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CANONICAL TRANSFORMATIONS

As for a generic system of differential equations, coordinate transformations can be
used in order to bring the system to a simpler form. If the system is Hamiltonian
it is desirable to keep the Hamiltonian form of the equations when the system is
transformed. The search for a class of transformations satisfying the latter property
leads to considering the group of the so called canonical transformations.

The condition of canonicity can be expressed in terms of Poisson brackets, La-
grange brackets and differential forms. In these notes I will discuss five different criteria
of canonicity. Precisely, a coordinate transformation is canonical in case:

(i) the Jacobian matrix of the transformation is a symplectic matrix;
(ii) the transformation preserves the Poisson brackets;
(iii) the transformation preserves the Lagrange brackets;
(iv) the transformation preserves the differential 2–form

∑

j dpj ∧ dqj ;
(v) the transformation preserves the integral over a closed curve of the 1–form

∑

j pjdqj .
An useful method for constructing canonicals transformations is furnished by the the-
ory of generating functions. This is the basis for further development of the integration
methods, eventually leading to the Hamilton–Jacobi’s equation.

2.1 Elements of symplectic geometry

Before entering the discussion of canonical transformations we recall a few aspects
of symplectic geometry that will be useful. A relevant role is played by the bilinear
antisymmetric form induced by the matrix J introduced in sect. 1.1.3, formula (1.16).

Symplectic geometry is characterized by the skew symmetric matrix J in the
same sense as Euclidean geometry is characterized by the identity matrix I. Indeed,
Euclidean geometry is characterized by transformations preserving the bilinear sym-
metric form

(2.1) 〈x,y〉 =
∑

j

xjyj .
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This is called the inner product, and is preserved by the group of orthogonal transfor-
mations, namely, matrices U satisfying

(2.2) U
⊤
U = I .

Similarly, symplectic geometry is characterized by transformations preserving the bi-
linear form

(2.3) [x,y] = 〈x, Jy〉 ,

where J is the matrix defined by (1.16). This is called the symplectic product. It is
antisymmetric, i.e., [x,y] = −[y,x], and non degenerate, i.e., [x,y] = 0 for all y ∈ R

2n

implies x = 0.

2.1.1 The symplectic group

Let us consider a linear mapping in R
2n

(2.4) x = Uy ,

where U is a 2n× 2n nonsingular matrix. The matrix U is said to be symplectic if

(2.5) U
⊤
JU = J .

This condition is actually equivalent to

(2.6) UJU
⊤ = J .

For, by (2.5) we have U
⊤ = JU

−1
J
−1, and so also UJU

⊤ = UJ
2
U
−1

J
−1 = −J

−1 = J in
view of J2 = −I. By the way, this shows that if U is symplectic then U

⊤ is symplectic,
too.

The set of symplectic matrices forms a group with respect to matrix multiplica-
tion. For, the identity matrix I is clearly symplectic; if U and V are symplectic then
(UV)⊤J(UV) = V

⊤
U
⊤
JUV = V

⊤
JV = J, so that (UV) is symplectic; if U is symplectic

then J = IJI = (U−1)⊤U⊤
JUU

−1 = (U−1)⊤JU−1, so that U−1 is symplectic. Finally, if
U is symplectic so is U⊤.

Going back to the canonically conjugated coordinates (q, p) it is immediately seen
that the symplectic product of two 2n vectors z = (q,p) and z′ = (q′,p′) is given
by the expression

∑n
j=1(qjp

′
j − q′jpj). That is, the symplectic product is obtained by

projecting the parallelogram with sides z, z′ onto each of the planes qj , pj , and then
adding up algebraically the oriented areas of all these projections.

The set of linear transformations which preserve the symplectic product is charac-
terized as the group of symplectic matrices. For, [Ux,Uy] = 〈Ux, JUy〉 = 〈x,U⊤

JUy〉,
and this coincides with [x,y] if and only if U satisfies (2.5).

2.1.2 Symplectic spaces and symplectic–orthogonality

A symplectic space is a real linear vector space V equipped with a bilinear antisym-
metric nondegenerate form [·, ·]. We shall consider here only vector spaces of finite
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dimension. Two vectors x,y are said to be symplectic–orthogonal in case [x,y] = 0.
We shall write x6 y. To any subspace W of V we associate the set

(2.7) W
6

= {x ∈ V | x6 y for all y ∈ W} ;

by the bilinearity of the symplectic form W
6

is a subspace, which is said to
be symplectic–orthogonal1 to W . We emphasize that the concept of symplectic–
orthogonality presents sharp differences with respect to the concept of orthogonality
in Euclidean geometry. Here are three main differences.

(i) Every vector is self symplectic–orthogonal, since the symplectic product is
antisymmetric; therefore, any one–dimensional subspace is self symplectic–
orthogonal, too.

(ii) The restriction of the symplectic product to a subspace is still a bilinear form,
but in general it fails to be nondegenerate. For instance, the restriction to a
one–dimensional subspace is clearly degenerate.

(iii) The subspaces W and W
6

need not be complementary.
Two basic properties that are common to both geometries are given by the fol-

lowing

Lemma 2.1: Let W be a subspace of a symplectic space V . Then

(2.8) dimW + dimW
6

= dimV .

and

(2.9)
(

W
6 )6

= W

Proof. If dimW = 0 or dimW = dimV , then the statement is trivial. So, let us
suppose that dimW = m with 0 < m < dimV . Denoting n = dimV , let {u1, . . . ,un}
be a basis of V , with {u1, . . . ,um} a basis of W . Writing a generic vector v ∈ V as
v =

∑n
j=1 vjuj, the symplectic product takes the form [v,w] =

∑

j,k ajkvjwk , where
ajk = [uj ,uk] is an element of an antisymmetric nondegenerate matrix. If w ∈ W ,
then wn−m+1 = . . . = wn = 0, because by hypothesis {u1, . . . ,um} is a basis of W . If

moreover v ∈ W
6
, then the relation of symplectic orthogonality is

m
∑

j=1

βjwj = 0 , βj =
n
∑

k=1

ajkvk .

Since w ∈ W is arbitrary, the first equation implies β1 = . . . = βm = 0 and
βm+1, . . . , βn arbitrary; so, there are n − m independent solutions. Since the ma-
trix {ajk} is nondegenerate, the second relation above guarantees the existence of
exactly n−m independent vectors symplectic–orthogonal to the subspace W , so that

dimW
6

= n−m , as claimed.

Coming to (2.9), if w ∈ W , then v 6 w for all v ∈ W
6
, because by definition every

element of W
6

is symplectic–orthogonal to every element of W , and so also to w, so

1 Some authors use the name left–orthogonality. See for instance [7].



28 Chapter 2

that W ⊂ (W
6
)
6
. On the other hand, by (2.8), dim(W

6
)
6

= dimW , so that (2.9)
follows. Q.E.D.

We now go deeper into the concept of symplectic–orthogonality, pointing out some
properties that do not appear in Euclidean geometry. To this end, we first need some
definitions.

A subspace W of a symplectic space V is said to be:

(i) isotropic in case W ⊂ W
6
;

(ii) coisotropic in case W ⊃ W
6
, namely, if its symplectic–orthogonal subspace is

isotropic;

(iii) Lagrangian in case W = W
6
, namely, if it is both isotropic and coisotropic;

(iv) symplectic in case the symplectic product restricted to W is still nondegenerate.

These definitions are easily illustrated by considering the space R
2n . We denote by

{e1, . . . , en,d1, . . . ,dn} the canonical basis of R2n and by (q1, . . . , qn, p1, . . . , pn) the
coordinates, so that a vector x ∈ R

2n is represented as q1e1+ . . .+qnen+p1d1+ . . .+
pndn. The symplectic bilinear form is defined by the relations

[ej, ek] = [dj,dk] = 0 , [ej ,dk] = δj,k , j, k = 1, . . . , n .

We shall refer to the basis {e1, . . . , en,d1, . . . ,dn} satisfying the latter relations as the
canonical symplectic basis.

Example 2.1: Arithmetic planes. Let us call arithmetic plane the subspace spanned
by any subset of the vectors {e1, . . . , en,d1, . . . ,dn}. Formally, given any subsets J,K
of {1, . . . , n}, we consider the plane spanned by the vectors {ej}j∈J ∪ {dk}k∈K . The
following examples are easily understood:

(i) the arithmetic plane spanned by any subset of the vectors {e1, . . . , en} is an
isotropic subspace;

(ii) the direct sum of any of the arithmetic planes of the point (i) with the arithmetic
plane span(d1, . . . ,dn) is a coisotropic subspace;

(iii) the arithmetic plane span(e1, . . . , en) is a Lagrangian subspace.

(iv) for every j ∈ {1, . . . , n}, the arithmetic 2–dimensional plane span(ej,dj) is
symplectic; further symplectic subspaces are generated by direct sum of such
arithmetic planes.

In the examples (i)–(iii) the role of the vectors ej and dj can be exchanged, of course.

A more interesting example is the following:

Example 2.2: Lagrangian arithmetic planes. Consider any partition of the indexes
{1, . . . , n} into two disjoint subsets J and K (i.e., J ∩K = ∅ and J ∪K = {1, . . . , n}).
Then the arithmetic plane spanned by the n vectors {ej}j∈J

∪{dk}k∈K is a Lagrangian

plane. There are 2n different Lagrangian planes that are generated that way.2

2 There are 2n different partitions of n objects into two disjoint subsets.
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2.1.3 Canonical basis of a symplectic space

The examples above are in fact quite general. For, any symplectic space can be
equipped with a canonical symplectic basis. This is stated by the following

Proposition 2.2: Let V be a symplectic space. Then dimV is even, say 2n, and
there exists a canonical basis {e1, . . . , en,d1, . . . ,dn} satisfying

(2.10) [ej, ek] = [dj ,dk] = 0 , [ej,dk] = δjk , j, k = 1, . . . , n .

The proof depends on some properties that are of independent interest, and are
isolated in the following two lemmas.

Lemma 2.3: A subspace W of V is symplectic if and only if the subspaces W and

W
6

are complementary. In that case W
6

is a symplectic subspace.

Proof. LetW be a symplectic subspace. ThenW∩W 6
= {0}. For, we have [v,w] =

0 for all w ∈ W in view of v ∈ W
6
, and this implies v = 0 in view of v ∈ W and of

the nondegeneracy of the symplectic product. On the other hand, by (2.8), we have

dim(W ⊕W
6
) = dimW +dimW

6
= dimV , so that W and W

6
are complementary.

Conversely, let W and W
6

be complementary, and let v ∈ W be such that [v,w] = 0

for all w ∈ W . By definition of W
6

this implies [v,w] = 0 for all w ∈ V , and so also
v = 0 by nondegeneracy. We conclude that W is symplectic.

It remains to prove that W
6

is symplectic. Since W and W
6

are complementary, if

[v,w] = 0 for all w ∈ W
6

then v = 0 by the same argument as above. Q.E.D.

Lemma 2.4: Let V be a symplectic space. Then dimV ≥ 2, and there exists a
decomposition of V in two complementary symplectic subspaces V1 and V2, with

dimV1 = 2 and V2 = V
6
1 . Moreover, in V1 there exists a symplectic canonical ba-

sis e1,d1 .

Proof. Let e1 6= 0 be an arbitrary vector. Then, by nondegeneracy, there exists a
vector d1 independent of e1 such that [e1,d1] 6= 0. This proves that the dimension
must be at least 2. In view of linearity, by a trivial rescaling we can choose d1 such
that [e1,d1] = 1.
Let V1 = span(e1,d1) , so that dimV1 = 2 and e1,d1 is a basis of V1. We prove that
it is a symplectic subspace. To this end, first check that the decomposition of any
vector w ∈ V1 over the basis e1,d1 is w = [w,d1]e1 − [w, e1]d1 ; this is elementary.
Suppose now that [w,v] = 0 for all v ∈ V1. Then we have in particular [w, e1] =
[w,d1] = 0, and so also w = 0 in view of the decomposition above. This proves that
the restriction of the symplectic form to the subspace V1 is nondegenerate. Therefore,
V1 is a symplectic subspace, and e1,d1 is a canonical basis of it.

By lemma 2.3, V2 = V
6
1 is a symplectic subspace complementary to V1. Q.E.D.

Proof of proposition 2.2. If dimV = 2 just apply once lemma 2.4. If dimV > 2,
then apply recursively lemma 2.4. With an obvious change of notation, first write
V = V1⊕V ′ , where V1 admits a symplectic canonical basis e1,d1, and V ′ is symplectic,
with dimV ′ = dimV − 2. Next, apply again the lemma to V ′, getting V ′ = V2 ⊕ V ′′

with V2 admitting a canonical basis e2,d2 . Proceeding the same way, end up with a
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decomposition V = V1 ⊕ · · · ⊕ Vn (recall that we assume that V is a vector space of
finite dimension), where Vj is a 2–dimensional symplectic subspace equipped with a
canonical basis ej ,dj satisfying [ej , ej] = [dj,dj] = 0 and [ej ,dj] = 1 (j = 1, . . . , n) .
This implies that {e1, . . . , en,d1, . . . ,dn} is a basis for V , and so also dimV = 2n .
By construction, all subspaces V1, . . . , Vn are pairwise symplectic–orthogonal, which
implies [ej, ek] = [dj,dk] = [ej ,dk] = 0 for j 6= k. This proves (2.10). Q.E.D.

2.1.4 Properties of the subspaces of a symplectic space

We establish two properties that will be relevant in the discussion concerning integrable
systems.

Lemma 2.5: If W is isotropic, then dimW ≤ n; if W is coisotropic, then dimW ≥
n; if W is Lagrangian, then dimW = n.

An immediate consequence of this lemma is the

Corollary 2.6: An isotropic subspace W is Lagrangian if and only if dimW = n.
The same holds true for a coisotropic subspace.

Proof of lemma 2.5. Just use lemma 2.1, formula (2.8). If W is isotropic, i.e.,

W ⊂ W
6
, then dimW ≤ dimW

6
, which implies dimW ≤ n. If W is coisotropic,

just reverse the argument. If W is Lagrangian, it is both isotropic and coisotropic, so
that both the inequalities dimW ≤ n and dimW ≥ n apply. Q.E.D.

Lemma 2.7: Let V be a symplectic space and {e1, . . . , en,d1, . . . ,dn} be a canon-
ical basis. Then any Lagrangian subspace W of V is complementary to at least one of
the Lagrangian arithmetic planes of example 2.2.

