ⊗
(
Ljk+1

)l
.
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Moreover, Unk,l is a sublinear series of H0(C, (Mk,l)
n).

We observe that U1
k,l is a very ample linear series on C (because has V0 as sublinear series),

hence it defines an immersion:
C ↪→ P(W 1

k,l).

Therefore we have the map:

φnk,l : H0(P(W 1
k,l),O(n))→ H0(C, (Mk,l)

n).

This is surjective for big enough n and hence dim(Unk,l) = dimH0(C,Mn
k,l). We have

deg(Mn
k,l) ≥ deg(L) ≥ 2g, hence H1(C,Mn

k,l) = 0. Thanks to Riemann-Roch we have:

dimH0(C,Mn
k,l) = 1− g + deg(H0(C,Mn

k,l)) = n
(
d+ (p− l)djk + ldjk+1

)
− g + 1.

Fix now k and l, thanks to theorem 4.6 we have that there exists Mk,l such that for every
n ≥Mk,l and every curve C that satisfy the hypothesis, φnk,l is surjective for n ≥Mk,l. The
numbers k and l can assume only a finite number of values, this implies the thesis.

We can now put together the last results to obtain upper bound to eF .

Lemma 5.23. Fix again p(x), p and n, we have that for every weighted filtration F , every
smooth curve C and every choice of the sequence j0, . . . , jh holds:

eF ≤
h−1∑
k=0

(
ejk + ejk+1

) (
wjk − wjk+1

)
,

where ej = d− dj.

Proof. This is simply a manipulation. We know dim
(
Unk,l

)
for big enough n, hence we

have an inequality for wF (n(p+ 1)) given by 5.1. We know that WF (m) is polynomial of
degree 2 = 1 + dim C in m and the in the inequality we have that n and p appear with
power at most 2. This make possible to bound eF with the coefficient of n2p2 (because
the inequalities holds for big n and p). This bound is exactely the thesis. For a complete
calculation we refer to [HM98], chapter 4.

Thanks to this calculation we can reformulate proposition 5.20 in a way that does not
require fixing a filtration:

Proposition 5.24. Let C ⊂ PN be a smooth curve with Hilbert polinomial p(x) (that is
uniquely determined by the degree d and the genus g). Suppose that εi are upper bound for
ei = d−di, i.e. the codegree of every subspace of dimension i on every filtration. We define

εC = max
w0≥···≥wN=0∑N

i=0 wi=1

(
min

0<j0<···<jh=N

(
h−1∑
k=0

(
εjk + εjk+1

) (
wjk − wjk+1

)))
.

C is Hilbert stable if

εC <
2d

N + 1
.

We have also a uniform version, thanks to theorem 5.21:
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Proposition 5.25 (Gieseker’s criterion). Fix p(x) a Hilbert polynomial and a locally closed
H ⊂ Hilbp(x)

N whose k-points are smooth curves (Notice that in this case p(x) is determined
by degree d and genus g). Suppose that there exists δ > 0 such that

εC <
2d

N + 1
− δ

to every curve that is a k-point of H.
There is an M such that [C]m is stable for all m ≥M and all C k-point of H.

We do not prove these two because are suitable reformulations of what we already
proved. We only notice that we write min on subsequences jk in the formula because we
can choose them freely.

We came now to the final piece of our puzzle.

Theorem 5.26 (Uniform stability of smooth curves). Consider the smooth curves of genus
g ≥ 2 in PN that are embedded by a very ample line bundle L of degree d ≥ 2g.
These are Hilbert stable and there exists M such that [C]m with m ≥ M is stable for all
such curves.

In order to prove the theorem we need the following:

Theorem 5.27 (Clifford). Let L be a line bundle on a smooth projective curve C of degree
d such that H1(C, L) 6= 0. We have that

dim
(
H0(C, L)

)
≤ d

2
+ 1.

For the proof of this theorem, we refer to [Arb+85]. We are now ready for the final
proof.

