
3. LIPSCHITZ FUNCTIONS

Definition 3.1 (Open sets). A subset D ⊆ R is open if for every x0 ∈ Ω there exists
r > 0 such that

(x0 − r, x0 + r) ⊆ Ω.

A subset D ⊆ R
2 is open if for every (x0, y0) ∈ Ω there exists r > 0 such that

(x0 − r, x0 + r)× (y0 − r, y0 + r) ⊆ Ω.

Definition 3.2 (Bounded functions). A function of one or more variables g defined on
Ω ⊆ R

n is bounded if there exists M ∈ R such that

|g(x)| ≤ M

for every x ∈ Ω.

If g is not bounded, for every a in R there exists xa such that

|g(xa)| ≥ a.

Actually, by the Archimedean property of the set of real numbers, to prove that a
function is not bounded, it is enough to show that there exists xn as above, only when
n is a natural number.

Definition 3.3 (Lipschitz functions). A one-variable function y : I → R is Lipschitz if
and only if there exists a constant L such that

|y(x1)− y(x2)| ≤ L|x1 − x2|

for every x1, x2 ∈ I.

Unless otherwise stated, in the next proposition and theorems I will be an interval
containing at least two elements.

Proposition 3.1. If y : I → R is Lipschitz (with constant L) and derivable at x ∈ I, then
|y′(x)| ≤ L.

Proof. Since y is Lipschitz, for h > 0, we have
�

�

�

�

y(x + h)− y(x)

h

�

�

�

�

≤ L.

By taking the limit, we obtain |y′(x)| ≤ L. �

Proposition 3.2. If y : I → R is derivable on I and y′ is bounded (by a constant M), then y
is Lipschitz (with constant M).

Proof. Given x1, x2 by the Mean Value Theorem, there exists x1 < x∗ < x2 such that

y(x1)− y(x2) = y′(x∗)(x1 − x2).

By taking the absolute value, we obtain

|y(x1)− y(x2)| ≤ |y′(x∗)||x1 − x2| ≤ L|x1 − x2|.

�

Proposition 3.3. A Lipschitz function is continuous.
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Proof. Let us call g this function and K the Lipschitz constant. We fix x0 in I and ε. We
have to show that there exists δ > 0 such that

(6) |x0 − x| < δ =⇒ |g(x0)− g(x)| < ε.

We have
|g(x0)− g(x)| ≤ L|x0 − x| < Lδ.

So, if we choose δ < ε/L we obtain the inequality (6). �

Continuous functions can be non-Lipschitz. The function

y0 : (0, 1) → R, y0(x) =
1

x

is continuous on the interval (0, 1) but not Lipschitz. In order to prove this, we argue
by contradiction. Let L be a Lipschitz constant for y0. Since it is derivable, if y0 is
Lipschitz, y′0 must be bounded on (0, 1) from L, according to Proposition 3.1. That is,

1

x2
≤ L

for every x ∈ (0, 1). However, this is not true: take the sequence (xn) where xn =
n−1/2. Then

|y′(xn)| = n

which is bigger than L is n is large enough.

Continuous and bounded functions can be non-Lipschitz. The function

(7) y1 : (0, 1) → R, y1(x) = sin(1/x)

is derivable and bounded. But it is not Lipschitz. In fact, its derivative

y′1(x) = −
1

x2
cos

1

x
.

is not bounded: if we evaluate y′1 on the sequence

xn =
1

2πn

we obtain
y′1(xn) = −4π

2n2

which diverges to −∞ as n → +∞.

Definition 3.4 (Locally Lipschitz functions). A function y : I → R is locally Lipschitz
if for every x0 ∈ I there exists r > 0 such that y is Lipschitz on

(x0 − r, x0 + r) ∩ I.

Proposition 3.4. A Lipschitz function is locally Lipschitz.

