EXERCISES OF WEEK FIVE

Exercise 1. Given three lines $\ell_1 := \ell(P, v), \ell_2 := \ell(Q, w)$ and $\ell_3 := \ell(R, z)$ such that $\ell_i \neq \ell_j$ if $i \neq j$

find necessary and sufficient conditions in terms of $P, Q, R \in \mathbb{R}^3$ and $v, w, z \in E^3$ in order to have

 $\ell_1 \cap \ell_2 \cap \ell_3 \neq \emptyset.$

Exercise 2. We define the two-variable function

$$g(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{if } x^2+y^2 \neq 0\\ 0 & x=y=0 \end{cases}$$

State whether¹

1. *g* is bounded on B((0, 0), 1)

2. *g* is continuous at the point O(0, 0)

3. the partial derivatives $\partial_x g(O)$ and $\partial_y g(O)$ exist

4. the partial derivatives $\partial_x g$ and $\partial_y g$ are bounded on B((0,0),1)

5. *g* is differentiable at O(0, 0)

6. *g* is smooth on B((0,0), 1)

Date: 2013, October 3.

¹The inequality $2xy \le x^2 + y^2$ is useful in this exercise