For $v,w\in E^2$, we define

 $v \times w := v_1 w_2 - v_2 w_1 \in E$.

We also define

$$
v^{\perp}:=(v_2,-v_1).
$$

We have the following:

Proposition 1. *Given v,* $w \in E^2$ *, there holds*

 $v \times w = 0 \Leftrightarrow v$ *is parallel to w*

and $v \cdot v^{\perp} = 0$.

Proof. Suppose that $v \times w = 0$. Then

$$
v_1w_2=v_2w_1
$$

Then

$$
w_2v = (w_2v_1, w_2v_2) = (v_2w_1, w_2v_2) = v_2(w_1, w_2) = v_2w.
$$

Conversely, suppose that *w* $\parallel v$. If *w* = 0, then *v* × *w* = 0. Otherwise, there exists λ such that

$$
v=\lambda w.
$$

Then

$$
v \times w = (\lambda w) \times w = \lambda (w \times w) = \lambda (w_1 w_2 - w_2 w_1) = 0.
$$

As for the second equality, we have

$$
v \cdot v^{\perp} = (v_1, v_2) \cdot (v_2, -v_1) = v_1v_2 - v_1v_2 = 0.
$$

 \Box

Definition 1 (Parametric form). Given $P \in \mathbb{R}^2$ and $v \in E^2$, a line is the subset of

$$
\ell(P,v) := \{ P + tv \mid t \in \mathbb{R} \}.
$$

If $v = 0$, then $\ell(P, v) = \{P\}$ it is just a point. A point is a degenerate line. The following equalities hold

(1)
$$
\ell(P,v) = \ell(P,\lambda v) \,\forall \lambda \in \mathbb{R} - \{0\}
$$

(2)
$$
\ell(P,v) = \ell(P + \mu v, v) \,\forall \mu \in \mathbb{R}.
$$

In view of the above equalities, the representation of a line with a pair (P, v) is not unique. We wish to state a precise relation between two pairs (P, v) and (Q, w) such that

$$
\ell(P,v)=\ell(Q,w).
$$

Proposition 2. *Given* (P, v) *and* (Q, w) *such that* $v, w \neq 0$ *there holds*

$$
\ell(P,v) = \ell(Q,w) \Leftrightarrow \overrightarrow{PQ} \times v = v \times w = 0.
$$

If condition $v = w = 0$, then the proposition fails: just take $P \neq Q$.

Proof. We use the notation

$$
\ell := \ell(P, v), \quad \ell' := \ell(Q, w).
$$

Firstly, we consider the case $P \neq Q$. If $\ell = \ell'$, then $\ell \subseteq \ell'$. Thus,

$$
P\in\ell\Rightarrow P\in\ell'.
$$

Therefore, there exists *t* such that

$$
P=Q+t\omega
$$

whence

$$
\overrightarrow{QP} = tw \Rightarrow 0 = \overrightarrow{QP} \times w = -\overrightarrow{PQ} \times w.
$$

Similarly, from $Q \in \ell$ we obtain

$$
\overrightarrow{PQ} \times v = 0.
$$

Now, we prove the converse. Suppose that there are two points *P*, *Q* and vectors *v*, *w* such that

$$
\overrightarrow{PQ} \times v = v \times w = 0.
$$

Since $v \times w = 0$ and each of the two vectors is non-zero, there exists $\lambda \in \mathbb{R} - \{0\}$ such that

$$
w=\lambda v
$$

and $\mu \in \mathbb{R}$ such that

$$
\overrightarrow{PQ} = \mu v.
$$

Then by (1) and (2) , we have

$$
\ell(Q, w) = \ell(P + \mu v, \lambda v) = \ell(P, v).
$$

Along with the parametric form, there is a definition of line using cartesian coordinates.

Proposition 3. *Given two points Q, R such that* $Q \neq R$ *, there exists a unique line* ℓ *such that* $Q, R \in \ell$.