Proof. We split the proof in four steps.
Step 1: we prove that the subsequence jk that realize the bound of εC is 0, 1, 2, . . . , N .
Fix the weights wi. Consider the plot of the points (εi, wi) on the Cartesian plane. Given
a subsequence {jk}, the number we want to minimize is

h−1∑
k=0

(
εjk + εjk+1

) (
wjk − wjk+1

)
.

It represent the double of the area between axes x, y and the piecewise linear curve defined
by the points (εjk , wjk). Therefore, the area is minimized when the subsequence represent
the lower convex envelope (we call it E).
Fix now the weight wi and the subsequence jk that realize the bound for εC . Obviously it
does not exists an index i such that (εi, wi) ∈ E◦ (in the interior of E) because otherwise
E is not the lower convex envelope. Suppose now that there exists an index i such that
(εi, wi) is not in E. We could decrease wi until the point is on the border of E, in this
way the sum

∑N
i=0wi < 1 and we can rescale the weights in such a way the bound itself

is rescaled, hence bigger: that is not possible. Therefore, wi is on the border of E. This
implies that (εi, wi) ∈ ∂E for every 0 ≤ i ≤ N . Hence we can suppose that the subsequence
ji is the whole sequence 0, . . . , N .
Moreover, the piecewise linear curve that join (εi, wi) is convex.
Step 2: we prove that we can take

εi =

(
d

N
− δ
)
i.

Consider the points (deg(U),dim(U)) where U ⊂ H0(C, L) is a linear system, we write LU
the line bundle generated by U , we have two cases:
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• H1(C, LU ) = 0, this implies that dim(U) = H0(C, LU )−1 = deg(U)−g by Riemann-
Roch theorem.

• H1(C, LU ) 6= 0, this implies that 2 dim(U) ≤ deg(U).

We plot these information on the deg(U), dim(U) graph. In particular the subspaces of
the filtration on H0(C, L) corresponds to the points (d− ei, N − i).
For the complete linear system we have that H1(C, L) = 0 (this follows from Serre duality
and d ≥ 2g). This implies that the slope of the segment that link a point (d − ei, N − i)
(for i 6= 0, N) to (d,N) is strictely bigger that the slope of the segment that link the origin
to (d,N). Furthermore consider the case i = N , the line bundle generated by the unique
element of VN cannot be of degree 0, otherwise we should have that L is the trivial bundle,
hence the point (dN , 0) 6= (0, 0) and the strict inequality holds also for i = N . This implies

ei
i
<

d

N
i = 1, . . . , N.

Given that there are only finitely many choices for the point (d− ei, N − i), we have that
there exists δ (that depends only on N and d) such that we can take

εi =

(
d

N
− δ
)
i.

Notice that for i = 0 we have that εi = 0 is coherent with the previous equation.
Step 3: Let εi be as before and fix wi that realize the bound. The function defined by
the piecewise curve that links Pi = (εi, wi) is convex, consider the polygon defined by
the convex hull of these points. The midpoint of the segment P0PN has the same abscissa
than the barycenter of the polygon (because εi−εi−1 is constant). Moreover the barycenter
belongs to the polygon, hence we have an inequalities on the ordinate:∑N

i=0wi
N + 1

≤ w0 + wN
2

=
wo
2
.

Step 4: we compute the bound on εC . Thanks to first step ji is the sequence 0, . . . , N .
Suppose that wi maximize the bound, we have:

εC ≤
N−1∑
i=0

(εi + εi+1) (wi − wi+1)

≤
(
d

N
− δ
)N−1∑

i=0

(i+ (i+ 1)) (wi − wi+1) =

=

(
d

N
− δ
)(

w0 +

N−1∑
i=1

2wi

)
=

(
d

N
− δ
)

(2− w0) .

Using the bound in step 3:

εC ≤
(
d

N
− δ
)(

2− 2

N + 1

)
=

2d

N + 1
− 2δN

N + 1
,

this is the thesis.

Hence we have the final theorem:

Theorem 5.28. Given v ≥ 3 and g ≥ 2, we have that the k-points of Hv are stable. Hence
the GIT-quotient Hv//SLN+1 is a geometrical quotient and therefore it is the coarse moduli
space for the problemMg.

Proof. The theorem follows applying the previous theorem and theorem 5.7.
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