
Corollary 3.1. Let f a locally Lipy function. And let (y1, I1) and (y2, I2) are two solutions of
the differential equation

y′(x) = f (x, y(x)).

Suppose that there exists x∗ in I1 ∩ I2 such that y1(x∗) = y2(x∗), then

y1(x) = y2(x) for every x ∈ I1 ∩ I2.

4. LINEAR DIFFERENTIAL EQUATIONS

An ordinary differential equation

F(x, y(x), y′(x), . . . , y(n)) = 0

is said linear of order n if

F(x, z, p1, . . . , pn) = an(x)pn + · · ·+ a1(x)p1 + a0(x)z − g(x)

for some functions
an, an−1, . . . , a0, g : J → R

defined on a given open interval J ⊂ R and

an = 0.

The functions ai are called coefficients and g is called non-homogeneous term.

Definition 4.1. A linear differential equation (d.e.) is said homogeneous if g ≡ 0

Definition 4.2. A linear d.e. is called constant coefficients d.e. if ai are constant func-
tions for every 0 ≤ i ≤ n.

We will assume that the coefficients are constant functions and that the equation is
homogeneous. Then, the equation can be written as

any(n) + an−1y(n−1) + an−2y(n−2) + · · ·+ a0y = 0

and an = 0. Up to divide by an, we can suppose that the equation is

y(n) + an−1y(n−1) + an−2y(n−2) + · · ·+ a0y = 0.

We introduce the following notation for the derivative

Dy := y′.

Given a function a : J → R, we define

(D − a)y(x) := y′(x)− a(x)y(x).

Moreover,

D0y := y

Dky := D(Dk−1y) k ≥ 1.

for every α ∈ R. From the notation above it follows the relation

(D − α)(D − β)y = D2y − (α + β)Dy + αβy

for every α, β real numbers. In fact,

(D − α)(D − β)y = (D − α)(y′ − βy) = D(y′ − βy)− α(y′ − βy)

= y′′ − βy′ − αy′ + αβy = y′′ − (α + β)y′ + αβy.

For the sake of simplicity, we will denote a linear differential equation with Ly = g.
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Proposition 4.1 (The Superposition Principle). Given a nth homogeneous order linear d.e.
Ly = 0, if y and z are solutions, then cy + dz is a solution for every real numbers c, d.

Proof. We have

L(cy + dz) =
n

∑
k=0

ak(x)(cy + dz)(k) =
n

∑
k=0

ak(x)(cy(k) + dz(k))

= c
n

∑
k=0

ak(x)y
(k)(x) + d

n

∑
k=0

ak(x)z
(k)(x) = cLy + dLz.

So, if y and z are solutions, then Ly = Lz = 0. Then L(cy + dz) = 0. �

Definition 4.3. To a linear homogeneous ODE with constant coefficients, we can asso-
ciate its characteristic polynomial given by

p(X) = Xn + an−1Xn−1 + · · ·+ a1X + a0.

Theorem 4.1. The solutions to the differential equation (D − α)(D − β)y = 0 are

y = c1eαx + c2eβx(α = β)

y = c1eαx + c2xeαx.(α = β)

Proof. We use the substitution z = (D − β)y. Then

(D − α)z = 0 =⇒ z = ceαx.

Then

(D − β)y = ceαx

whence

e−βx(D − β)y = ce(α−β)x

D(e−βxy) = ce(α−β)x.

Now, we need to integrate both sides of the equation. If α = β, then
�

e(α−β)x =
1

α − β
e(α−β)x.

Then

e−βxy =
c

α − β
e(α−β)x + d

whence

y(x) =
c

α − β
eαx + deβx.

If we set c1 = c/(α − β) and c2 = d, then we obtain the solutions in the first case. Now,
suppose that α = β. Then (13) becomes

D(e−βxy) = c.

Then

e−βxy = cx + d

and

y(x) = cxeβx + deβx .

We set c1 = d and c2 = c. Since α = β, we obtain the solutions in (13). �
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4.1. Non factorizable characteristic polynomial. We start by considering the case
where

(10) y′′ + y = 0, p(X) = X2 + 1.

We can see that there are at least two solutions

y1(x) = sin x y2(x) = cos x

and, by the Superposition Principle, all the linear combinations

(11) y = c1 sin x + c2 cos x

are also solutions. In the next proposition, we show that all the solutions are as in (11).

Proposition 4.2. Let (y, (a, b)) be a solution to

y′′ + y = 0.