Proof. Consider the n–dimensional Lagrangian plane D = span{d1, . . . ,dn}, and
let P = D ∩W and m = dimP . Since P is a subspace of D, we have 0 ≤ m ≤ n, and
there exist n−m vectors in {d1, . . . ,dn} spanning a (n−m)–dimensional arithmetic
plane complementary to P in D. That is: there is a subset K ⊂ {1, . . . , n}, with #K =
n − m, such that the arithmetic plane DK = span{dk}k∈K satisfies DK ∩ P = {0}
and DK ⊕ P = D (the set K needs not be unique). Let now J = {1, . . . , n} \K, so
that {J,K} is a partition of {1, . . . , n}, and let EJ = span{ej}j∈J . We prove that
the Lagrangian subspace L = EJ ⊕ DK is complementary to W , namely, it is the
Lagrangian arithmetic plane we are looking for. Since dimW = dimL = n, it is
enough to prove that W ∩ L = {0}. This is seen as follows. On the one hand, by
P ⊂ W and W 6 W we have P 6 W ; on the other hand, by DK ⊂ L and L 6 L we have
DK 6 L. Using these relations we get3 D = P ⊕ DK 6 W ∩ L, and so W ∩ L ⊂ D in
view of D being Lagrangian. Therefore, W ∩L = (W ∩D)∩ (L∩D) = P ∩DK = {0},
by construction of DK . Q.E.D.

3 Let v ∈ W ∩L. Since v ∈ W , we have v 6 P ; since v ∈ L, we have v 6 DK . We conclude
v 6 P ⊕DK .
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2.2 Transformations preserving the Hamiltonian form of the
equations.

Let us now turn to the main argument of this chapter, namely to characterize a class of
transformation that allows us to stay in the framework of the Hamiltonian formalism.

It may be useful to make again a connection with the lagrangian formalism. It is
well known that Lagrange equations have the nice property of being invariant with
respect to point transformation (i.e., changes of the coordinates in configuration space,
which by differentiation generate the corresponding transformations on the general-
ized velocities). The Hamiltonian formalism removes the tie between generalized co-
ordinates and velocities, so that arbitrary transformations involving all the canonical
coordinates may be devised. However, an arbitrary transformation will likely produce
equations which are not in Hamiltonian form, in the sense that the second members
are not expressed as derivatives of a unique function.

The problem then is to characterize a restricted class of transformation which
keep the form of Hamilton’s equations.

2.2.1 Conditions for canonicity

Let us first look for a class of transformations (q, p) = C(q, p) satisfying the following

Condition 1: to every Hamiltonian function H(q, p) one can associate another func-
tion K(q, p) such that the canonical system of equations

q̇j =
∂H

∂pj
, ṗj = −∂H

∂qj
, j = 1, . . . , n ,

is changed into the system

q̇j =
∂K

∂pj
, ṗj = −∂K

∂qj
, j = 1, . . . , n ,

which is still canonical.
We shall say that such a transformation preserves the canonical form of the equations.

Condition 1 applies both to the case of time–independent and time–dependent
transformations

Condition 2: the transformation preserves the canonical form of the equations with
the new Hamiltonian

H(q, p) = H(q, p)
∣

∣

q=q(q,p) , p=p(q,p)
.

The difference with respect to the first condition is that the new Hamiltonian is con-
structed by a straightforward substitution of the transformation in the old one. Trans-
formations satisfying condition 2 condition will be called time–independent canonical
transformations, or simply canonical.4

4 There is no general agreement about the use of the term canonical transformation.
Some authors call canonical any transformation satisfying the requisite of preserving
the canonical form of the equations, as stated by condition 1 in the text. For example,
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The case of time–dependent transformations appears to be a little more complex:
we need to go back to condition 1, since the new Hamiltonian is not determined by
a mere substitution of variables. I will discuss this matter at the end of the chapter,
where it is shown how the case of time–dependent transformations can be reduced to
the time–independent one, and how the new Hamiltonian K(q, p) is constructed.

The examples below show that there are transformations satisfying the conditions
above. As already anticipated, I will consider here only time–independent transforma-
tions.

Example 2.3: Translation. The transformation

qj = qj + aj , pj = pj + bj , 1 ≤ j ≤ n ,

where a = (a1, . . . , an) and b = (b1, . . . , bn) are constants, preserves the canonical form
of the equations with the new Hamiltonian

H(q, p) = H(q, p)
∣

∣

∣

q=q+a , p=p+b
.

Thus, the transformation is canonical.

Example 2.4: Scaling transformation. The transformation

qj = αqj , pj = βpj , 1 ≤ j ≤ n ,

with real constants α and β preserves the canonical form of the equations with the
new Hamiltonian

K(q, p) =
1

αβ
H(q, p)

∣

∣

∣

∣

q=αq , p=βp

.

This transformation always satisfies condition 1 above. However, condition 2 is fulfilled
only in case αβ = 1, and so we shall call it canonical only in the latter case.5

Example 2.5: Exchange of conjugated coordinates. The transformation

qj = pj , pj = −qj , 1 ≤ j ≤ n ,

preserves the canonical form of the equations with the new Hamiltonian

H(q, p) = H(q, p)|q=p , p=−q .

This is a canonical transformation.

this is the attitude of Wintner in [81]. Others follow the attitude of the present notes.
Example 2.4 below illustrates the difference.

5 This example shows that restricting the use of the adjective canonical only to trans-
formations satisfying the second condition essentially reduces to excluding the class of
scaling transformations for which αβ 6= 1. Including all such transformations makes the
definition more general, of course. However, this introduces some complications in the
expositions that are unnecessary, and this is what I want to avoid. The more general
framework is recovered by keeping in mind that a canonical transformation in the sense
intended here can always be composed with a scaling transformation, which sometimes
is an useful device.
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2.2.2 Symplecticity of the Jacobian matrix

In order to find a condition for a transformation to be canonical let us use the compact
notation of sect. 1.1.3. Let us write the transformation as x = u(y), and let K(y) =
H ◦ u(y) be the Hamiltonian expressed in the new coordinates y.

Proposition 2.8: The transformation x = u(y) is canonical if and only if the Jaco-
bian matrix uy of the transformation satisfies

(2.11) u⊤
y Juy = J ,

Here, J is the matrix defined by (1.16). In the language of sect. 2.2 we say that the
Jacobian matrix of the transformation must be symplectic.6

Proof. Using coordinates, compute

∂K

∂yk
=

2n
∑

j=1

∂xj

∂yk

∂H

∂xj

∣

∣

∣

∣

x=u(y)

,

or, in compact notation,

∂yK = u⊤
y ∂xH ◦ u .

Using J
2 = −I, write the canonical equations for H as −Jẋ = ∂xH, and using also

ẋ = uy ẏ compute −Juy ẏ = ∂xH ◦ u. Finally, multiply both sides of the latter relation
by u⊤

y , and get −u⊤
y Juy ẏ = u⊤

y ∂xH ◦ u = ∂yK. Therefore, the equations for y are
written

−u⊤
y Juy ẏ = ∂yK .

They are in canonical form with the Hamiltonian K(y) provided u⊤
y Juy = J. Q.E.D.

2.2.3 Preservation of Poisson brackets

As we remarked in sect 1.2.2, the Hamiltonian formalism can be expressed in terms of
Poisson brackets, saying that the time evolution of any dynamical variable f is given
by equation ḟ = {f,H} . This leads to a characterization of canonical transformations
as possessing the property of leaving invariant the form of the Poisson bracket.

Let (q, p) = C (q, p) be a coordinate transformation, and denote by C f the trans-
formed function

(

C f
)

(q, p) = f(q, p)
∣

∣

∣

(q,p)=C (q,p)
.

Also, denote by {·, ·}q,p and by {·, ·}q,p the Poisson bracket with respect to the con-
jugate variables q, p and q, p, respectively. Consider now the class of transformations

6 In the recent literature the name “canonical transformation” is frequently replaced by
“symplectic transformation”. In these notes I prefer to use the old fashioned name
”canonical”. However, I will sometimes use the adjective “symplectic” when dealing
with linear transformations, which involve symplectic matrices.
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satisfying the condition that the following diagram is commutative for any functions
f and g:

(2.12)

f, g
C−→ C f,C g

{·,·}





y





y
{·,·}

{f, g}q,p −→
C

C
(

{f, g}q,p
)

= {C f,C g}q,p .

In words, one obtains the same result both (a) by computing the Poisson bracket with
respect to the variables q, p and then changing the variables in the result, or (b) by
changing the variables and then computing the Poisson bracket with respect to the
new variables q, p. If this happens to be true, we shall say that the transformations
preserves the Poisson brackets.

Proposition 2.9: A transformation (q, p) = C (q, p) is canonical if and only if it
preserves the Poisson brackets, i.e., the diagram (2.12) is commutative.

The difficult part of the proof is the “only if”, i.e., that the condition is necessary.
In order to see it, we need to investigate to which extent we can transform the criterion
expressed by the latter proposition to a practically applicable criterion.

Let us consider the coordinates q, p as functions on the phase space; it is an easy
matter to check that the relations

(2.13)
{qj , qk} = {pj , pk} = 0

{qj , pk} = δjk
1 ≤ j ≤ n , 1 ≤ k ≤ n

hold true, where δjk is the Kronecker symbol. These expressions are sometimes called
the fundamental Poisson brackets.

We prove the following

Lemma 2.10: A transformation preserves the Poisson bracket between any two
functions if and only if it preserves the fundamental Poisson brackets.

As a direct consequence, proposition 2.9 can be reformulated in a more useful
manner as

Corollary 2.11: A transformation (q, p) = C (q, p), is canonical if and only if it
preserves the fundamental Poisson brackets, i.e.,

(2.14)
{qj , qk}q,p = {pj , pk}q,p = 0

{qj , pk}q,p = δjk , 1 ≤ j ≤ n , 1 ≤ k ≤ n .

As a matter of fact, a direct proof of this statement is achieved by just writing
explicitly the condition of proposition 2.8 in terms of the old canonical coordinates q, p
and of the new ones q, p. The reader will see that they are just different formulations
of the same thing. However, this arguments brings no light on the apparently stronger
condition that the Poisson bracket between any two function must be preserved. Since
the formulation of the Hamiltonian formalism in terms of Poisson brackets is of in-
terest in itself, let us proceed by giving a complete proof, independent of that of
proposition 2.8.
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Proof of lemma 2.10. Assume that the Poisson bracket between any two func-
tions is preserved; then the fundamental Poisson brackets are preserved, too. So, we
must prove only the converse. To this end, first check that if we are given a function
f(ϕ1, . . . , ϕr), where, in turn, ϕ1 . . . , ϕr are functions of the canonical variables q, p,
then

{f, g} =

r
∑

l=1

∂f

∂ϕl

{ϕl, g} ,

where g(q, p) is any function. This is just matter of straightforward calculations. Put
now r = 2n and ϕ1(q, p) = q1(q, p), . . . , ϕ2n(q, p) = pn(q, p), and consider also g(q, p)
as function of the new variables q, p through ϕ1, . . . , ϕ2n. Then, using the identity
above, compute

{f, g}q,p =
∑

j,k

(

∂f

∂qj

∂g

∂qk
{qj , qk}q,p +

∂f

∂qj

∂g

∂pk
{qj , pk}q,p

+
∂f

∂pj

∂g

∂qk
{pj , qk}q,p +

∂f

∂pj

∂g

∂pk
{pj , pk}q,p

)

.

In view of the preservation of the fundamental Poisson bracket we immediately
get {f, g}q,p = {f, g}q,p, namely that the Poisson bracket between f and g is pre-
served. Q.E.D.

Proof of proposition 2.9. Let the transformation to preserve the Poisson brack-
ets. Denoting q = q(q, p) , p = p = (q, p) the inverse transformation, let f(q, p) be any
of the new coordinates, e.g., f(q, p) = qj(q, p) for some j. Then ḟ = {f,H}q,p. On
the other hand, by preservation of the Poisson brackets we also have, after changing
the variables, ḟ = {f,H}q,p, that is, q̇j = ∂H

∂pj
where H(q, p) = H(q, p)

∣

∣

(q,p)=C (q,p)
.

Therefore, the transformed equations keep canonical form by just transforming the
hamiltonian, as required by condition 2. Conversely, let the transformation be canon-
ical, and let, e.g., f = qj and H = pk for some j and k. Thus, ḟ = {qj , pk} = δj,k. On

the other hand, after transforming to new variables we have ḟ = {f,H}q,p, because
in the new variables the equations are still in canonical form. Since the time deriva-
tive of f must be the same after the transformation, we conclude {qj , pk}q,p = δj,k.
The argument applies to any pair of canonical coordinates q, p, and this means that
the fundamental Poisson bracket are preserved. By lemma 2.10 this implies that the
Poisson brackets are preserved. Q.E.D.

Example 2.6: The case of one degree of freedom. In the case n = 1 the canonicity
condition in order the transformation to be canonical.may be written as

{q, p} = det









∂q

∂q

∂q

∂p

∂p

∂q

∂p

∂p









= 1 ,

which means that the transformation must be area–preserving. For instance, the scal-
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ing transformation

(2.15) q = αq , p =
1

α
p

is canonical. An example of a transformation which is common in geometry but is not
canonical is the transformation to polar coordinates (in the phase plane), which is not
area preserving. A similar transformation which however is canonical is

(2.16) q =
√
2I cosϕ , p =

√
2I sinϕ .

The variables I, ϕ thus defined are called action–angle variables for the harmonic
oscillator.

Example 2.7: Harmonic oscillators. The Hamiltonian of a system of harmonic os-
cillators is

H(q, p) =

n
∑

j=1

1

2

(

p2j + ω2
j q

2
j

)

,

with ω = (ω1, . . . , ωn) ∈ R
n. A more symmetric Hamiltonian is constructed by apply-

ing the rescaling transformation

qj =
qj√
ωj

, pj = pj
√
ωj , 1 ≤ j ≤ n ,

which is clearly canonical. The transformed Hamiltonian is

H(q, p) =
∑

j

ωj

2

(

p2j + q2j
)

.

The form of the Hamiltonian can be further simplified by using the transformation to
action–angle variables, namely

qj =
√

2Ij cosϕj , pj =
√

2Ij sinϕj , 1 ≤ j ≤ n .

By this, the Hamiltonian is transformed to

H(I, ϕ) =
∑

j

ωjIj ,

which is trivially integrated.

2.2.4 Preservation of Lagrange brackets

Suppose that the canonical coordinates q, p are given as functions of two variables u, v.
The Lagrange bracket [u, v] is defined as7

(2.17) [u, v] =
n
∑

j=1

(

∂qj

∂u

∂pj

∂v
− ∂qj

∂v

∂pj

∂u

)

.

7 Lagrange, Mém. de l’Institut de France (1808).
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There is a strict relation between Lagrange brackets and Poisson brackets. Let the
canonical coordinates q, p be expressed as differentiable and invertible functions of 2n
independent variables u1, . . . , u2n as

(2.18) qj = qj(u1, . . . , u2n) , pj = pj(u1, . . . , u2n) , j, k = 1, . . . , n ,

so that the variables u can be expressed as differentiable functions of the canonical
coordinates q, p , by inversion.