Proof. Suppose that y : I → R is Lipschitz with constant L. Let x0 ∈ I be a point and
let r = 1. Then y is Lipschitz on (x − 1, x + 1) ∩ I: given

x1, x2 ∈ (x − 1, x + 1) ∩ I

we have x1, x2 ∈ I. Since y is Lipschitz,

|y(x1)− y(x2)| ≤ L|x1 − x2|.

Then y is Lipschitz on (x − 1, x + 1) ∩ I. �
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Example 3.1 (Locally Lipschitz does not imply Lipschitz). In general, the converse is
not true. For instance y1 in (7) is locally Lipschitz: given 0 < x0 < 1, if we take
r = x0/2, then

|y′1(x)| = |1/x2| ≤
4

x2
0

, for every x ∈ (x0/2, 3x0/2).

Notation 3.1. Given x0, y0 in R and r > 0, we define

Ir(x0) := (x0 − r, x0 + r) ⊂ R

Qr(x0, y0) := Ir(x0)× Ir(y0) ⊂ R
2.

This definition generalizes in R
n as

Qr(x0) :=
n

∏
i=1

Ir(x
i
0).

Definition 3.5 (Locally bounded functions). A function g : Ω ⊂ R
n → R is locally

bounded if and only if, for every x0 ∈ Ω, there exists r > 0 such that g is bounded on
Qr(x0) ∩ Ω.

Local properties. In general, when we define a property P of a function g over Ω, we
can also define the corresponding local property: g is locally P if and only for every x0

in Ω there exists r > 0 such that g satisfies P in Qr(x0) ∩ Ω. In most of the cases we
will see that the global property implies the local property, while usually the converse
will not be true.

Example 3.2 (Lipschitz functions may not be derivable). A function can be Lipschitz
but not derivable. A simple example is given by y2(x) = |x|. It follows from the
inequality

||x1|− |x2|| ≤ |x1 − x2|

for every x1, x2 in R. So, we can take L = 1.

Proposition 3.5. Suppose that y is a continuous function on an interval I and there exists x∗
in I such that y is Lipschitz on I1 := (−∞, x∗) ∩ I and is Lipschitz on I2 := (x∗,+∞) ∩ I.
Then y is Lipschitz on I.

Proof. We claim the y is a Lipschitz function with constant L := max{L1, L2}. Since y
is Lipschitz on I1, there exists L1 such that

(8) |y(x1)− y(x2)| ≤ L1|x1 − x2| ≤ L|x1 − x2|

for all x1, x2 in I2. First, we show that y is Lipschitz on (−∞, x∗] ∩ I. Let x+ be an
element of I1. Then, there exists ε > 0 such that

x∗ + ε < x+.

So, x∗ + ε is in I2. Then

y(x+)− y(x∗) = y(x+)− y(x∗ + ε) + y(x∗ + ε)− y(x∗)

= y(x+)− y(x∗ + ε) + α(ε).

From (8), we have

|y(x+)− y(x∗)| ≤ |y(x+)− y(x∗ + ε)|+ |α(ε)|

≤ L|x+ − x∗ − ε|+ |α(ε)|.
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Now, we take the limit as ε → 0. The function α(ε) converges to zero because y
is continuous at the point x∗. In a similar way, we can show that y is Lipschitz on
(−∞, x∗] ∩ I with Lipschitz constant L.

We conclude by showing that y is Lipschitz on I with constant L: the only case that we
did not discuss is the one where x1 and x2 are such that

x1 ≤ x∗ ≤ x2.

Then

|y(x2)− y(x1)| ≤ |y(x2)− y(x∗)|+ |y(x∗)− y(x1)|

≤ L(x2 − x∗) + L(x∗ − x1) = L(x2 − x1).

�

3.1. Two-variables Lipschitz functions.

Definition 3.6 (Two variables Lipschitz funtions). A function g : Ω ⊆ R
2 → R is

Lipschitz if there exists a constant L such that

|g(x1, y1)− g(x2, y2)| ≤ L(|x1 − x2|+ |y1 − y2|).

