
1. TRIPLE PRODUCTS

Given v,w, z ∈ E3, we can consider the product

(v× w)× z ∈ E3.

The product above has a simple expression in terms of the vectors v and w. That is,

(1) (v×w)× z = w(v · z)− v(w · z).

Before proving the equality above, we need the following premise. Given a vector
a ∈ E3, we can define the following linear map

R(a) = (a3, a1, a2).

The operator above is a permutation of the coordinates which is well-behaved with
respect to the scalar product and the cross product, as the next proposition shows.

Proposition 1. Given two vectors a and b, there hold

R(a) · R(b) = a · b(2)

R(a) × R(b) = R(a× b)(3)

R(a)1 = a3.(4)

Proof. The equality (4) follows from the definition of R.

R(a) · R(b) = (a3, a1, a2) · (b3, b1, b2) = a3b3 + a1b1 + a2b2

= a1b1 + a2b2 + a3b3 = a · b.

As for (3), we have

(R(a) × R(b))1 = R(a)2R(b)3 − R(a)3R(b)2

= a1b2 − a2b1 = (a× b)3 = R(a× b)1.

(R(a) × R(b))2 = R(a)3R(b)1 − R(a)1R(b)3

= a2b3 − a3b2 = (a× b)1 = R(a× b)2.

(R(a) × R(b))3 = R(a)1R(b)2 − R(a)2R(b)1

= a3b1 − a1b3 = (a× b)2 = R(a× b)3.

�

We are now ready to prove the following proposition:

Proposition 2. Given v,w, z ∈ E3 there holds

(v×w)× z = w(v · z)− v(w · z).

Proof. Firstly, we show that the first components of the vectors in (1) are equal. In fact,
(

(v× w)× z
)

1
= (v× w)2z3 − (v×w)3z2 = (v3w1 − v1w3)z3 − (v1w2 − v2w1)z2

= w1(v3z3 + v2z2)− v1(w3z3 + w2z2)

= w1(v3z3 + v2z2)− v1(w3z3 + w2z2) + v1w1z1 − v1w1z1

= w1(v3z3 + v2z2 + v1z1)− v1(w3z3 + w2z2 +w1z1)

= w1(v · z)− v1(w · z).

Then, given vectors v,w and z, we have

(5)
(

(v×w)× z
)

1
= w1(v · z)− v1(w · z).



Now, we apply equality (5) to R(v), R(w) and R(z). Then

(6)
(

(R(v) × R(w))× R(z)
)

1
= R(w)1(R(v) · R(z)) − R(v)1(R(w) · R(z)).

By applying (3) two times and (4), it follows that the left term is equal to

(7)
(

R(v× w)× R(z)
)

1
=

(

R((v× w)× z)
)

1
=

(

(v× w)× z
)

3
.

By applying (2) to the right term of (6), we obtain

(8) R(w)1(R(v) · R(z)) − R(v)1(R(w) · R(z)) = w3(v · z)− v3(w · z).

Then

(9)
(

(v×w)× z
)

3
= w3(v · z)− v3(w · z).

We proved that components 1 and 3 of the vectors in (1) are equal. In order to prove
that the second component is equal, we consider the operator

T(a) := R2(a) = R(a3, a1, a2) = (a2, a3, a1)

defined for every a ∈ E3. From (2) it follows

(10) T(a) · T(b) = a · b.

From (3), there holds.

T(a)× T(b) = R2(a)× R2(b) = R(R(a) × R(b))

= R2(a× b) = T(a× b).
(11)

Moreover,

(12) T(a)1 = a2

for every a, b ∈ E3. We apply (5) to the vectors T(v), T(w) and T(z). Then
(

(T(v)× T(w))× T(z)
)

1
= T(w)1(T(v) · T(z)) − T(v)1(T(w) · T(z)).

By (11) and (12) the left member of the equality above equals
(

T((v× w)× z)
)

1
= ((v× w)× z)2

By (10), the right member of equals

w2(v · z)− v2(w · z).

Then

(13) ((v×w)× z)2 = w2(v · z)− v2(w · z).

Thus, (5), (9) and (13) allows us to conclude the proof. �
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