Lemma 2.12: Let the 2n× 2n matrices A = Aj,k and B = {Bj,k} , j, k = 1, . . . , 2n
be defined as Ajk = {uj, uk} and Bjk = [uj , uk]. Then we have

(2.19) AB
⊤ = I ,

the identity matrix.

Proof. For r, s = 1, . . . , 2n compute

2n
∑

l=1

{ul, ur}[ul, us]

=

2n
∑

l=1

n
∑

j=1

n
∑

k=1

(

∂ul

∂qj

∂ur

∂pj
− ∂ul

∂pj

∂ur

∂qj

)(

∂qk

∂ul

∂pk

∂us

− ∂qk

∂us

∂pk

∂ul

)

=
n
∑

j=1

n
∑

k=1

[(

2n
∑

l=1

∂ul

∂qj

∂qk

∂ul

)

∂ur

∂pj

∂pk

∂us

−
(

2n
∑

l=1

∂ul

∂qj

∂pk

∂ul

)

∂ur

∂pj

∂qk

∂us

−
(

2n
∑

l=1

∂ul

∂pj

∂qk

∂ul

)

∂ur

∂qj

∂pk

∂us

+

(

2n
∑

l=1

∂ul

∂pj

∂pk

∂ul

)

∂ur

∂qj

∂qk

∂us

]

=

n
∑

j=1

(

∂ur

∂pj

∂pj

∂us

+
∂ur

∂qj

∂qj

∂us

)

= δrs ;

here, use has been made of the identities

2n
∑

l=1

∂ul

∂qj

∂pk

∂ul

=

2n
∑

l=1

∂ul

∂pj

∂qk

∂ul

= 0 ,

2n
∑

l=1

∂ul

∂qj

∂qk

∂ul

=

2n
∑

l=1

∂ul

∂pj

∂pk

∂ul

= δjk .

Q.E.D.

It is now convenient to rename (u1, . . . , u2n) as (q1, . . . , qn, p1, . . . , pn). If the trans-
formation (2.18) is the identity, then we have

(2.20)
[qj , qk] = [pj , pk] = 0

[qj , pk] = δjk , 1 ≤ j ≤ n , 1 ≤ k ≤ n .

These expressions are called the fundamental Lagrange brackets.
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Proposition 2.13: A transformation (q, p) = C (q, p) is canonical if and only if it
preserves the fundamental Lagrange brackets.

Proof. Recall that a canonical transformation preserves the fundamental Poisson
brackets (corollary 2.11), and use lemma 2.12. If the fundamental Poisson brackets
are preserved, then A = J, the symplectic matrix defined by (1.16); using JJ

⊤ = I,
by (2.19) we conclude B = J. Conversely, if the fundamental Lagrange brackets are
preserved, then B = J, and by (2.19) we conclude A = J. Q.E.D.

2.3 Poincaré’s integral invariants

We consider the differential form

(2.21) ω2 =

n
∑

j=1

dqj ∧ dpj .

Proposition 2.14: A transformation (q, p) = C (q, p) is canonical if and only if it
preserves the 2–form ω2 =

∑

j dqj ∧ dpj .

Proof. Using the formula for changing variables in a differential form, compute

∑

j

dqj ∧ dpj =
∑

j

∑

k,l

(

∂qj

∂qk
dqk +

∂qj

∂pk
dpk

)

∧
(

∂pj

∂ql
dql +

∂pj

∂pl
dpl

)

=
∑

k<l

([qk, ql]dqk ∧ dql + [pk, pl]dpk ∧ dpl)

+
∑

k,l

[qk, pl]dqk ∧ dpl ,

which shows that the coefficients of the transformed differential form are the Lagrange
brackets. If the transformation is canonical, then by proposition 2.13 we get

∑

j

dpj ∧ dqj =
∑

j

dpj ∧ dqj .

Conversely, if the latter identity is fulfilled, then the Lagrange brackets are preserved.
By proposition 2.13 the claim follows. Q.E.D.

Starting form the 2–form ω2 we can construct further differential forms of increas-
ing order ω4, . . . , ω2n. The following corollaries hold true, the proof of which is left to
the reader.

Corollary 2.15: A canonical transformation preserves all 2k–forms ω2k, k =
1, . . . , n.

Corollary 2.16: A canonical transformation preserves the phase space volume.

The 2k–forms ω2k have been named by Poincaré absolute invariant integrals. The
latter corollary is usually called Liouville’s theorem.

Using Stokes theorem one proves
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Proposition 2.17: A transformation (q, p) = C (q, p) is canonical if and only if

(2.22)

∫

γ

∑

j

pjdqj =

∫

C (γ)

∑

j

pjdqj ,

where γ is a closed curve.

*** Questo paragrafo deve essere ampliato in modo consistente in una prossima

versione. ***

2.4 Generating functions

The characterization of canonical transformations by propositions 2.14 and 2.17 offers
us an explicit method for constructing canonical transformations.

Let us write the transformation as q = q(q, p), p = p(q, p), and let us assume that
the relation q = q(q, p) can be inverted (at least locally) with respect to p, so that

(2.23) det
∂(q1, . . . , qn)

∂(p1, . . . , pn)
6= 0 .

Transformations satisfying this condition are called free canonical transformations. By
proposition 2.17 we have

∫

γ

∑

j

pjdqj =

∫

γ

∑

j

pjdqj ,

where γ is an arbitrary closed curve. This means that there exists a function S(q, q)
such that

(2.24)
∑

j

(

pjdqj − pjdqj
)

= dS ,

The function S(q, q) is called the generating function. We have indeed the following

Proposition 2.18: Let the function S(q, q) satisfy the condition

(2.25) det

(

∂2S

∂qj∂qk

)

6= 0 .

Then the transformation defined by

(2.26) pj =
∂S

∂qj
(q, q) , pj = − ∂S

∂qj
(q, q) , 1 ≤ j ≤ n

is a free canonical transformation.

Proof. The transformation clearly satisfies the condition of proposition 2.17 for
canonicity and condition (2.23) for being a free canonical transformation. Q.E.D.

It should be remarked that the transformation is given in implicit form; however,
by condition (2.25), we are allowed to do the inversions needed in order to express
either the old variables q, p as functions of the new ones q, p or the new variables as



40 Chapter 2

functions of the old ones. For, inverting the second of (2.26) with respect to q we get
q = q(q, p), and replacing this in the first of (2.26) we get also p = p(q, q)

∣

∣

q=q(q,p)
, as

required. Conversely, inverting the first of (2.26) with respect to q and replacing the
result in the second of (2.26) we obtain the inverse transformation.

Example 2.8: Exchange of conjugated coordinates. The generating function

(2.27) S(q, q) =
∑

j

qjqj

generates the canonical transformation

(2.28) pj = qj , pj = −qj , 1 ≤ j ≤ n ,

exchanging the coordinates with the momenta.

The class of free canonical transformation does not exhaust all possibilities. For
instance, one will immediately realize that the identity is not free, so that it can not
be represented by a generating function of the form above. A different form of the
canonical transformation can be constructed using the Legendre transformation.

*** Aggiungere trasformata di Legendre ***

Proposition 2.19: Let the generating function S(p, q) satisfy the condition

(2.29) det

(

∂2S

∂pj∂qk

)

6= 0 .

Then the transformation implicitly defined by

(2.30) pj =
∂S

∂qj
(p, q) , qj =

∂S

∂pj
(p, q) , 1 ≤ j ≤ n .

Proof. We check that the canonicity condition of proposition 2.17 is satisfied. For,
introducing the Legendre transform of S(p, q), namely S̃ = S −∑j pjqj , we compute

dS̃ =
∑

j

(

∂S

∂pj
dpj +

∂S

∂qj
dqj − pjdqj − qjdpj

)

=
∑

j

(

pjdqj − pjdqj
)

,

so that (2.22) follows. Q.E.D.

The form S(p, q) of the generating function is actually the most common.8 This
because many useful transformations are expressed with a generating function of this
form. The examples which follows illustrate some interesting cases.

Example 2.9: The identity and the scaling transformations. The generating func-
tion S(p, q) = α

∑

j pjqj generates the scaling transformation

pj = αpj , qj = αqj , 1 ≤ j ≤ n .

8 Several books report only this form.
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For α = 1 this is the identity.

Example 2.10: Extended point transformation. Suppose that we are given a point
transformation q = q(q) which is a diffeomorphism,9 so that it admits an inverse
q = q(q) and

(2.31) det
∂(q1, . . . , qn)

∂(q1, . . . , qn)
6= 0 , det

∂(q1, . . . , qn)

∂(q1, . . . , qn)
6= 0 .

A corresponding canonical transformation can be constructed using the generating
function

S(p, q) =
∑

k

pkqk
∣

∣

q=q(q)
.

For, the complete transformation is

qj = qj(q) , pj =
∑

k

pk
∂qk
∂qj

(q) , 1 ≤ j ≤ n .

On the other hand, the invertibility condition (2.29) of proposition 2.19 is satisfied in
view of (2.31), since

det

(

∂2S

∂pk∂qj

)

= det

(

∂qk
∂qj

)

6= 0 .

This extension is not unique. The most general extended point transformation is gen-
erated by the function

(2.32) S(p, q) =
∑

k

pkqk
∣

∣

q=q(q)
+W (q) ,

where W (q) is an arbitrary function.

Example 2.11: Near the identity canonical transformations. Consider the generat-
ing function

(2.33) S(p, q) =
∑

j

pjqj + εf(p, q) ,

where f(p, q) is an arbitrary function and ε a real parameter, which is assumed to be
small. The invertibility condition (2.29) of proposition 2.19 is clearly satisfied for ε

small enough. The corresponding canonical transformation in implicit form is

pj = pj + ε
∂f

∂qj
(p, q) , qj = qj + ε

∂f

∂pj
(p, q) , 1 ≤ j ≤ n .

9 This is the class of transformation which are allowed in the framework of the Lagrangian
formalism.
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The explicit form can be found, e.g., by inverting the second relation with respect to
q and replacing the result in the first one. This gives

qj = qj − ε
∂f

∂pj
(p, q) + ε2 . . .

pj = pj + ε
∂f

∂qj
(p, q) + ε2 . . . .

For ε = 0 the transformation is the identity, while for ε 6= 0 the coordinates are changed
by a little amount. Such a kind of transformations is the basic tool for the development
of perturbation theory. However, it can be remarked that the inversion required in
order to put the transformation in explicit form is a quite unpleasant aspect, mainly
if one plans to perform an explicit calculation. We shall see that inversions can be
avoided by using the algorithm of Lie transforms.

The generating functions discussed till now do not actually exhaust the class of
canonical transformations. The following example illustrates this point.

Example 2.12: 2n canonical transformations. Let J,K be a partition of the set
{1, . . . , n} into two disjoint subsets, J ∪K = {1, . . . , n}, J ∩K = ∅, and consider the
canonical transformation

(2.34)
pj = qj , pj = −qj for j ∈ J

pk = pk , qk = qk for k ∈ K .

There are 2n different transformation of this type. In particular, the exchange of
conjugated coordinates of example 2.8 is found by setting J = {1, . . . , n} , K = ∅ ,
and the identity is found by setting J = ∅ , K = {1, . . . , n} . We know that the latter
two examples are covered by propositions 2.18 and 2.19, respectively, but a generating
function of the form above can not be found in all other cases.

All the examples above are actually covered by the following

Proposition 2.20: Take any partition of the integers {1, . . . , n} into two disjoint
sets J,K. Assume that the generating function S = S(qJ , pK , q) satisfy the condition

(2.35) det

(

∂2S

∂(qJ , pK)∂q

)

6= 0 .

Then the transformation implicitly defined by

(2.36)

pj = − ∂S

∂qj
for j ∈ J

qk =
∂S

∂pk
for k ∈ K

pl =
∂S

∂ql
for 1 ≤ l ≤ n

is canonical. Conversely, for any canonical transformation one can find a partition J,K

and a generating function of the form above.
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Proof. The proof that the transformation is canonical requires checking that propo-
sition 2.17 applies. This is just a minor modification of the proof of proposition 2.19,
and is left to the reader.
We prove that all canonical transformations are covered. To this end first remark that
the canonical transformation (2.36) is characterized by the condition

(2.37) det

(

∂(p1, . . . , pn)

∂(qJ , pK)

)

6= 0 .

If a canonical transformation is given, then the n functions p1(q, p), . . . , pn(q, p) are
independent, which means that the n× 2n Jacobian matrix

(2.38)
∂(p1, . . . , pn)

∂(q1, . . . , qn, p1, . . . , pn)

has rank n. Moreover, in view of {pj , pk} = 0 for j, k = 1, . . . , n, the n vectors

J

(

∂pj

∂q
1

, . . . ,
∂pj

∂qn
,
∂pj

∂p
1

, . . . ,
∂pj

∂qn

)

span a n–dimensional Lagrangian subspace of the tan-

gent space to F at every point (q, p). On the other hand, at every point (q, p) we can
define a canonical basis {e1, . . . , en,d1, . . . ,dn} by just setting

ej =

(

∂qj

∂q1
, . . . ,

∂qj

∂qn
, 0, . . . , 0

)

, dj =

(

0, . . . , 0,
∂pj

∂p1
, . . . ,

∂pj

∂pn

)

, j = 1, . . . , n .

By lemma 2.7, the Lagrangian subspace above is complementary to at least one of
the Lagrangian arithmentic planes of the canonical basis. This means that there exists
a partition {J,K} of {1, . . . , n} such that the 2n × 2n matrix obtained by adding
to (2.38) the n rows {ek}k∈K ∪{dj}j∈J has non zero determinant. On the other hand,
the determinant turns out to be exactly (2.37), so that we conclude that J,K is the
wanted partition. Q.E.D.

2.5 Time–depending canonical transformations

We show here how the theory of canonical transformations can be generalized so that
the cases of non autonomous Hamiltonians and of time depending transformations are
taken into account.

We use the extension of the phase space discussed in sect. 1.1.1, i.e., we introduce
two further canonical variables q0, p0 and for a given HamiltonianH(q, p, t) we consider
the Hamiltonian in the extended phase space10

(2.39) H̃(q, p, q0, p0) = H(q, p, q0) + p0 .

On the extended space phase we can perform canonical transformations of the form
q = q (q, p, q0, p0), p = p (q, p, q0, p0), q0 = q0(q, p, q0, p0), p0 = p0(q, p, q0, p0), to which

10 We emphasize the particular role played by the variables q0, p0 by denoting the canonical
coordinates in phase space as (q, p, q0, p0), where q = (q1, . . . , qn) and p = (p1, . . . , pn).
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the theory developed till now applies. However, this means that we change also the
time variable, in the sense that the new variable q0 will not evolve uniformly in time.

