Aritmetica

- 1. Trovare tutti gli n interi positivi tali che $n|2^n + 1$.
- **2.** Un numero si dice *perfetto* se è somma dei suoi divisori, escluso se stesso. Mostrare che i numeri perfetti pari sono della forma $2^n \cdot (2^{n+1} 1)$, dove $2^{n+1} 1$ è primo.
- 3. Trovare esplicitamente un x tale che $3x \equiv 1 \pmod{5^8}$. (Hint: Risolvere $3x \equiv 1 \pmod{5}$ e cercare un modo per sollevare la soluzione). Trovare esplicitamente un x tale che $3x \equiv 1 \pmod{5^6}$.
- 4. Sia n dispari e sia S l'insieme dei numeri x tali che $(x,n)=1 \land (x+1,n)=1$. Mostrare che $\prod_{x\in S}x\equiv 1\pmod n$.
- 5. Mostrare che per ogni primo p è possibile scegliere un n intero positivo tale che $2^n + 3^n + 6^n 1$ sia divisibile per p.
- **6.** Siano $a, b \in c$ tre numeri non divisibili per p. Mostrare che $ax^2 + by^2 + cz^2 \equiv 0 \pmod{p}$ ha almeno una solzione. Cosa succede invece se c = 0? E se b = c = 0?
- (\star) In realtà vale che l'equazione di sopra ha esattamente p^2 soluzioni. Mostrarlo (la soluzione è tutt'altro che facile, ma non invoca, comunque, teoremi particolarmente difficili).