Proof. Firstly, we show that

$$
Q, R \in \ell(Q, \overrightarrow{QR}).
$$

In fact,

$$
Q=Q+0\cdot \overrightarrow{QR}\Rightarrow Q\in \ell
$$

and

$$
R = Q + 1 \cdot \overrightarrow{QR} = Q + (R - Q) = R \Rightarrow R \in \ell.
$$

Now, we show that the $\ell(Q, \overrightarrow{QR})$ is the unique line which contains *Q* and *Q*. Let $\ell := \ell(P, v)$ be such that $Q \neq R \in \ell(P, v)$. Since $Q, R \in \ell$, there are t_1, t_2 such that

$$
Q = P + t_1 v, \quad R = P + t_2 v.
$$

Since $Q \neq R$, we have $t_1 \neq t_2$. Then

$$
v = \lambda \overrightarrow{QR}, \quad \lambda := \frac{1}{t_2 - t_1} \neq 0.
$$

From (1) and (2) , there holds

$$
\ell(P,v) = \ell(Q - t_1v, \lambda \overrightarrow{QR}) = \ell(Q, \overrightarrow{QR}).
$$

 \Box

 \Box

Proposition 4 (Intersection of two lines). *Given two lines* $\ell := \ell(P, v)$ *and* $\ell' := \ell(Q, w)$ $\mathit{such}\;$ that $v,w\neq 0$ and $\ell\neq \ell'$, then

$$
\ell \cap \ell' \neq \emptyset \Leftrightarrow v \times w \neq 0.
$$

If $\ell \cap \ell' \neq \emptyset$, then the intersection contains the unique point

$$
P + \left(\frac{v^{\perp} \cdot \overrightarrow{PQ}}{v \times w}\right) v.
$$

Proof. We argue by contradiction. Suppose that $R \in \ell \cap \ell'$ and $v \times w = 0$. Then, there exists *λ* such that

$$
v = \lambda w, \quad R = Q + tw, \quad R = P + sv.
$$

Then, by (2) and (1)

$$
\ell(P,v) = \ell(R - sv, v) = \ell(R - s\lambda w, \lambda w) = \ell(R, w) = \ell(Q + tw, w) = \ell(Q, w).
$$

We obtained a contradiction with the assumption $\ell \neq \ell'.$

Now, suppose that $v \times w \neq 0$. We prove that

$$
\ell\cap\ell'\neq\varnothing.
$$

Then, we have to show that there exists a solution to the system

$$
P + tv = Q + sw.
$$

We write the system coordinate-wise

$$
\begin{cases}\ntv_1 - sw_1 = x_2 - x_1 \\
tv_2 - sw_2 = y_2 - y_1\n\end{cases}
$$

We multiply the first equation by v_2 , the second equation by v_1 and take the difference

$$
s(w_1v_2-w_2v_1)=v_1(y_2-y_1)-v_2(x_2-x_1).
$$

The equation above can be written as

$$
s(v \times w) = v^{\perp} \cdot \overrightarrow{PQ}.
$$

Then

$$
s = \frac{v^{\perp} \cdot \overrightarrow{PQ}}{v \times w}
$$

and the intersection point is

(3)
$$
Q + \left(\frac{v^{\perp} \cdot \overrightarrow{PQ}}{v \times w}\right) w = Q - \left(\frac{v \times \overrightarrow{PQ}}{v \times w}\right) w.
$$

Definition 2 (Distance between a point and a line)**.** Given a point *Q* and a line ℓ, we define

 \Box

$$
d(Q,\ell) := \inf \{ d(Q,R) \mid R \in \ell \}.
$$

Proposition 5. *Given a non-degenerate line* $\ell(P, v)$ *and a point* Q *, there holds*

$$
d(P,\ell) = \frac{\|v \times \overrightarrow{PQ}\|}{\|v\|}.
$$

Proof. We consider the line $\ell' := \ell(Q, v^{\perp})$. By Proposition [4,](#page-2-0)

$$
\ell\cap\ell'\neq\varnothing
$$

and, by the second equality in [\(3\)](#page-2-1), the intersection contains only the point

$$
Q' := Q - \left(\frac{v \times \overrightarrow{PQ}}{v \times v^{\perp}}\right) v^{\perp}.
$$

Since

$$
\overrightarrow{Q'R} \cdot \overrightarrow{Q'Q} = 0
$$

for every $R \in \ell$, there holds

$$
d(R, Q)^2 = d(R, Q')^2 + d(Q, Q')^2.
$$

Then, for every *R*

$$
d(R, Q) \geq d(Q, Q')
$$

and the equality holds when $R = Q'$. Thus,

$$
d(Q,\ell) = d(Q,Q') = \left\| \left(\frac{v \times \overrightarrow{PQ}}{v \times v^{\perp}} \right) v^{\perp} \right\| = \frac{\|v \times \overrightarrow{PQ}\|}{\|v\|}.
$$

