Final Exam, 2016, June 9

Instructions.

- (1) On this page, please write only your <u>name</u> and <u>id. number</u>,
- (2) do not use pencils
- (3) you can use any theorem or exercise contained in the syllabus,
- (4) Exercises 1, 2, 3 and 4 are mandatory,
- (5) choose only one exercise between 5 and 6,
- (6) choose only one exercise among 7, 8, 9 and 10.
- (7) In exercises 2 and 4 no explanation or proof is needed,
- (8) in all the exercises you can assume that all the axioms are satisfied
- (9) in exercise 6, write sets, instead of diagrams. For example,

" $A = \{0, 1\}, R = \{(0, 0), (1, 1), (0, 1)\}$ " instead of "[".

Do <u>ALL</u> Exercises 1-4.

Exercise 1.	Is it true that $\mathscr{P}(0) = 1$?	•
Exercise 2.	Find three infinite sets such that $#A < #B < #C$.	•
Exercise 3.	and what about $\mathscr{P}(2) = 4$?	
Exercise 4.	Find a maximal chain in $(\mathscr{P}(4), \subseteq)$.	

Choose only one between Exercise 5 and 6.

Exercise 5.	Show that there is no set <i>y</i> such that $y^+ = \{1, 2\}$?	\odot
Exercise 6.	Find an order relation (<i>A</i> , <i>R</i>) with two minimal elements $m_1 \neq m_2$.	\odot

Choose only one among Exercises 7, 8, 9, 10.

Exercise 7. Let \mathcal{M} be the set of maximal chains of $\mathscr{P}(4)$. What is min $\{0 \le m \mid \#\mathcal{M} \le 10^m\}$? **Exercise 8.** In (A, R), if there are two minimal elements, there are two maximal chains. ¹ **Exercise 9.** Given #A = n and #B = m, how many maximal chains does $(F(A, B), \subseteq)$ have? **Exercise 10.** Let (A, R) be such that $\#A = \#\omega$. Prove that #R = #A. ²

Notations:

F(*A*, *B*): the class of all the functions from *A* to *B*. (*A*, *R*) an ordered class. $\mathscr{P}(A) : B \in \mathscr{P}(A) \Leftrightarrow B \subseteq A$ and *B* is a set.

Date: 2016, June 13.

¹*Hint:* Use the Hausdörff Maximum Principle

²*Hint:* Use Bernstein's Lemma

SOLUTIONS

Exercise 1 (28pts). Is it true that $\mathscr{P}(0) = 1$?

Solution. It is true. $\mathscr{P}(0) = \mathscr{P}(\emptyset) = \{\emptyset\} = \{0\} = 1.$

Exercise 2 (7pts). Find three infinite sets such that #A < #B < #C.

Solution. $A := \omega, B := \mathscr{P}(\omega), C := \mathscr{P}(\mathscr{P}(\omega))$. By the Power Set Axioms, *B* and *C* are sets. Since *A* and *B* are sets, $A < \mathscr{P}(A) = B$ and $B < \mathscr{P}(B) = C$.

Exercise 3 (28pts). and what about $\mathscr{P}(2) = 4$?

Solution. It is false. For instance $3 = \{0, 1, 2\} \in 4$ but $3 \notin \mathscr{P}(2) = \{0, 1, \{1\}, 2\}$.

Exercise 4 (22pts). Find a maximal chain in $(\mathscr{P}(4), \subseteq)$.

Solution. $5 = \{0, 1, 2, 3, 4\}$ is a maximal chain.

Choose only one between Exercise 5 and 6 (6 points each exercise).

Exercise 5. Show that there is no set *y* such that $y^+ = \{1, 2\}$?

Solution. Let *y* be a set such that $y \cup \{y\} = \{1, 2\}$. Then $y \in \{1, 2\}$. Then y = 1 or y = 2. If y = 1, then $y^+ = \{0, 1\} \neq \{1, 2\}$ because $1 \neq 2$. If y = 2, then $y^+ = \{0, 1, 2\} \neq \{1, 2\}$ because both 1 and 2 are non-empty.

Exercise 6. Find an order relation (*A*, *R*) with two minimal elements $m_1 \neq m_2$.

Solution. $A = \{0, 1\}$ with $R = \{(0, 0), (1, 1)\}$.

Choose only one among Exercises 7, 8, 9, 10 (9 points each exercise)

Exercise 7. Let \mathcal{M} be the set of maximal chains of $\mathscr{P}(4)$. What is min $\{0 \le m \mid \#\mathcal{M} \le 10^m\}$?

Solution. There are 24 maximal chains. Then m = 2.

Exercise 8. In (*A*, *R*), if there are two minimal elements, there are two maximal chains.

Solution. Let m_1 and m_2 two minimal elements. We define

 $B_1 := \{x \in A \mid m_1 \le x\}, \quad B_2 := \{x \in A \mid m_2 \le x\}.$

In the order relation, (B_i, R_i) there is a maximal chain C_i , where $R_i = R \cap (B_i \times B_i)$). Clearly, $m_i \in C_i$. In fact, since $C_i \subseteq B_i$, for every element of $c \in B_i$ there holds $m_i \leq c$. Then $c \in C_i$. We claim that C_1 and C_2 are maximal chains in A. Let D be a chain such that $C_i \subseteq D$. If $x \in D$, then xshould be comparable to every element of C_i . Since $m_i \in C_i$, x should be comparable to m_i , that is $x \leq m_i$ or $x \geq m_i$. In the first case, we obtain $x = m_i \in C_i$ which implies $x \in B_i$; in the second case, $x \in B_i$, by definition of B_i . Then $D \subseteq B_i$. Since C_i is a maximal chain in B_i , we obtain $D = B_i$. Finally, we prove that $C_1 \neq C_2$. On the contrary, m_1 and m_2 would be comparable to each other. Then $m_1 = m_2$ because they both are minimal elements, and we obtain a contradiction with the assumption that $m_1 \neq m_2$.

Exercise 9. Given #A = n and #B = m, how many maximal chains does $(F(A, B), \subseteq)$ have?

Solution. Given two functions such that $f \subseteq g$, there holds f = g. Then maximal chains are singletons. Then, there are m^n maximal chains.

Exercise 10. Let (*A*, *R*) be such that $#A = #\omega$. Prove that #R = #A.

Solution. Since $A \approx id_A \subseteq R$, we have $\#A \leq \#R$. Since

$$R \subseteq A \times A \approx \omega \times \omega \approx \omega \approx A$$

we have $\#R \leq \#A$. By the Bernstein's Lemma, $A \approx R$.

L