Uniqueness and non-degeneracy of Q-balls in dimension one

Daniele Garrisi^{* 1} Vladimir Georgiev²

1 Inha University, College of Mathematics Education

²Università degli Studi di Pisa, Dipartimento di Matematica "Leonida Tonelli"

2016, April 23

<http://poisson.phc.unipi.it/~garrisi/kms-spring-2016.pdf>

YO A REPART ARM YOUR

This work was supported by the Inha University Research Grant

A standing-wave

$$
\phi(t,x) = e^{i\omega t} R(x), \quad \omega \in \mathbb{R}
$$

is a solution to the non-linear Schrödinger equation

(NLS)
$$
(i\partial_t \phi + \Delta_x \phi)(t, x) + g(\phi(t, x)) = 0
$$

where R minimizes the energy on a mass constraint.

A Q-ball is a standing-wave such that R is in $H^1_{r,+}(\mathbb{R}^n;\mathbb{R})$ and

(1)
$$
R(x) > 0
$$
 for every $x \in \mathbb{R}$
(2) $R(x) = R(x')$ if $|x| = |x'|$
(3) $R, |\nabla R| \in L^2$

The expression Q-ball was introduced by Rosen (J. Math. Phys., 1968). Here we will refer to the profile R with the same expression.

YO A REPART ARM YOUR

We define the energy functional

$$
E(u) := \frac{1}{2} \int_{-\infty}^{+\infty} |\nabla u(x)|^2 dx + \int_{-\infty}^{+\infty} G(u(x)) dx
$$

on the mass constraint

$$
M(u) := \int_{-\infty}^{+\infty} |u(x)|^2 dx, \quad S(\lambda) := \{u \mid M(u) = \lambda\}.
$$

Both E and M are defined on $X := H^1_{r,+}(\mathbb{R}^n;\mathbb{C})$. We define $I(\lambda) := \inf_{S(\lambda)} E$ and

$$
\mathcal{G}_{\lambda} := \{ u \in X \cap S(\lambda) \mid E(u) = I(\lambda) \}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

which is the set of minima of E over S .

Q-balls play a role in the stability of standing-waves.

(1) if every $R \in \mathcal{G}_{\lambda}$ is a non-degenerate critical point of E over S (2) if G_λ consists of a single point (uniqueness)

YO A REPART ARM YOUR

then all the standing-waves are stable.

(2) is equivalent to

(2E) given $R_1, R_2 \in \mathcal{G}_\lambda$ and $\omega_1, \omega_2 \in \mathbb{R}$ $\Delta R_1(x) - G'(R_1(x)) - \omega_1 R_1(x) = 0$ $\Delta R_2(x) - G'(R_2(x)) - \omega_2 R_2(x) = 0$ implies $R_1 = R_2$ and $\omega_1 = \omega_2$.

Hereafter, we restrict to the dimension $n = 1$.

The non-degeneracy

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 19 Q Q ·

(1) is equivalent to

(1E) For every
$$
v \in H_r^1
$$
 and $\beta \in \mathbb{R}$

$$
L(v) = v'' - G''(R)v - \omega v = \beta v \Rightarrow \beta = 0 \text{ and } v = 0.
$$

M. Weinstein, Comm. Math. Phys., 1985, pure power case

If $G(s) = -a|s|^p$ with $2 < p < 6$ and $a > 0$, then R is non-degenerate.

M. Weinstein, Comm. Math. Phys., 1986

R is non-degenerate, provided

(B3)
$$
\int_{-\infty}^{+\infty} \left(\frac{G'(R(x))}{R(x)} \cdot (1 - R'(x)^2) + R'(x)^2 G''(R(x)) \right) dx \neq 0.
$$

YO A REPART ARM YOUR

The second result applies to general non-linearities.

Our goal: a result based on assumptions on G (e.g. pure powers).

G. and Georgiev

If for every $R \in \mathcal{G}_{\lambda}$ there holds

$$
12G(s)-7sG'(s)+s^2G''(s)\geq 0
$$

for every $s \in \text{Im}(R)$, then every R is non-degenerate.

A one-parameter family R*^ω* is build

$$
R''_{\omega} - G'(R_{\omega}) - \omega R_{\omega} = 0, \quad \lambda(\omega) := ||R_{\omega}||_{L^2}^2.
$$

$$
\lambda'(\omega) = \langle L(\partial_{\omega} R_{\omega}), \partial_{\omega} R_{\omega} \rangle_{L^2} \ge 0.
$$

 $\lambda'(\omega)>0$ gives the non-degeneracy. If $\lambda'(\omega)=0$, then

$$
12G(s) - 7sG'(s) + s^2G''(s) = 0 \Rightarrow G(s) = cs^2 + ds^6
$$

which is the critical case where there are no Q-balls.

The proof is based on the $d(\omega)$ function of W. Strauss *et al.*, CMP, 1985.

KORKARYKERKE POLO

Uniqueness

If G is a pure-power, and

$$
R''-G'(R)-\omega R=0, \quad R\in \mathcal{G}_{\lambda}
$$

the rescaling property $G(ts) = t^p G(s)$ for $t > 0$ implies

$$
R(x) = \omega^{1/(\rho - 1)} R_1(\omega^{1/2} x)), \quad \omega = (\lambda \| R_1 \|_2^{-2})^{\frac{2(\rho - 1)}{(5 - \rho)}}
$$

and R_1 is the solution in $H^1_{r,+}$ to

$$
R_1''(x) - G'(R_1(x)) - R_1(x) = 0
$$

KORK EX KEY CORRESPONDENCE

which is unique (H. Berestycki and P.L. Lions, ARMA, 1983).

Non-degeneracy implies that \mathcal{G}_{λ} is a finite set.

Obstructions to the uniqueness: two one-parameter families

$$
R: (\omega_1, \omega_2) \to H^1, \quad R_*: (\omega_1^*, \omega_2^*) \to H^1
$$

such that $\omega_2 \leq \omega_1^*$ there are ω , ω_* satisfying

$$
||R_{\omega}||_2^2 = ||R_{\omega_*}||_2^2, \quad E(R_{\omega}) = E(R_{\omega_*})
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

The multiplicity of these intervals is related to the critical points of

$$
V(s):=-\frac{2G(s)}{s^2}.
$$

If (R, *ω*) satisfies

$$
R''-G'(R)-\omega R=0
$$

then there exists s_* such that

$$
\omega=V(s_*),\quad V'(s_*)>0.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

KO > KA > KE > KE > E AQA

G. and Georgiev, $G(s) = -a|s|^p + b|s|^q$, $2 < p < 6$ and $p < q$

G satisfies the Euler differential inequality. There is only one, non-degenerate Q-ball.

KORK EX KEY CORRESPONDENCE

G. and Georgiev, $G(s) = -a|s|^p + b|s|^q$, $2 < p < 6$ and $p < q$

G satisfies the Euler differential inequality. There is only one, non-degenerate Q-ball.