
SOLUTIONS OF THE EXERCISES OF THE BOOK

Exercises of page 155.
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Exercise 2.˛
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Exercise 3. ˛
C
(2ydx− 3xdy) =

¨
B
∇(2y,−3x) = −5

¨
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Exercise 4.˛
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+ y2)dx + (ey2
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Exercise 11. For a region R bounded by a simple closed curve C show that the area A
of R is

A = −
˛

C
ydx =

˛
xdy =

1
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˛
C

xdy− ydx
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Solution. By definition,

A =

¨
R

1dydx.

We know that there is a vector field XXX such that

1 = ∇×XXX.

This vector field is XXX = (−y, 0). Then

(1)
¨

R
1 =

¨
∇× (−y, 0) =

˛
C
(−y, 0) =

˛
−ydx.

Another solution of the differential equation can be obtained when P = 0 and Q = x.
Then

(2)
¨

R
1 =

¨
∇× (0, x) =

˛
C
(0, x) =

˛
xdy

From (1) and (2), we have¨
R
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R
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˛
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˛
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¨
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˛
(xdy− ydx)

⇒
¨

R
1 =

1
2

˛
(xdy− ydx).
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