The natural choice is to consider a restricted class of transformations which keeps
the coordinate q0 invariant, namely q0 = q0; in turn, p0 = p0(q, p, q0, p0) will be deter-
mined so as to fulfill the canonicity conditions. A first consequence is that the condition
{q0, p0} = 1 implies p0 = p0+ f(q, p, q0), with some function f . A second consequence
is that the canonicity conditions {q0, qj} = {q0, pj} = 0 for 1 ≤ j ≤ n imply that qj , pj
do not depend on p0. This also means that the Poisson brackets {qj , qk} , {qj , pk} and
{pj , pk} are actually computed by differentiating only with respect to the variables
q, p.

The general scheme is the following: in order to perform a time dependent trans-
formation we first consider the extended phase space and the Hamiltonian (2.39),
and perform a transformation satisfying the conditions above. This means that the
transformed Hamiltonian will take the form

H(q, p, q0, p0) = H(q, p, q0)
∣

∣

q=q(q,p,q
0
), p=p(q,p,q

0
),q0=q

0

+ p0 + f(q, p, q0) .

In view of the linear dependence on p0 we remove the extension of the phase space
by setting again q0 = t and removing the term p0, thus obtaining the transformed
Hamiltonian

H(q, p, t) = H(q, p, t)
∣

∣

q=q(q,p,t), p=p(q,p,t)
+ f(q, p, t) .

We emphasize that the new Hamiltonian is not merely the transformed function of
the old one: there is an extra term that must be computed. The following propositions
show that the canonicity conditions to be checked are the ones discussed till now, that
must be fulfilled identically in t, and explain how to determine the extra term in the
Hamiltonian.

Proposition 2.21: Let q = q(q, p, t), p = p(q, p, t) be a time dependent transfor-
mation which preserves the fundamental Poisson brackets identically in t. Then the
transformation is canonical, and there exists a function F (q, p, t) such that the trans-
formed Hamiltonian is

(2.40) H(q, p, t) =
[

H(q, p, t)− F (q, p, t)
]

q=q(q,p,t),p=p(q,p,t)

Proof. We just prove that in the extended phase space there is a function F (q, p, q0)
such that the extended transformation

(2.41)
q = q(q, p, q0) , p = p(q, p, q0) ,

q0 = q0 , p0 = p0 − F (q, p, q0)
∣

∣

q=q(q,p,q
0
) , p=p(q,p,q

0
)

is canonical. Differentiating with respect to q0 the relations {qj , qk} = {pj , pk} =
0 , {qj , pk} = δjk for 1 ≤ j ≤ n (true in view of the assumed preservation of the
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fundamental Poisson brackets) we get
{

∂qj

∂q0
, qk

}

+

{

qj ,
∂qk

∂q0

}

= 0 ,

{

∂qj

∂q0
, pk

}

+

{

qj ,
∂pk

∂q0

}

= 0 ,

{

∂pj

∂q0
, pk

}

+

{

pj ,
∂pk

∂q0

}

= 0 .

Recalling that q, p do not depend on p0, and denoting

fj =
∂qj

∂q0
, gj =

∂pj

∂q0
,

we write the identities above as

∂fj

∂pk
− ∂fk

∂pj
= 0 ,

∂fj

∂qk
− ∂gk

∂pj
= 0 ,

∂gj

∂qk
− ∂gk

∂qj
= 0 .

This implies the (local) existence of a function F (q, p, q0) such that

(2.42)
∂qj

∂q0
=

∂F

∂pj
,

∂pj

∂q0
= −∂F

∂qj
.

With this function we complete the transformation as in (2.41). The canonicity of
the extended transformation is checked by remarking that {q0, qj} = {q0, pj} =
0, {q0, p0} = 1 in view of the assumed preservation of the fundamental Poisson brackets
for all t, and so for all q0, and that

{p0, qj} =
∂qj

∂q0
− {F, qj} , {p0, pj} =

∂pj

∂q0
− {F, pj}

are zero in view of (2.42). Replacing the transformation in the Hamiltonian (2.39) and
removing the extension of the phase space the claim follows. Q.E.D.

Proposition 2.22: Let S(p, q, t) be a function satisfying

det

(

∂2S

∂pj∂qk

)

6= 0 .

Then the transformation implicitly defined by

qj =
∂S

∂pj
, pj =

∂S

∂qj
, 1 ≤ j ≤ n

is canonical, and the transformed Hamiltonian takes the form

(2.43) H(q, p, t) = H(q, p, t)
∣

∣

∣

q=q(q,p,t),p=p(q,p,t)
+

∂S

∂t
(p, q, t)

∣

∣

∣

q=q(q,p,t)
.

Proof. In the extended phase space consider the generating function

S̃(p, q, p0, q0) = p0q0 + S(p, q, q0) .
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The corresponding transformation is

(2.44)

qj =
∂S

∂pj
, pj =

∂S

∂qj
, 1 ≤ j ≤ n ,

q0 = q0 , p0 = p0 +
∂S

∂q0
.

Replacing the transformation in the Hamiltonian (2.39) and removing the extension
of the phase space the claim follows. Q.E.D.

2.6 The equation of Hamilton–Jacobi

The integration of the canonical equations can be performed by looking for a gen-
erating function of a canonical transformation giving the Hamiltonian a particularly
simple form. It is customary to use the formalism of time dependent canonical trans-
formation.

Having given the HamiltonianH(q, p, t) we look for a function S which is a solution
of the Hamilton–Jacobi equation ([33], [35], [39], [40])

(2.45) H

(

q,
∂S

∂q
, t

)

+
∂S

∂t
= 0 .

We are actually looking for the generating function of a transformation such that
the transformed Hamiltonian is identically zero. The problem is to find a solution of
eq. (2.45) depending on q1, . . . , qn, t and on n arbitrary parameters α1, . . . , αn; this is
said to be a complete integral.

Proposition 2.23: Consider the Hamiltonian H(q, p, t), and assume that we are
given a complete integral S(α, q, t) of Hamilton–Jacobi’s equation (2.45), depending
on n arbitrary parameters α1, . . . , αn and satisfying

det

(

∂2S

∂αj∂qk

)

6= 0 .

Then the solutions of the canonical equations are written in implicit form as

(2.46) βj =
∂S

∂αj

(α, q, t) , pj =
∂S

∂qj
(α, q, t) , 1 ≤ j ≤ n ,

where α1, . . . , αn, β1, . . . , βn are constants depending on the initial data.

Proof. The function S(α, q, t) satisfies the conditions of proposition 2.22; therefore,
it is the generating function of a canonical transformation, actually the transforma-
tion (2.46). Since the transformed Hamiltonian is identically zero, the corresponding
canonical equations are

α̇j = 0 , β̇j = 0 , 1 ≤ j ≤ n ,
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i.e., α, β are constants depending on the initial data. By inversion of (2.46) with respect
to q, p one gets functions

q = q(α, β, t) , p = p(α, β, t) ,

i.e., the wanted solutions of the canonical equations. Q.E.D.

Example 2.13: Free particle Let the Hamiltonian be

H =
1

2m
(p2x + p2y + p2z) .

The corresponding Hamilton–Jacobi’s equation is

1

2m

[

(

∂S

∂x

)2

+

(

∂S

∂y

)2

+

(

∂S

∂z

)2
]

+
∂S

∂t
= 0 .

We use the method of separation of variables. We look for a solution of the form

S(x, y, z, t) = X(x) + Y (y) + Z(z) + T (t) ,

so that the equation is rewritten as

(2.47)
1

2m

[

(

dX

dx

)2

+

(

dY

dy

)2

+

(

dZ

dz

)2
]

+
dT

dt
= 0 .

Therefore, we obtain the equations11

dX

dx
= αx ,

dY

dy
= αy ,

dZ

dz
= αz ,

dT

dt
= −

α2
x + α2

y + α2
z

2m
,

with αx, αy, αz arbitrary constants. By integration we construct the generating func-
tion

S(αx, αy, αz, x, y, z, t) = αxx+ αyy + αzz −
α2
x + α2

y + α2
z

2m
t ,

so that the transformation is
px = αx , py = αy , pz = αz

βx = x− αx

m
t , βy = y − αy

m
t , βz = z − αz

m
t .

This is the solution of the canonical equations.

11 Differentiating (2.47) with respect to x we get d2X

dx2 = 0, so that dX
dx

must be constant.

Similarly, differentiating with respect to y, z and t we get that dY
dy

, dZ
dz

and dT
dt

are con-

stants, too. In view of (2.47), only three of these constants are arbitrary.
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3

INTEGRABLE SYSTEMS

The present chapter deals with general methods that should allow us to integrate the
Hamilton’s equations, using the tools developed in the previous chapters. This was
indeed the dream of the great mathematicians, after Newton, till the end of the XIX
century. Nowadays we are well aware that integrable systems are rather exceptional,
and this is indeed a good justification of the fact that all textbooks contain the same
examples — just a few which are the classical and more interesting ones. Nevertheless,
integrable systems represent an excellent first approximation of interesting mechanical
systems, and are the starting point of classical perturbation theory. It is not far from
reality to say that in most cases the goal of perturbation methods is to reduce a system
of differential equations to a form as close as possible to an integrable one.

Before entering the discussion we should make an agreement on the meaning of
the term integrable system. In view of the theorem of existence and uniqueness of
the solutions of a system of differential equations every Hamiltonian system can be
said to be integrable provided some mild regularity conditions are satisfied by the
Hamiltonian function. This is useful, of course, if one is interested in computing the
orbit corresponding to a given initial datum, e.g., with numerical methods.1 However,
we should keep in mind that the theorem has a local character: in our case it assures
only the existence of the solution for some time interval. The process of continuation
of a given solution may be used in order to establish the existence of the solution for
larger time intervals, but it gives essentially no information about the global behaviour
of the orbits. In the framework of Hamiltonian systems (although this is not a true

1 The most common numerical methods for solving differential equations are indeed based
on the possibility of writing the first few terms of the Taylor expansion of the solution.
The computation of the orbit is performed by repeating an elementary iteration step:
starting from the initial point at time 0 one computes the (approximate) point at time
τ ; then the new point is used as initial point for the next step, and so on. However, the
expansion is only local. Moreover, small error which are unavoidably introduced at every
step may accumulate. Proving that the computed orbit remains close to the true orbit
for a long time interval is, generally speaking, an hard problem.
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restriction) it is customary to assign a more precise meaning to the word integrability.
In some sense, one asks for being able to write the solution for all times.

The traditional interpretation involves the concept of integrability by quadra-
tures. This means that the solution has to be found via a finite number of algebraic
operations, including inversion of functions, and of computation of integrals of known
functions (quadrature). The integration method discussed in sect. 1.3 for systems with
one degree of freedom is a good example. In the framework of Hamiltonian theory Liou-
ville’s theorem can be considered as the most advanced general result in this direction.
The paradigm model is represented by an Hamiltonian depending only on the momenta
p1, . . . , pn, i.e., H = H(p1, . . . , pn) , which is trivially integrable. In short, Liouville’s
theorem says that if a Hamiltonian system possesses enough first integrals then the
Hamiltonian can be given the form above with a suitable coordinate transformation.

In more recent times more attention is paid to the global description of the behav-
ior of the solutions, with particular attention to the existence of periods, or frequen-
cies. Thus, most authors impose the sharper condition that the coordinates q1, . . . , qn
conjugated to p1, . . . , pn are actually angles, that is, q ∈ T

n. In the latter case the
canonically conjugated variables p, q are called action–angle variables. This seems to
be a very strong condition: for instance, the problem of a mass point freely moving on
the space can not be described by action–angle variables in strict sense because there
are no periods. However, such a strong attitude can be justified a posteriori. Indeed,
small perturbations of an integrable system that admits action–angle variables typ-
ically produce a very complicated dynamical behavior, which is still not completely
understood.2

In view of this discussion, we consider the following problem: Assume we are given
a Liouville–integrable system. Can we introduce action–angle variables? The answer
to this question is furnished by the theorem of Arnold–Jost.3

The theorems of Liouville and of Arnold–Jost constitute the main contents of this
chapter. A general discussion of the dynamical behaviour of an integrable system is
also included.

2 A typical situation arising in Mechanics is the study of a system of many particles, that
may be either free of moving all around the space under the mutual interactions, as
is the case of our planetary system or of an atomic system, or may be subjected to
some constraints, as, e.g., in the case of a rigid body. The first step usually consists
in exploiting the conservation of the total momentum by eliminating the motion of the
center of mass, which is a trivial one being that of a free particle. Then in many cases
action–angle variables may be introduced in some approximation.

3 The use of action–angle variables was well known in connection with classical problems
like the planetary motions and the motion of a rigid body. During the first decades
of this century it has become relevant also in connection with the first developments of
quantum theory. A classical and valuable reference is M. Born’s treatise [15]. The theorem
of Arnold–Jost states that integrability in classical mechanics is strongly connected with
the existence of action–angle variables.
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3.1 Involution systems

The investigation of integrability is mainly based on the existence of independent first
integrals. In the framework of Hamiltonian system a relevant role is played by first
integrals with vanishing mutual Poisson bracket.

A system of r functions {Φ1(q, p), . . . ,Φr(q, p)} is said to be an involution system
if the functions are independent, i.e.,

rank

(

∂(Φ1, . . . ,Φr)

∂(q1, . . . , qn, p1, . . . , pn)

)

= r ,

and the Poisson bracket between any two functions vanishes, i.e., {Φj,Φk} = 0 for
j, k = 1, . . . , r.

3.1.1 Some geometrical properties.

We prove some lemmas that will be used in the rest of the chapter.

Lemma 3.1: An involution system contains at most n independent functions, where
n is the number of degrees of freedom.

Proof. It is convenient to use the compact notation. At any point z ∈ F the sym-
plectic gradients (J∂zΦ1, . . . , J∂zΦr) span a r–dimensional subspace which is isotropic,
due to the involution property satisfied by the functions. By lemma 2.5 the dimension
of such a subspace can not exceed n. We conclude that r ≤ n. Q.E.D.

Example 3.1: Involution systems contructed using the canonical coordinates. The
most trivial but useful example is given by the canonical coordinates themselves.
Consider any partition J,K of {1, . . . , n}; then the n functions {qj}j∈J ∪ {pk}k∈K

form an involution system.

Other examples may be easily constructed by making reference to known inte-
grable systems. For instance, let the phase space be R

3 × R
3, with canonical coordi-

nates x, y, z and momenta px, py, pz. The latter three quantities are the components
of the momentum, and form an involution system. This reminds us the case of a free
particle in the ordinary euclidean space. On the other hand, it is just a particular
case of the first example, since it corresponds to a partition which selects only the
momenta.

