SOLUTIONS OF THE EXERCISES OF WEEK TWO

Exercise 1. If $v, w \in E^3$ are linearly independent, then

 $v, w, v \times w$

are linearly independent in *E* 3 .

Solution. Since *v* and *w* are linearly independent,

(1) $v \times w \neq 0$.

Let α , β , $\gamma \in \mathbb{R}$ be such that

(2) $\alpha v + \beta w + \gamma v \times w = 0.$

We take the scalar product with the vector $v \times w$. Then

$$
\gamma \|v \times w\|^2 = 0.
$$

By (1), we have $\gamma = 0$. If we substitute $\gamma = 0$ in (2), we obtain

$$
\alpha v + \beta w = 0.
$$

Since *α* and *β* are linearly independent, we obtain

$$
\alpha = \beta = 0
$$

which, together with (3), gives

$$
\alpha=\beta=\gamma=0.
$$

Then *v*, *w* and *z* are linearly independent.

Exercise 2. Let $v, w, z \in E^3$ be such that

$$
v \cdot a = w \cdot a = z \cdot a = 0
$$

for some vector $0 \neq a \in E^3$. Then *v*, *w* and *z* are linearly dependent.

Solution. We argue by contradiction. Suppose that *v*, *w* and *z* are linearly independent. Then the set

$$
\{v,w,z\} \subset E^3
$$

generates the linear space $E^3.$ Then, there are $\lambda_1, \lambda_2, \lambda_3$ such that

$$
\lambda_1 v + \lambda_2 w + \lambda_3 z = a.
$$

Taking the scalar product with *a*, we obtain

$$
0 = ||a||^2 \Rightarrow a = 0
$$

which contradicts the assumption $a \neq 0$.

Exercise 3. Given $v, w \in Eⁿ$, show that

$$
|\|v\| - \|w\|| \le \|v - w\|.
$$

What is the relation between *v* and *w* if the equality holds?

Date: 2013, September 20.

Solution. The equality is equivalent to the equality

(5)
$$
|\|v\| - \|w\||^2 \le \|v - w\|^2
$$

that is

(6)
$$
||v||^2 + ||w||^2 - 2||v|| ||w|| \le ||v||^2 + ||w||^2 - 2v \cdot w.
$$

In turn, the inequality above is equivalent to

 $v \cdot w \leq ||v|| ||w||.$

The last is the Cauchy-Schwarz inequality. If the equality

 $|||v|| - ||w||| = ||v - w||$

holds, then in (6) and (5) we have equalities

$$
v\cdot w=\|v\|\|w\|
$$

holds, as well. Then $v \parallel w$.