Most of the propositions we proved for one-variables Lipschitz functions apply to
two-variable Lipschitz functions. For instance, if g is Lipschitz and ∂xg exists at a
given point (x0, y0), then

(9) |∂xg(x0, y0)| ≤ L.

This follows from the definition of partial derivative: for every h = 0,
�

�

�

�

g(x0 + h, y0)− g(x0, y0)

h

�

�

�

�

≤ L.

Taking the limit as h → 0, we obtain (9). For our purposes, it is interesting to look at
two-variables functions which are Lipschitz only on one variable:

Definition 3.7. A function g : Ω → R is Lipy if there exists L such that for every (x, y1)
and (x, y2), there holds

|g(x, y1)− g(x, y2)| ≤ L|y1 − y2|.

If g is Lipy, and ∂yg exists, then |∂yg| ≤ L. In one-variable functions, Proposition 3.2
ensures that if y′ exists on I (interval) and it is bounded, then y is Lipschitz.

Unfortunately, in two variables, it is not true that if ∂xg and ∂yg exist on Ω and are
bounded, then g is Lipschitz on Ω (or that if ∂yg is bounded, then g is Lipy on Ω). It is

true if Ω satisfies some special requirements, 1. as in the next proposition.

Proposition 3.6. Let g be function on Qr(x0, y0) such that ∂yg is bounded. Then g is Lipy.

Proof. Let (x, y1) and (x, y2) be two distinct points of Q. For every 0 ≤ t ≤ 1, the
segment

(x, y1 + t(y2 − y1)) ∈ Q.

We can check this directly. Since (x, y1) ∈ Q, we have

x ∈ (x0 − r, x0 + r).

1For example, if Ω is a convex subset of R
2
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Now, y1 and y2 belong to Ir(y0). Then

|y1 + t(y2 − y1)− y0| = |y1 + t(y2 − y1)− ty0 − (1 − t)y0|

= |(1 − t)(y1 − y0) + t(y2 − y0)|

≤ (1 − t)|y1 − y0|+ |t(y2 − y0)| ≤ (1 − t)r0 + tr0 = r0.

We define
h : [0, 1] → R, h(t) := g(x, y1 + t(y2 − y1)).

Since
h′(t) = ∂yg(x, y1 + t(y2 − y1))(y2 − y1)

by the Mean Value Theorem,

g(x, y2)− g(x, y1) = h(1)− h(0) = h′(t∗) = ∂yg(x, y1 + t(y2 − y1))(y2 − y1).

Then

|g(x, y2)− g(x, y1)| ≤ |h′(t∗)| = |∂yg(x, y1 + t∗(y2 − y1))||y2 − y1| ≤ L|y2 − y1|.

�

Definition 3.8 (Locally Lipy functions). The function g is locally Lipy on Ω if and only
if for every (x0, y0) in Ω, there exists r > 0 such that g is bounded on Qr(x0, y0).

Theorem 3.1 (Picard-Lindelöf). Let f be a continuous and locally Lipy function on a open

subset of R
2, Ω. Let (x0, y0) be a point of Ω. Then,

(i) there exists r > 0 and a function y on Ir(x0) such that (x, y(x)) is in Ω for every x in
Ir(x0). Moreover,

(IVP)

�

y′(x) = f (x, y(x))
y(x0) = y0

(ii) if (y1, I1) and (y2, I2) solve (IVP), then

y1(x) = y2(x) for every x ∈ I1 ∩ I2.

Corollary 3.1. Let f a locally Lipy function. And let (y1, I1) and (y2, I2) are two solutions of
the differential equation

y′(x) = f (x, y(x)).

Suppose that there exists x∗ in I1 ∩ I2 such that y1(x∗) = y2(x∗), then

y1(x) = y2(x) for every x ∈ I1 ∩ I2.