Example 3.2: Using the angular momentum in spherical coordinates It seems spon-
taneous to try to construct involution systems by using the three components of the
angular momentum, namely Mx = ypz − zpy , My = zpx − xpz , Mz = xpy − ypx.
However, it is immediately seen that the latter three quantities are independent, but
not in involution: this has been shown in example 1.10. Replacing some components
of the angular momentum with some components of the momentum does not help, for
the same reason.

An involution system may be constructed by considering one of the components of
the angular momentum, for instance Mz, and the quantity Γ2 = M2

x +M2
y +M2

z ,
namely the square of the norm of the angular momentum. The latter two quantities
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are indeed in involution. A third function in involution with Mx and Γ2 is, e.g.,

E =
1

2m
(p2x + p2y + p2z) + V (r) ,

where r =
√

x2 + y2 + z2, and V (r) an arbitrary (differentiable) function.
The same example can be reformulated using spherical coordinates. The phase space
is (0,+∞) × (0, π)× T × R

3, with canonical coordinates r, ϑ, ϕ, pr, pϑ, pϕ. The three
functions

J = pϕ , Γ2 = p2ϑ +
J2

sin2 ϑ
, E =

1

2m

(

p2r +
Γ2

r2

)

+ V (r)

form an involution system. One will recognize here the first integrals of the problem
of motion under central forces, example 1.12.

Example 3.3: Harmonic oscillators A last example is constructed by considering a
system of harmonic oscillators. Let the phase space to be R

2n, with canonical coordi-
nates x, y. The n functions

Φ1 =
x21 + y21

2
, . . . , Φn =

x2n + y2n
2

form an involution system.
Although apparently trivial this example plays a central role in studying the small
oscillations of a system in the neighbourhood of an equilibrium, since it represents a
remarkable first approximation.

In the rest of the chapter we shall need the following technical

Lemma 3.2: Let Φ1, . . . ,Φn be an involution system on the phase space F . Then
at every point P ∈ F there is a partition J,K of {1, . . . , n} such that

det

(

∂(Φ1, . . . ,Φn)

∂(qJ , pK)

)

6= 0 .

The proof is a straightforward adaptation of that of proposition 2.20, and is left to
the reader.

3.1.2 The Hamiltonian flow as a canonical transformation

Consider a point (q, p) of the phase space, and let (qt, pt) = φt(q, p) be the transformed
point under the flow φt generated by a canonical system with Hamiltonian H(q, p).
For fixed t we can consider (qt, pt) as new coordinates of the point (q, p). That is, we
consider the flow as generating a coordinate transformation on the phase space.

Lemma 3.3: Let φt denote the flow generated by the Hamiltonian H(q, p). Then
for every fixed t the transformation

(

qt(q, p), pt(q, p)
)

= φt(q, p) is canonical.

Proof. It is enough to prove that for every t the fundamental Poisson brackets are
preserved, namely that

{qj,t, qk,t}q,p = {pj,t, pk,t}q,p = 0 ,

{qj,t, pk,t}q,p = δj,k .
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This is true for t = 0, because φ0(q, p) = (q, p) is the identity. Let us prove that at
every point (q, p) of the phase space one has

d

dt
{qj,t, qk,t} =

d

dt
{pj,t, pk,t} =

d

dt
{qj,t, pk,t} = 0 ,

To this end, recalling again that qj,0 = qj , pj,0 = pj and using the Hamilton’s equations
we have

qj,t = qj + t
∂H

∂pj
+ . . . , pj,t = pj − t

∂H

∂qj
+ . . . ,

where the dots stand for terms of higher order in t. Thus we have

{qj,t, qk,t} = {qj , qk}+ t

[

{∂H

∂pj
, qk

}

+
{

qj ,
∂H

∂pk

}

]

+ . . . ,

which in turn means that one has

d

dt
{qj,t, qk,t} =

{∂H

∂pj
, qk

}

+
{

qj ,
∂H

∂pk

}

= − ∂

∂pk

∂H

∂pj
+

∂

∂pj

∂H

∂pk
= 0 .

With a similar calculation we get

d

dt
{pj,t, pk,t} = −

{∂H

∂qj
, pk

}

−
{

pj ,
∂H

∂qk

}

= 0 ,

d

dt
{qj,t, pk,t} =

{∂H

∂pj
, pk

}

−
{

qj ,
∂H

∂qk

}

= 0 .

Since the fundamental Poisson brackets have a zero time derivative at every point,
they keep a constant value along every orbit. Q.E.D.

The proposition has a suggestive geometrical interpretation: the Hamiltonian flow
can be seen as the unfolding of a canonical transformation parametrically depending
on time.

3.1.3 Variational equations and first integrals

Let a system of differential equations (which needs not be Hamiltonian)

(3.1) ẋj = Xj(x1, . . . , xn) , 1 ≤ j ≤ n ,

be given and let x(t) be an orbit with initial point x0. Let also x0+δx0 be a point close
to x0, with an infinitesimal increment δx0, and let x(t) + δx(t) be the corresponding
orbit, so that it is a solution of the differential equations

d

dt
(xj + δxj) = Xj(x1 + δx1, . . . , xn + δxn)

= Xj(x1, . . . , xn) +
n
∑

l=1

∂Xj

∂xl
(x1, . . . , xn) δxl + . . . .

where the dots denote terms of higher order in δx . Since x(t) is assumed to be a
solution of the equation ẋ = X(x), one immediately gets that δx(t) obeys the so
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called variational equation

(3.2)
d

dt
δxj =

n
∑

l=1

∂Xj

∂xl
δxl , 1 ≤ j ≤ n ,

where the functions
∂Xj

∂xl
(x1, . . . , xn) must be evaluated along the known solution x(t).

A similar procedure applies to the Hamiltonian case. Let us do it in detail, recalling
that the canonical equations have the rather particular form

(3.3) q̇j =
∂H

∂pj
, ṗj = −∂H

∂qj
, 1 ≤ j ≤ n .

Let us denote by δqj , δpj respectively the increments with respect to the variables
qj , pj . Then the variational equations are

(3.4)

d

dt
δqj =

n
∑

l=1

(

∂2H

∂pj∂ql
δql +

∂2H

∂pj∂pl
δpl

)

d

dt
δpj = −

n
∑

l=1

(

∂2H

∂qj∂ql
δql +

∂2H

∂qj∂pl
δpl

)

An interesting relation between first integrals and variational equations is given
by the following

Proposition 3.4: Let Φ be a first integral of the canonical system with Hamiltonian
H(q, p). Then a solution of the variational equations (3.4) is

(3.5) δqj = τ
∂Φ

∂pj
, δpj = −τ ∂Φ

∂qj
, 1 ≤ j ≤ n ,

where τ 6= 0 is an arbitrary constant.

Proof. In view of the linearity of the variational equations it is enough to prove the
statement for τ = 1. By differentiating the relation {Φ, H} = 0 we immediately get

{

∂Φ

∂pj
, H

}

+

{

Φ,
∂H

∂pj

}

= 0 ,

{

∂Φ

∂qj
, H

}

+

{

Φ,
∂H

∂qj

}

= 0 , 1 ≤ j ≤ n ,

that is
d

dt

∂Φ

∂pj
=

{

∂H

∂pj
,Φ

}

,
d

dt

∂Φ

∂qj
=

{

∂H

∂qj
,Φ

}

.

Writing in explicit form the r.h.s. of these equations we get

d

dt

∂Φ

∂pj
=

n
∑

l=1

(

∂2H

∂pj∂ql

∂Φ

∂pl
− ∂2H

∂pj∂pl

∂Φ

∂ql

)

,

d

dt

∂Φ

∂qj
=

n
∑

l=1

(

∂2H

∂qj∂ql

∂Φ

∂pl
− ∂2H

∂qj∂pl

∂Φ

∂ql

)

,

which in view of (3.5) coincides with (3.4). Q.E.D.
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(q, p) φt
F

φt
F (q, p)

φτ
G

φτ
Gφt

F (q, p)

φτ
G

φt
F

φt
Fφτ

G(q, p)

φτ
G(q, p)

Figure 3.1. Illustrating the commutation of flows.

*** Questo va spiegato meglio *** Let me add a remark. The proposition
essentially says that the increment (δq, δp) in (3.5) is the linear approximation in τ

of the canonical flow due to Φ(q, p). In compact notation we may write the initial
increment as δz0 = τJ∂zΦ

∣

∣

z0

. Then the statement of the theorem may be rewritten
as

(3.6) φt
(

τJ∂zΦ
∣

∣

z

)

= τJ∂zΦ
∣

∣

φt
z

.

That is: the linear approximation of the increment at the point φtz is still the approx-
imated flow at time τ of the Hamiltonian field generated by Φ . This remark will be
used in the next section.

3.1.4 Commutation of canonical flows

I come now to consider the commutation of canonical flows. If two functions F (q, p)
and G(q, p) are given we can consider both of them on the same foot, i.e., both generate
a Hamiltonian vector field, and so a canonical flow. Now, the question is the following,
as illustrated in fig. 3.1. Given an initial point (q, p), let us follow the flow of F up to
a time t , thus getting at the point φtF (q, p), and then follow the flow of G up to time
τ , ending up in φτG ◦φtF (q, p) . Then exchange the order of the flow, thus moving from
(q, p) to φτG(q, p) along the flow of G and then to φtF ◦ φτG(q, p) along the flow of F ,
the times t and τ being unchanged. In general one cannot expect the two end points
to be the same. The interesting fact is that if F and G are in involution then the final
points coincide.

A suggestive intepretation is the following. Consider an orbit of F , and apply the
flow φτG to every point of the orbit. The resulting set is again an orbit of F . The role
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of F and G may be exchanged, of course.

Proposition 3.5: Let the dynamical variables F (q, p) and G(q, p) be in involution,
and consider the canonical flows at times t and τ generated by F and G , respectively,
i.e.

(3.7) (qt, pt) = φtF (q, p) , (qτ , pτ ) = φτG(q, p) .

Then the following statements hold true.
(i) The function G is invariant for the canonical flow generated by F ; conversely,

the function F is invariant for the canonical flow generated by G . That is:

F (qτ , pτ )
∣

∣

∣

(qτ ,pτ )=φτ
G
(q,p)

= F (q, p) , G(qt, pt)
∣

∣

∣

(qt,pt)=φt
F
(q,p)

= G(q, p) .

(ii) The flows (3.7) do commute, i.e., for every (q, p) we have

φτG ◦ φtF (q, p) = φtF ◦ φτG(q, p) .

Proof. (i) It is just a reformulation of the claim that G is a first integral for F and
vice versa.

*** Migliorare la dimostrazione ***

(ii) It is convenient to use the compact notation. Let t, τ be infinitesimal quantities.
Then for any z we have

φtF z = z+ tJ∂zF
∣

∣

z

+ . . . , φτGz = z+ τJ∂zG
∣

∣

z

+ . . . ,

the dots denoting terms of higher order in t and τ . Thus, replacing z with φτGz or φtF z
as appropriate, we get

(3.8)
φtF ◦ φτGz = φτGz+ tJ∂zF

∣

∣

φτ
G
z

+ . . . ,

φτG ◦ φtF z = φtF z+ τJ∂zG
∣

∣

φt
F
z

+ . . . .

On the other hand we have also

φtF ◦ φτGz = φtF
(

z+ τJ∂zG
∣

∣

z

+ . . .
)

,

i.e., we are considering the orbit with initial point z + τJ∂zG
∣

∣

z

. By proposition 3.4,

rewritten as in (3.6), we have φt
(

τJ∂zG
∣

∣

z

)

= τJ∂zG
∣

∣

φt
z

so that we can write

(3.9) φtF ◦ φτGz = φtF z+ τJ∂zG
∣

∣

φt
F
z

+ . . . .

With a similar calculation, exchanging t with τ and F with G, we have also

(3.10) φτG ◦ φtF z = φτGz+ tJ∂zF
∣

∣

φτ
G
z

+ . . . .

Thus, subtracting (3.9) and (3.10) from the second and the first of (3.8), respectively,
we see that the contributions which are linear in t and τ do vanish. Thus at every
point x we have

∂

∂t
[φtF , φ

τ
G]z =

∂

∂τ
[φtF , φ

τ
G]z = 0

which in view of [φ0F , φ
0
G]z = 0 proves the claim. Q.E.D.
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Φ

0

Φ

α

χ

χ

α

χ

φαP

Figure 3.2. Illustrating the local coordinates induced by the flow of the in-

volution system Φ1(q, p), . . . ,Φn(q, p) . For graphical reasons the notation P0 =

(q0, p0) and P = (q, p) is used in the figure.

3.1.5 Complete involution systems and coordinates induced by the flow

Proposition 3.5 turns out to be very useful when we have a complete involution system
Φ1(q, p), . . . ,Φn(q, p) on a phase space F . Indeed this enables us to introduce local
coordinates constructed through the canonical flows of the functions. This is illustrated
in fig. 3.2. The crucial point is the following. Let φα1

1 , . . . , φαn
n be the flows of Φ1, . . . ,Φn

up to time α1, . . . , αn , respectively. Apply the flows φα1

1 , . . . , φαn
n to a point (q, p) ∈ F

in any order: the result will always be the same, in view of the property that the flows
do commute. Thus, we will simply denote

φα = φα1

1 ◦ . . . ◦ φαn
n

for α in some neighbourhood of the origin of Rn .

Local coordinates can be constructed using the existence and of the commuting
property of the flows, as illustrated in fig. 3.2. The claim is that the values of the
functions Φ1, . . . ,Φn and the times α1, . . . , αn of the corresponding canonical flows
define a local coordinate system.
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The formal statement is given by4

Lemma 3.6: Let Φ1(q, p), . . . ,Φn(q, p) be a complete involution system. Pick a point
(q0, p0) ∈ F and let Φ1(q0, p0) = c1, . . . ,Φn(q0, p0) = cn , with c ∈ R

n . Then there
exist a neigbourhood VΦ ⊂ R

n of c, a neighbourhood Vα ⊂ R
n of the origin and a

neighbourhood U ⊂ F of (q0, p0) such that the following holds true: there exists a
diffeomorphism χ : Vα × VΦ → U mapping (α,Φ) ∈ Vα × VΦ to (q, p) = χ(α,Φ) ∈ U

satisfying χ(0, c) = (q0, p0) and χ(α,Φ) = φαχ(0,Φ) .