Then, there are two (unique) constants c1 and c2 such that

y(x) = c1 cos x + c2 sin x.

Therefore, the solution can be defined on (−∞,+∞).

Proof. Let us fix a point x0 in (a, b). We define

z(x) = y(x + x0).

Clearly (z, (a − x0, b − x0)) is a solution to (10).

We prove that

z(x) = z(0) cos x + z′(0) sin x.

We define

w(x) := z(x)− z(0) cos x − z′(0) sin x.

By the Superposition principle, w satisfies

w′′ + w = 0.

Moreover,

(12) w(0) = 0, w′(0) = 0.

We claim that w = 0 on (a − x0, b − x0). In fact, if we multiply by 2w′ and obtain

2w′′w + 2ww′ = 0 =⇒ D
�

(w′)2 + w2
�

= 0.

Then, there exists a constant c such that

(w′(x))2 + w2(x) = c.

From (12), this constant is equal to zero. Then

(w′(x))2 + w2(x) = 0

for every x in (a − x0, b − x0), which implies w = 0. Hence

y(x) = z(x + x0) = z(0) cos(x + x0) + z′(0) sin(x + x0)

= (z(0) cos x0 − z′(0) sin x0) cos x + (z′(0) cos x0 − z(0) sin x0) sin x.

Then we can choose

c1 = z(0) cos x0 − z′(0) sin x0, c2 = z′(0) cos x0 − z(0) sin x0.

12



We show that, if the equality (11) holds for another pair of constants (d1, d2), then
c1 = d1 and c2 = d2. In fact, since

(13) (c1 − d1) cos x + (c2 − d2) sin x = 0

for every x in (a, b), there holds

(c1 − d1) cos x0 + (c2 − d2) sin x0 = 0

−(c1 − d1) sin x0 + (c2 − d2) cos x0 = 0.

We multiply the first equation by cos x0 and the second equation by sin x0 and take the
difference. Then

(c1 − d1) cos2 x0 + (c2 − d2) sin x0 cos x0 = 0

−(c1 − d1) sin x0 sin x0 + (c2 − d2) cos x0 sin x0 = 0.

Now, we take the difference between the first and the second equation.

(c1 − d1)(cos2 x0 + sin2 x0) = 0

which implies c1 = d1. Together with (13) we obtain c2 = d2.

Finally, since the domain of sin x and cos x is (−∞,+∞), then we can choose (−∞,+∞)
as existence interval for y. �

4.2. Second case: p(X) = X2 + β2 with β = 0. Now, we wish to solve the differential
equation

(14) y′′ + β2y = 0

with β > 0. Clearly, cos βx and sin βx are solutions to (14), and, by the Superposition
Principle, for every c1, c2 real numbers

c1 cos βx + c2 cos sin βx

is a solution to (14).

Proposition 4.3. Let (y, (a, b)) be a solution to (14). Then there exists a unique pair (c1, c2)
such that

y(x) = c1 cos βx + c2 sin βx.

and the existence interval can be extended to (−∞,+∞).

Proof. We set

(15) z(x) := y(β−1x)

Then
z′(x) = β−1y′(β−1x)

and
z′′(x) = β−2y′′(β−1x) = β−2(−β2y(β−1x) = −y(β−1x) = z.

Then
z′′ + z = 0.

By Proposition 4.2, there are two constants c1 and c2 such that

z(x) = c1 sin x + c2 cos x.

From (15),
y(x) = z(βx) = c1 sin βx + c2 cos βx.

Since this pair of constants is unique for z, it is also unique for y. �
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4.3. Last case: p(X) = (X − α)2 + β2 with β = 0. We wish to reduce to problem to
the previous case where the polynomial is X2 + β2. We have

(D − α)2y = (D − α)(D − α)y

= (D − α)[eαxe−αx(D − α)y] = (D − α)[eαxD(e−αxy)].

We use the substitution

(16) z(x) = e−αxy.

Then the last term of the equality above can be written as

(D − α)(eαxDz) = D(eαxDz)− α(eαxDz)

= αeαxDz + eαxD2z − αeαxDz = eαxD2z.

Then
(D − α)2y + β2y = eαxD2z + eαxβ2z = eαx(D2z + β2z)

and
eαx(D2z + β2z) = 0 =⇒ (D2 + β2)z = 0.

From Proposition 4.3,
z(x) = c1 cos βx + c2 sin βx.

By (16),
y(x) = c1eαx cos βx + c2eαx sin βx.