*** Dimostrazione troppo sintetica. Migliorare. ***

Proof. Let

M0 =
{

(q, p) ∈ F : Φ1(q, p) = c1, . . . ,Φn

(

q, p) = cn
}

,

so that (q0, p0) ∈M0 . At the point (q0, p0) the Hamiltonian vector fields (in compact
notation) J∂zΦ1, . . . , J∂zΦn are independent, due to the independence of the functions
Φ, and generate a plane span(J∂zΦ1, . . . , J∂zΦn) which is Lagrangian, in view of the
Φ’s being in involution. By lemma 2.7 this plane is complementary to at least one of
the arithmetic planes of example 2.2 generated by the coordinates q, p. Let Π be one
such plane. Then in a neighbourhood of (q0, p0) there is a n–dimensional manifold
Σ0 transversal to M0 and tangent to Π in (q0, p0) parameterized by the coordinates
Φ1, . . . ,Φn. Denote by (q, p) = χ0(Φ) the map from a neighbourhood VΦ of Φ = c

to F . We may always arrange that χ0 is a differentiable map.5 Let now the map
χ : Vα × VΦ → F be defined as

χ(0,Φ) = χ0(Φ) , χ(α,Φ) = φαχ(0,Φ)

and let U = χ(Vα × VΦ) . In view of the smoothness and differentiability with respect
to parameters of the solutions of differential equations the map is a diffeomorphism
between Vα × VΦ and U . Q.E.D.

4 A similar statement is easily made for a generic n–dimensional manifold where n inde-
pendent and commuting vector fields are defined. The peculiar aspect of the lemma is
that the Hamiltonian structure allows us to make an effective use of the Hamiltonian
vector fields generated by a complete involution system, combining both the existence
of invariant surfaces and the flow along the surfaces.

5 An example may be useful. Suppose, e.g., that det
(

∂Φj

∂pk

)

6= 0 ; this means that the

arithmetic Lagrangian plane tangent to the coordinate lines p1, . . . , pn is complementary
to the manifold M0 in P0 = (q0, p0). By the implicit function theorem the relations
Φ1(q, p) = c1, . . . , Φn = cn(q, p) can be inverted in a neighbourhood of P0 , so as to
give p1 = p1(Φ, q), . . . , pn = pn(Φ, q) . Set now q = q0 and let Φ ∈ VΦ . Then the
functions p1 = p1(Φ, q0), . . . , pn = pn(Φ, q0) determine the wanted local manifold Σ0

with coordinates Φ . I.e., the map χ0 is defined as χ0(Φ) = (q0, p(Φ, q0)) , and Σ0 is the
image on F of VΦ . By construction the map χ0 is differentiable. The choice of the plane
Π is quite arbitrary, of course.
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3.1.6 Complete involution systems and canonical transformations

The following proposition claims that the map χ of proposition 3.6 is a canonical
transformation. Furthermore it states that the transformation can be constructed by
quadratures.

Proposition 3.7: Let {Φ1(q, p), . . . ,Φn(q, p)} be an involution system. Then there
exists a local canonical transformation to new variables α,Φ

q = q(α,Φ) , p = p(α,Φ) .

With the non restrictive hypothesis

(3.11) det

(

∂(Φ1, . . . ,Φn)

∂(p1, . . . , p1)

)

6= 0 .

the generating function of the canonical transformation is constructed by quadrature
as

(3.12) S(Φ, q) =

∫

∑

j

pj(Φ, q)dqj ,

where p1(Φ, q), . . . , pn(Φ, q) are obtained by inversion of Φ1(q, p), . . . ,Φn(q, p) .

Corollary 3.8: The canonical coordinates of proposition 3.7 are determined up to
a canonical transformation with generating function

(3.13) W (Φ, α) =
∑

j

Φjαj + f(Φ) ,

where f(Φ) is an arbitrary function. Equivalently, one can add an arbitrary function
f(Φ) to the generating function S(Φ, q) defined by (3.12).

By going back to the proof of proposition 3.6 we may realize that the arbitrary choice of
the function f(Φ) corresponds to the arbitrary choice of the surface Σ0 corresponding
to α = 0 .

The proof of the corollary is trivial, and is left to the reader.

Corollary 3.9: The coordinates α1, . . . , αn of proposition 3.7 coincide with the
coordinates α1, . . . , αn of proposition 3.6, up to a Φ depending translation as in corol-
lary 3.8.

Proof. In the new canonical coordinates α,Φ the canonical equations for Φk are
α̇j = δj,k and Φ̇j = 0 , with j = 1, . . . , n . Thus αk is the time of the flow generated
by Φk, for k = 1, . . . , n . The translation comes fron the arbitrary choice of the n–
dimensional menifold corresponding to α = 0. Q.E.D.

Proof of proposition 3.7. In view of lemma 3.2 condition (3.11) is not restrictive,
since it can always be fulfilled by exchanging some of the coordinates with the conju-
gated momenta. In view of that condition, we can invert the functions Φ1, . . . ,Φn with
respect to p1, . . . , pn, thus getting p1 = p1(Φ, q), . . . , pn = pn(Φ, q). Consider the dif-
ferential form

∑

j pj(Φ, q)dqj; we prove that it is exact. To this end, let us differentiate
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the identity
Φj = Φj(q, p)

∣

∣

p=p(Φ,q)

with respect to Φ, q, namely taking into account that in the r.h.s. p must be replaced
by its expression in terms of Φ, q. This gives

dΦj =
∑

k,l

∂Φj

∂pk

(

∂pk

∂Φl

dΦl +
∂pk

∂ql
dql

)

+
∑

l

∂Φj

∂ql
dql .

By comparison of the coefficients of dq, dΦ we get the identities

∑

k

∂Φj

∂pk

∂pk

∂Φl

= δj,l ,

∑

k

∂Φj

∂pk

∂pk

∂ql
= −∂Φj

∂ql
, j, l = 1, . . . , n .

Replace now the second of these identities in the relation {Φj,Φm} = 0 , which holds
true because the functions are assumed to be in involution. With a few calculations
we get

{Φj,Φm} =
∑

l

(

∂Φj

∂ql

∂Φm

∂pl
− ∂Φj

∂pl

∂Φm

∂ql

)

= −
∑

l,k

∂Φm

∂pl

∂Φj

∂pk

∂pk

∂ql
+
∑

l,k

∂Φj

∂pl

∂Φm

∂pk

∂pk

∂ql

= −
∑

l

∂Φm

∂pl

∑

k

∂Φj

∂pk

(

∂pk

∂ql
− ∂pl

∂qk

)

= 0

(note that in the second sum on the second line the indexes l and k can be exchanged).
By condition (3.11) this implies

∂pk

∂ql
− ∂pl

∂qk
= 0 , l, k = 1, . . . , n ,

so that the differential form
∑

j pjdqj is exact, as claimed. By integration we construct
the generating function (3.12) which, in view of (3.11), satisfies the invertibility con-
dition (2.29) of proposition 2.19. Therefore, the wanted canonical transformation is
implicitly defined by

αj =
∂S

∂Φj

, pj =
∂S

∂qj
, j = 1, . . . , n .

Q.E.D.

3.2 The theorem of Liouville

For a generic system of differential equations on a n–dimensional manifold a complete
integration by quadrature can be performed when n−1 independent first integrals are
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known, n being the dimension of the space. Thus, one expects that in the Hamiltonian
case, the dimension of phase space being 2n, one needs to know 2n− 1 first integrals.
However, the canonical structure allows us to perform the complete integration if
only n first integrals are known, provided they fulfill the further condition of being in
involution.

Theorem 3.10: Assume that an autonomous canonical system with n degrees
of freedom and with Hamiltonian H(q, p) possesses n independent first integral
{Φ1(q, p), . . . ,Φn(q, p)} forming a complete involution system. Then the system is
integrable by quadratures. More precisely, one can construct the generating func-
tion S(Φ, q) of a canonical transformation (q, p) = χ(α,Φ) such that the transformed
Hamiltonian depends only on the new momenta Φ1, . . . ,Φn, and the solutions are
expressed as

αj(t) = αj,0 + t
∂H

∂Φj

∣

∣

∣

∣

(Φ1,0,...,Φn,0)

, j = 1, . . . , n ,

with αj,0 and Φj,0 determined by the initial data.

3.2.1 Proof of Liouville’s theorem

By proposition 3.7 we can construct by quadratures a canonical transformation
(q, p) = χ(α,Φ) such that Φ1, . . . ,Φn are the new momenta. In view of preserva-
tion of Poisson brackets, we can compute the Poisson bracket {H,Φj} with respect to
the new variables α,Φ. Since Φ1, . . . ,Φn are first integrals, this gives

{H,Φj} =
∂H

∂αj

= 0 , j = 1, . . . , n .

This means that the transformed Hamiltonian depends only on the momenta, i.e.,
H = H(Φ). Therefore, the canonical equations are

α̇j =
∂H

∂Φj

, Φ̇j = 0 , j = 1, . . . , n ,

and are trivially integrable, as stated. This concludes the proof.

3.2.2 Integration procedure

I emphasize that Liouville’s theorem actually furnishes an explicit integration algo-
rithm. Here is the procedure.

(i) If necessary, exchange some pairs of canonical variables so that the condition

det

(

∂(Φ1, . . . ,Φn)

∂(p1, . . . , pn)

)

6= 0

is fulfilled. Then perform an inversion, finding p = p(Φ, q) .
(ii) By a quadrature, construct the generating function

S(Φ, q) =

∫

∑

j

pj(Φ, q)dqj .
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(iii) By substitution, determine the transformed Hamiltonian H(Φ) .
(iv) The solutions of the canonical equations are

(3.14) Φj(t) = Φj,0 , αj(t) =
∂H

∂Φj

∣

∣

∣

Φj=Φj,0

t+ αj,0 , j = 1, . . . , n ,

where Φj0 and αj,0 are the initial values that can be computed from the initial
data.

(v) By inversion of the canonical transformation find q = q(Φ, α) and p = p(Φ, α) .
(vi) The solutions q(t), p(t) in the original variables are found by substitution of

Φ(t), α(t) given by (3.14).

Example 3.4: Systems with one degree of freedom. Let us consider the Hamiltonian

H(x, p) =
p2

2m
+ V (x) ,

describing the motion of a mass point on a straight line under the action of the
potential V (x). The condition at point (i) reduces to ∂H

∂p
6= 0, which is fulfilled for

p 6= 0. Setting H(x, p) = E, we invert the relation above with respect to p, getting

(3.15) p = ±
√

2m[E − V (x)] .

The generating function is

S(E, x) =
√
2m

∫

√

E − V (x)dx ,

and the canonical transformation in implicit form is written as

p = ±
√

2m[E − V (x)] , α =

√

m

2

∫

dx
√

E − V (x)
.

The first of these relations coincides with (3.15), as expected. The transformed Hamil-
tonian is, trivially,H(E) = E, and the solutions of Hamilton’s equations in coordinates
α,E are

E(t) = E0 , α(t) = t− t0 ,

E0 and t0 being the initial values of energy and time, respectively. Therefore, in order
to actually compute the solutions we need to compute the integral

(3.16) t− t0 =

√

m

2

∫ x

x0

dξ
√

E0 − V (ξ)
,

where x0 = x(0) is the initial datum and E0 is the initial energy. The latter formula
actually coincides with (1.36), of sect. 1.3.1, as should be expected.

Example 3.5: Harmonic oscillators. For the Hamiltonian

(3.17) H =
1

2

n
∑

l=1

(y2l + ω2
l x

2
l )
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the quantities

(3.18) Φl =
1

2
(y2l + ω2

l x
2
l ) , 1 ≤ l ≤ n

form an involution system, and moreover we have

(3.19) H =
∑

l

Φl .

By inversion of (3.18) with respect to yl we get

yl =
√

2Φl − ω2
l x

2
l ,

and the generating function is

S(Φ, x) =
n
∑

l=1

Fl(Φl, xl) ,

where

Fl(Φl, xl) =

∫

√

2Φl − ω2
l x

2
l dxl , 1 ≤ l ≤ n .

The canonical transformation is completed by the new coordinates

αl =
∂S

∂Φl

=

∫

dxl
√

2Φl − ω2
l x

2
l

=
1

ωl

arcos

(

ωlxl√
2Φl

)

.

The Hamiltonian is given by (3.19), and the canonical equations

Φ̇l = 0 , α̇ =
∂H

∂Φl

= 1

have solutions

Φl(t) = Φl,0 , α(t) = t− t0 ,

where t0 is the initial time, and Φl,0 are constants to be computed by the initial data.
Finally, by inversion we obtain the solution

xl =

√

2Φl0

ωl

cosωl(t− t0) .

Example 3.6: Motion under central field on a plane. As a further example, let us
consider the Hamiltonian

H =
1

2m

(

p2r +
p2ϑ
r2

)

+ V (r) ,

describing the planar motion of a mass point in a central force field. As first integrals
we can use

(3.20) Γ = pϑ , Φ =
1

2m

(

p2r +
Γ2

r2

)

+ V (r) .
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By inversion, compute

(3.21) pϑ = Γ , pr =

[

2m
(

Φ− V (r)
)

− Γ2

r2

]1/2

,

so that the generating function is

S(Φ,Γ, r, ϑ) =

∫
[

2m
(

Φ− V (r)
)

− Γ2

r2

]1/2

dr +

∫

Γdϑ .

Denoting by ϕ and γ the canonical variables conjugated to Φ and Γ, respectively, the
transformation in implicit form is given by (3.21) and

ϕ =
∂S

∂Φ
= m

∫
[

2m
(

Φ− V (r)
)

− Γ2

r2

]−1/2

dr

γ =
∂S

∂Γ
= −mΓ

∫

1

r2

[

2m
(

Φ− V (r)
)

− Γ2

r2

]−1/2

dr +

∫

dϑ .

Once V (r) is known, by quadrature we can compute

(3.22) ϕ = f(Φ,Γ, r) , γ = g(Φ,Γ, r) + ϑ− ϑ0 ,

where ϑ0 is given by the initial conditions, and the functions f and g are given by the
integrals in the formula above. The transformed Hamiltonian is H = Φ, so that the
solution of Hamilton’s equations are

(3.23)
ϕ = t− t0 , γ = γ0 ,

Φ = Φ0 , Γ = Γ0 .

Here, γ0,Φ0 and Γ0 must be computed from the initial data r0, ϑ0, pr,0, pϑ,0 at time t0
using (3.20) and (3.22). The solutions r(t), ϑ(t), pr(t), pϑ(t) in the original coordinates
are computed by inverting (3.22) so as to obtain

r = r(Φ,Γ, ϕ) , ϑ = ϑ0 + γ − g(Φ,Γ, r)
∣

∣

∣

r=r(Φ,Γ,ϕ)
.

By substitution of (3.23) in the latter expressions we get r and ϑ as functions of time
and of the initial values, namely

r = r(Φ0,Γ0, t− t0) , ϑ = ϑ0 + γ0 − g(Φ0,Γ0, r)
∣

∣

∣

r=r(Φ0,Γ0,t−t0)
.

Finally, the momenta pr and pϑ as functions of time are computed by replacing (3.23)
and the latter expressions in (3.21). This completes the solution of the problem.

Exercise 3.1: Apply Liouville’s theorem to the case of a central field of forces in
space, reducing it to quadrature.
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3.2.3 Some comments on Liouville’s theorem

The form (3.14) of the solutions for the Hamiltonian in the new variables appears to
be quite simple. However, the example above of the harmonic oscillators shows that
all phenomena related to the periodicity of the motion are hidden, and show up only
when the transformation back to the original variables is performed.

For comparison, if we apply to the Hamiltonian (3.17) the transformation to
action–angle variables for the harmonic oscillators, namely

xl =
√

2Il cosϕl , yl =
√

2Il sinϕl , l = 1, . . . , n ,

we get the transformed Hamiltonian

H(I1, . . . , In) =
∑

l

ωlIl .

The canonical equations then are

ϕ̇l = ωl , İl = 0 ,

and the evolution of the phases ϕl(t) = ωlt + ϕl,0 is still uniform with velocity ω.
The remarkable difference with respect to (3.14) is that the new coordinates ϕ are
angles representing the phases of the oscillators. Therefore, the periodic character of
the evolution is evident, and the velocity ω of the phases is the angular frequency.

The same problem shows up also in the discussion of example 3.6: the algorithm
is well defined, but the fact that, e.g., in the Keplerian case the motion is periodic will
not be recognized until the complete solution is explicitly calculated.

That this is a general problem is further illustrated by the following

Example 3.7: Free rotator. Let the phase space be T × R, with coordinates q ∈ T

and p ∈ R, and let the Hamiltonian be

(3.24) H =
p2

2
.

The system is actually trivial: the equations are q̇ = p , ṗ = 0, with solutions p(t) =
p0 , q(t) = p0t+ q0, where p0 , q0 are the initial data. Recalling that q is an angle, the
motion is immediately seen to be periodic with angular frequency p0 depending on
the initial data. If, however, we forget this fact, and apply the procedure suggested
by Liouville’s theorem, using the Hamiltonian H as a first integral, then we get that
the new canonical coordinates are the time t, which flows uniformly, and the energy
H, which is constant. We see again that all informations concerning the periodicity of
the motion are lost, and are recovered only after writing the solutions for the original
variables.

The common aspect to all these examples is that the choice of the first integrals
to be used in order to apply Liouville’s procedure is quite arbitrary. However, the
examples of the harmonic oscillator and of the free rotator suggest that there should
be a particular choice which is the best one, and that it is connected with the fact
that the coordinates conjugated to the momenta Φ1, . . . ,Φn should be angles.
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3.2.4 Action–angle variables for systems with one degree of freedom

The construction of action–angle variables turns out to be particularly simple but
instructive in the case of a system with one degree of freedom. This is always a
Liouville–integrable system, since the Hamiltonian is a first integral. Moreover, the
orbits of the system are implicitly defined by the equation H(q, p) = E. Let q, p be
an extremum for H(q, p) , so that q(t) = q, p(t) = p is a solution of Hamilton’s equa-
tions. Then there is an open interval E such that for E ∈ E the set of point satisfying
H(q, p) = E contains a continuous family of closed curves surrounding the point (q, p).
Let γE be one such curve; it can be described via a coordinate ϕ ∈ T, in many ways.
With such a coordinate it is easy to account for the periodicity of the motion, since
a period is completed when ϕ is incremented by 2π. It is quite natural to ask if there
exists a canonical momentum I, conjugated to the coordinate ϕ, which parameterizes
the family γE of closed curves.

If such a quantity I exists, it must be constant on every curve γE ; this implies
that it must be a first integral. Thus, let us look for a function I(q, p) which is in
involution with the Hamiltonian H(q, p) and satisfies ∂I

∂p
6= 0. If such a function exists,

by proposition 3.7 we can construct a further function

(3.25) S(I, q) =

∫

p(I, q)dq ,

the latter being the generating function of a canonical transformation which defines I
as the new momentum. Thus, there is also a coordinate, that we denote again by ϕ,
conjugated to I; on the other hand, ϕ must be periodic, because it is a coordinate on
a closed curve, and we can always manage so that the period is 2π. Let us now see
how we can construct I(q, p). If ϕ, I are canonical variables, by proposition 2.17 we
must have

∮

γE

pdq =

∮

γE

Idϕ .

Since I(q, p) must be constant on γE and ϕ is periodic, the integral on the right hand
side is easily calculated to be 2πI. Therefore, it must be

(3.26) I =
1

2π

∮

γE

pdq .

This quantity has been named the action of the system. The integral must be computed
after expressing p as a function of E and q, and gives a function I(E); replacing
E = H(q, p) gives I as a function of q, p, as required. We conclude that I(q, p) can be
computed through a quadrature. It will be noticed that this function represents the
area enclosed by the curve γE passing through the point q, p divided by 2π .

Since I(q, p) is a first integral, we can apply the theorem of Liouville. With a
further quadrature we can compute the generating function S(I, q) given by (3.25),
and by differentiation we determine the angle ϕ. The canonical coordinates I, ϕ are
called action–angle variables. The transformed Hamiltonian H(I) is independent of ϕ,
and Hamilton’s equations read

(3.27) İ = 0 , ϕ̇ = ω(I) ,
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where ω(I) = ∂H
∂I

. Having fixed the initial conditions I(0) = I0, ϕ(0) = ϕ0 the corre-
sponding solution is

(3.28) I(t) = I0 , ϕ(t) = ω0t+ ϕ(0) ,

where ω0 = ω(I0). The periodicity of the motion is now evident, because ϕ is an angle,
and the period clearly is T = 2π/ω0. The period can be easily computed as

(3.29) T = 2π
dI

dE
.

For, from H = E one has dH
dE

= dH
dI

dI
dE

= ω(I) dI
dE

= 1, and the claim follows using
T = 2π/ω(I).

Example 3.8: The harmonic oscillator. The Hamiltonian

H(p, x) =
1

2
p2 +

1

2
ω2x2

has an equilibrium for p = x = 0, and for E > 0 the curve H(p, x) = E is an el-
lipse centered on the origin and with semi axes

√
2E/ω and

√
2E (see example 1.9).

The action is easily computed as I = E/ω, the period is T = 2π/ω, and the angle
ϕ represents the phase of the oscillator. It is not necessary to proceed to an explicit
calculation of the generating function, since the explicit form of the canonical transfor-
mation x =

√
2I cosϕ, y =

√
2I sinϕ can be obtained by elementary considerations.

Example 3.9: Oscillations around a stable equilibrium. Consider the Hamiltonian

(3.30) H(p, x) =
p2

2
+ V (x) , (x, p) ∈ R

2

describing the motion of a point with unitary mass moving on a straight line under the
action of a potential V (x). Let V (x) have a point of relative minimum at x = 0, and
let V (0) = 0 (this is not restrictive, of course, since it is always possible to introduce
the displacement from equilibrium as a coordinate, and the potential is defined up to
a constant). Then there exists an open interval of positive values of E such that the
level set of points satisfying H(p, x) = E contains a closed curve around the origin.
For such values of E the action is defined as

(3.31) I =

√
2

π

∫ xmax

xmin

√

E − V (x)dx ,

xmin, xmax being the extrema of the interval of oscillation, to be computed as solutions
of the equation E − V (x) = 0. The period can be computed as

(3.32) T =
√
2

∫ xmax

xmin

dx
√

E − V (x)
.

The calculation of the action and of the period is therefore reduced to a quadrature. If
an explicit expression for the angle ϕ is wanted, then one must compute the generating
function

S(I, x) =
√
2

∫

√

E − V (x)dx
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and replace E = E(I) as computed from (3.31). The canonical transformation is
written in implicit form as

p =
∂S

∂x
, ϕ =

∂S

∂I
.

Writing the transformation explicitly requires an inversion.
Example 3.10: The pendulum. As a more specific example, consider the Hamilto-
nian

H(p, ϑ) =
p2

2
− cosϑ , (ϑ, p) ∈ T× R ,

which describes the frictionless motion of a unit mass point constrained to a circle in
the vertical plane, subject to gravity. The Hamiltonian has a minimum for p = ϑ = 0
(recall that ϑ is defined mod2π), and for −1 < C < 1 the equation H(p, ϑ) = C

determines a closed curve around the equilibrium. According to (3.31) the action
variable is computed as

I =
2
√
2

π

∫ ϑmax

0

√
C + cosϑ dϑ ,

where ϑmax = arccos(−C). Remark that the symmetry V (−ϑ) = V (ϑ) of the potential
has been taken into account in the latter formula. The calculation of the integral can
be reduced to that of elliptic integrals as follows. Transform ϑ = 2ϕ, thus getting

I =
8

π

∫ ϕmax

0

√

C + 1

2
− sin2 ϕdϕ .

Denote now k2 = (C + 1)/2, and perform the further transformation sinϕ = k sinψ;
this gives

I =
8k2

π

∫ π/2

0

cos2 ψ
√

1− k2 sin2 ψ
dψ

=
16(k2 + 1)

π
K(k2) +

16

π
E(k2) ,

where K(k2) and E(k2) are the complete elliptic integrals of first and second kind,
namely

K(k2) =

∫ π/2

0

dψ
√

1− k2 sin2 ψ

E(k2) =

∫ π/2

0

√

1− k2 sin2 ψ dψ .

These integrals are computed via a series expansion which is convergent for |k|2 < 1.
Therefore, the action I as a function of C is defined only for C < 1. This value corre-
sponds indeed to the separatrix. The transformed Hamiltonian H(I) can be computed
by inversion of the function given by the integral, putting H = C. The frequency cor-
responding to a given initial value of the action is computed as ω(I) = ∂H

∂I
.

Exercise 3.2: Show how to calculate the action for the rotating pendulum, i.e,
when |C| > 1 .
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3.3 On manifolds with nonsingular vector fields

Let us now start investigating the global geometric character of the manifolds de-
fined by a complete involution system. In this section I will pay attention to a single
connected manifold implicitly defined as

(3.33) M0 = {(q, p) ∈ F : Φ1(q, p) = 0, . . . ,Φn(q, p) = 0} .

If more than one connected manifold is defined in the formula above, just select one.
The value 0 might be replaced by any suitable value c ∈ R

n , of course.

The independence of the functions Φ1, . . . ,Φn implies that the corresponding
Hamiltonian vector fields are independent at every point. Moreover, in view of the
involution property, the vector fields are tangent to M0 which is a n–dimensional La-
grangian manifold. The relevant property here is the existence of n independent vector
fields at every point, since it puts severe constraints on the topology of the manifold.

I state the result in general terms in view of its independent interest and generality.

Proposition 3.11: Let M be a connected differentiable manifold of dimension n,
and let X1, . . . , Xn be n vector fields which are independent at every point of M and
satisfy6 [Xj, Xk] = 0 on M , for j, k = 1, . . . , n; assume moreover that the flows of
X1, . . . , Xn can be indefinitely continued on M . Then there is a non negative k ≤ n

such that M is diffeomorphic to T
k × R

n−k.

Corollary 3.12: IfM is compact, then it is diffeomorphic to a n–dimensional torus.

The proof requires several technical steps, which are separately worked out in the
next subsections.

3.3.1 Local coordinates induced by the flow

The first step for the proof of proposition 3.11 is the fact that the n independent and
commuting flows generate a n–parameter group acting on M . As a local property, the
group defines a local coordinate system in the neighbourhood of any point P ∈ M ;
this is essentially a restriction to M of the statement of proposition 3.6. The global
property is that every two points can be connected by the action of the group, so that
the image of Rn by the group covers M .

Lemma 3.13: Under the hypotheses of proposition 3.11 there exists a n–parameter
group of diffeomorphisms φt : R

n ×M →M with the following properties:

(i) for every t ∈ R
n and every P ∈M there is a unique φtP ∈M ;

(ii) for every P ∈ M there are a neighbourhood V of the origin of R
n and a

neighbourhood U of P which are diffeomorphic;

(iii) for every pair P,Q of points of M there is t ∈ R
n such that φtP = Q . Here, t

needs not be unique.

6 The symbol [Xj , Xk] denotes the commutator between the vector fields Xj and Xk . If
the vector fields are Hamiltonians and are generated by F (q, p) and G(q, p) , say, then
the commutator is the vector field generated by {F,G} .
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Proof. (i) Let t ∈ R
n, and define φt = φtnXn

◦ . . . ◦ φt1X1
. For every point P ∈ M

the point φtP is defined, because the flows can be indefinitely prolonged, and is of
course unique; in particular, φ0P = P . Since the flows do commute, the result is
independent of the order of application of the flows φ

tj
Xj

, so that it depends only on
t ∈ R

n . On the other hand, using the commutativity and the group property of each
flow, we have φt ◦ φs = φt+s. We conclude that φt is a group. Since each vector field
Xj defines a differentiable flow φ

tj
Xj

, the composition φt is differentiable; that is, φt is
a diffeomorphism.
(ii) Let x1(P ), . . . , xn(P ) be local coordinates in the neighbourhood of any given point
P ∈M . The n–parameter group of point (i) defines a differentiable map

(

x1(t), . . . , xn(t)
)

=
(

x1(φ
tP ), . . . , xn(φ

tP )
)

.

At the origin t = 0 the rows of the Jacobian matrix of the map

∂(x1, . . . , xn)

∂(t1, . . . , tn)

are the vector fields X1, . . . , Xn evaluated at the point P . Therefore, the Jacobian
determinant is non zero at t = 0 in view of the independence of the vector fields, and
by continuity is non zero in a neigbourhood of t = 0. We conclude that the map is a
local diffeomorphism, as claimed.
(iii) Since M is connected, there is a curve γ connecting P with Q. By (ii), to every
point of P ′ ∈ γ we can associate a neighbourhood U(P ′) which is diffeomorphic
to a neighbourhood of the origin of R

n. This family is a covering of γ. Since γ is
compact, we can extract a finite sequence, P0, . . . , Pm say, of points of γ such that
P0 = P , Pm = Q and Pj ∈ U(Pj−1) , the neighbourhood of Pj−1 diffeomorphic to a
neighbourhood of the origin of Rn. Therefore, there exists a finite sequence t1, . . . , tm
such that Pj = φtjPj−1 for j = 1, . . . , m . By the group property we conclude φtP = Q

with t = t1 + . . .+ tm . Q.E.D.

3.3.2 The stationary group

Let us now investigate the global properties of the n–parameters group φt of diffeo-
morphism, the existence of which has been stated in the previous section. Accordig to
lemma 3.13 we may regard the flows φt as a differentiable map from R

n ×M to M
the image of which is the whole manifold M . However, this is not a diffeomorphism.
For, it may happen that φtP = P for some t ∈ R

n and for some P ∈M . The relevant
fact is that if φtP = P then we also have φtQ = Q for all Q ∈ M . For, by (iii) of
lemma 3.13 we have Q = φsP for some s ∈ R

n ; on the other hand, by the group
property we have φtQ = φt ◦ φsP = φs+tP = φs ◦ φtP = φsP = Q .

The stationary set of φt is defined as

(3.34) G = {t ∈ R
n | φtP = P for all P ∈M} .

Lemma 3.14: The stationary set G defined by (3.34) is a non empty discrete sub-
group of Rn; that is: it possesses the group property, and contains no accumulation
points.
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Proof. The set G is not empty, since it contains at least the origin of Rn .

If t ∈ G then φ−tP = φ−t ◦ φtP = P , so that −t ∈ G . If t1, t2 ∈ G, then we have
φt1+t2P = φt1 ◦ φt2P = φt1P = P , so that t1 + t2 ∈ G . We conclude that G has the
group property.

The origin is an isolated point of G, because in a neighbourhood V0 of the origin φt is
a diffeomorphism, which implies that G ∩ V0 = {0}. Let now 0 6= t ∈ G, and consider
the neighbourhood Vt = t + V0 = {t + s | s ∈ V0}. Let t′ ∈ G ∩ Vt , i.e., φt

′

P = P .
By the group property, we also have φt

′−tP = P , i.e., t′ − t ∈ G ∩ V0, which implies
t′ − t = 0. This proves that t is an isolated point. Q.E.D.

3.3.3 Angular coordinates

Having determined the k–dimensional stationary group G, we proceed now to the
construction of a diffeomorphism between M and T

k × R
n−k. To this end we need a

statement of algebraic character, namely that a discrete subgroup G of Rn has a basis.
That is, there exist k independent vectors e1, . . . , ek in G , where k is the dimension
of G, such that

G = {m1e1 + . . .+mkek : (m1, . . . , mk) ∈ Z
k} .

The proof of this claim is found in Appendix A.

Proof of proposition 3.11. Take any basis {e1, . . . , ek} of G, and complete it with
n − k independent vectors u1, . . . , un−k so that {e1, . . . , ek, u1, . . . , un−k, } is a basis
of Rn. Writing an arbitrary point t ∈ R

n as

t =
ψ1

2π
e1 + . . .+

ψk

2π
ek + τ1u1 + . . .+ τn−kuk ,

we establish a global one-to-one correspondence between T
k × R

n−k and M by
taking an arbitrary point P ∈ M as corresponding to the origin and setting
P (ψ1, . . . , ψk, τ1, . . . , τn−k) = φtP , with t given above. Since in the neighbourhood
of any point Q ∈ M this mapping if a local diffeomorphism we conclude that M is
diffeomorphic to T

k × R
n−k. Q.E.D.

Proof of corollary 3.12. By proposition 3.11M is diffeomorphic to T
k×R

n−k for
some k. Since M is compact, then k = n. Q.E.D.

3.4 Action–Angle variables

The construction of action–angle variables in a system with one degree of freedom
makes essential use of the existence of a family of closed curves. The action variable
is a particular parameterization of this family, which turns out to be particularly
interesting because the conjugated variable ϕ is an angle.

Action–angle variables for systems with n > 1 degrees of freedom may be intro-
duced via a deep extension of the argument used for n = 1 .
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Proposition 3.15: Let Φ1, . . . ,Φn be a complete involution system, and assume
that the level surface implicitely defined by Φ1(p, q) = . . . = Φn(p, q) = 0 contains a
connected and compact component M0. Then:

(i) M0 is a Lagrangian manifold diffeomorphic to a n–dimensional torus;

(ii) in an open neighbourhood U(M0) one can introduce action–angle variables I ∈
G ⊂ R

n and ϑ ∈ T
n, where G is a neighbourhood of the origin, via a canonical

diffeomorphism
A : Tn × G → U(M0)

(ϑ, I) 7→ (q, p) = A (ϑ, I)

such that I1, . . . , In depend only on Φ1, . . . ,Φn.

The proof requires two main steps. First remarking that the claim (i) is true in view of
proposition 3.11 and corollary 3.12, we prove that in a neighbourhood of M0 the level
sets of Φ1, . . . ,Φn are a n–parameter family of n–dimensional tori parameterized by
Φ1, . . . ,Φn. Then we prove that the latter family can be parameterized by canonical
variables conjugated to angular variables on a n–dimensional torus. These steps are
worked out in separate subsections.

3.4.1 Periods in a neighbourhood of the torus

We extend now our considerations to a neighbourhood of the torus M0 of point (i).
Our aim is to prove that there is a smooth set of tori parameterized by Φ1, . . . ,Φn

such that the flow φt on these tori admits periods τ1(Φ), . . . , τn(Φ) close to the periods
e1, . . . , en on M0.

Lemma 3.16: Let the hypotheses of proposition 3.15 be fulfilled, and M0 be the
connected and compact manifold of point (i) of that proposition. Then the following
statements hold true.

(i) Let P ∈ M0 be arbitrary but fixed, and let ̺ > 0 be large enough7 so that
M0 ⊂ {φtP , |t| ≤ ̺}; then there is a neighbourhood U̺ of P such that for
every Q ∈M0 the mapping

(3.35) φt : U̺ → φt(U̺)

satisfying φtP = Q exists and is a canonical diffeomorphism.

(ii) Let P still be fixed. Then there is a neighbourhood G of the origin of Rn such
that for all Φ ∈ G the flow φtχ(0,Φ) is defined for all t ∈ R

n and possesses a sta-
tionary group of periods G(Φ); furthermore, there exist differentiable functions
W1(Φ), . . . ,Wn(Φ) such that G(Φ) admits a basis

τj(Φ) = ej + ∂ΦWj , j = 1, . . . , n ,

where ∂ΦWj =
(

∂Wj

∂Φ1

, . . . ,
∂Wj

∂Φn

)

.

7 For instance, set ̺ = |e1|+ . . .+ |en|, where e1, . . . , en is the basis of the stationary group
on M0.
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By (ii) we conclude that there is a neighbourhood of M0 admitting a continuous
foliation into a family of n–dimensional tori parameterized by (Φ1, . . . ,Φn) ∈ G .

Proof. (i) This is a consequence of known theorems on regularity of the solutions of
a system of differential equations. Since the flow φt on M0 is defined for all t ∈ R

n, for
every ̺ > 0 there is a neighbourhood U̺ of P such that for |t| ≤ ̺ the mapping φt :
U̺ → φt(U̺) is a diffeomorphism. The diffeomorphism is canonical, being generated
by a canonical flow; this follows from lemma 3.3. The condition above on ̺ ensures
that for every Q ∈ M0 there is a t such that |t| ≤ ̺ and φtP = Q. This implies in
particular that the flow covers a neighbourhood of the torus.
(ii) Recall that the flow φt onM0 admits a stationary group of periods G, with a basis
e1, . . . , en. Recall also that we have |e1| ≤ ̺, . . . , |en| ≤ ̺ in view of our choice of ̺
in (ii). For t = ej we have φ

ejP = P , so that the mapping (3.35) is actually a canonical
diffeomorphism between neighbourhoods of P . Possibly with a restriction of U̺, we
can always assume that φej (U̺) ⊂ U(P ), the neighbourhood of P on which a local
diffeomorphism generated by the flow is defined. Consider now the sets χ−1(U̺) and
χ−1

(

φej (U̺)
)

. *** Il riferimento a χ rimanda al lemma 3.6 e proposizione

3.7. Sistemare *** They are both neighbourhoods of the origin of Rn, and we are
allowed to define a mapping

ψ : χ−1(U̺) → χ−1
(

φej (U̺)
)

(α,Φ) 7→ (α′,Φ′) = χ−1 ◦ φejχ(α,Φ) .
This is a canonical diffeomorphism, being a composition of canonical diffeomorphisms,
and satisfies

(3.36) ψ(0, 0) = (0, 0) , ψ(α,Φ) = χ−1φej+αχ(0,Φ) .

Furthermore, since the flow φt is just a translation on α, we have

(3.37) ψ(α,Φ) =
(

α+ w(Φ),Φ
)

with some differentiable vector function w(Φ) satisfying w(0) = 0. By canonicity, there
exists a function Wj(Φ) such that8

(3.38) w(Φ) = −∂ΦWj , ∂ΦWj

∣

∣

∣

Φ=0
= 0 .

We look now for a period τj(Φ), i.e., for a solution of the equation

(3.39) φτ(Φ)χ(0,Φ) = χ(0,Φ) .

Remark again that the flow φt leaves Φ invariant, so that the period τ , if it exists,
must depend only on Φ. Moreover, since τj(0) = ej , we are allowed to set τj(Φ) =

8 Write the transformation as Φ′ = Φ , α′ = α + w(Φ). Since the first half of the
transformation does not involve α, we can apply the arguments of example 2.10 (ex-
tended point transformation), concluding that there is a generating function S(Φ′, α) =
〈Φ′, α〉+W (Φ′).
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ej + δj(Φ), with δ(0) = 0. Let for a moment δj(Φ) be subjected only to the condition
(

δj(Φ),Φ
)

∈ χ−1(U̺). Then we have

χ−1 ◦ φτ(Φ)χ(0,Φ) = χ−1 ◦ φejχ
(

δj(Φ),Φ
)

= ψ(δj(Φ),Φ) ,

On the other hand, by (3.37) and (3.38) we have

ψ(δj(Φ),Φ) =
(

δj(Φ)− ∂ΦWj ,Φ
)

.

The last two relations give

χ−1 ◦ φτ(Φ)χ(0,Φ) =
(

δj(Φ)− ∂ΦWj ,Φ
)

,

and applying χ to both sides we see that (3.39) is satisfied with

δj(Φ)− ∂ΦWj = 0 .

We conclude that for j = 1, . . . , n and for Φ in some neighbourhood of the origin of
R

n there is a differentiable function Wj(Φ) such that τj(Φ) = ej +∂ΦWj is a period of
φt. Therefore, in a neighbourhood U(M0) of M0 the flow φt is defined for all t ∈ R

n,
and the subgroup of Rn

G(Φ) = {m1τ1(Φ) + . . .+mnτn(Φ) , (m1, . . . , mn) ∈ Z
n} ,

is a stationary group of periods of φt on MΦ, a compact component of the manifold
where the functions Φ1(q, p), . . . ,Φn(q, p) assume the constant value Φ. Remark that
in view of (ii) and of the group property of the flow the periods do not depend on
the point P , nor do they depend on the choice of the manifold Σ corresponding to
α = 0 as in the proof of proposition 3.6. We should prove that G(Φ) exhausts the
set of periods, namely that if φtχ(0,Φ) = χ(0,Φ) for some Φ ∈ G then t ∈ G(Φ).
To this end, recall that 0 ∈ G(Φ) for all Φ ∈ G , and that G(Φ) is a discrete group.9

Let now t be a period on MΦ. Then t + G(Φ) is a set of periods, and in this set
there exists t′ = µ1τ1(Φ) + . . . + µnτn(Φ) with |µj | =≤ 1/2, (j = 1, . . . , n). By
continuity, if Φ is sufficiently close to the origin, then t′ must belong to an arbitrarily
small neighbourhood of 0 ∈ G(0). Since G(Φ) is discrete, we conclude t′ = 0, and so
t ∈ G(Φ). Q.E.D.

3.4.2 Global coordinates and action–angle variables.

We come finally to the proof of point (ii) of proposition 3.15. Let us remark that the
map χ defined by 3.6 can be extended to a global map χ : R

n × G → U(M0) by
setting χ(α,Φ) = φαχ(0,Φ) for α ∈ R

n and Φ ∈ G , where G ⊂ Vα is a neighbourhood
of the origin of Rn . As we have seen in the previous section χ is a differentiable map

9 Suppose that G(Φ) has an accumulation point. Since it is a group, then the origin is an
accumulation point, too. That is, there is t 6= 0 arbitrarily close to the origin such that
φtχ(0,Φ) = χ(0,Φ), contradicting the fact that χ is a local diffeomorphism.
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for every α ∈ R
n and is a local canonical diffeomorphism.10 However, it fails to be

globally one–to–one, due to the existence of the groups of periods G(Φ) . In order to
obtain a global diffeomorphism we define a new mapping

(3.40) C : R
n /G(Φ)× G → U(M0)

as the restriction of χ to the quotient set of Rn with respect to the group G(Φ). This
is a one-to-one mapping, and so it is a canonical diffeomorphism.

We are now ready to introduce action–angle variables ϑ, I via a canonical trans-
formation ψ : R

n /G(Φ)× G → R
n /G(Φ)× G mapping (ϑ, I) to (α,Φ) = ψ(ϑ, I) .

To this end let us take the generating function11

(3.41) S(Φ, ϑ) =
1

2π

n
∑

k=1

ϑk [〈ek,Φ〉+Wk(Φ)] ,

where e1, . . . , en is the basis of the group of periods on M0 and W1(Φ), . . . ,Wk(Φ)
are the functions defining the periods of G(Φ) according to lemma 3.16. We show
that the transformation is well defined, and that ϑ1, . . . , ϑn are actually angles. The
transformation is implicitly written as

(3.42)

Ij =
1

2π
〈ej ,Φ〉+Wj(Φ) ,

αj =
1

2π

∑

k

ϑk

(

ek,j +
∂Wk

∂Φj

)

, j = 1, . . . , n

where we have denoted by ek = (ek,1, . . . , ek,n) the vectors e1, . . . , en of the basis
of G = G(0). The functions I1(Φ), . . . , In(Φ) are in involution, being functions of
Φ1, . . . ,Φn only, and are independent, because the rows of the Jacobian matrix

∂(I1, . . . , In)

∂(Φ1, . . . ,Φn)

are the vectors ek + ∂ΦWk, namely the basis vectors of the groups G(Φ). By the way,
this also shows that the generating function S(Φ, ϑ) fulfills the required invertibility
condition.

In coordinates α,Φ the canonical equations for the Hamiltonian Ij(Φ) are

α̇k =
1

2π

(

ej,k +
∂Wj

∂Φk

)

, Φ̇k = 0 ,

10 It is a diffeomorphism between U(0)×G and U(α)×G , where U(0) and U(α) are open
neighbourhoods of 0 and α, respectively. It is canonical because it is a composition of two
canonical diffeomorphisms, namely χ(α,Φ) restricted to a neighbourhood of the origin
and the canonical flow φα.

11 I use the notation 〈a, b〉 =
∑

j
ajbj for vectors or vector–valued functions a, b .
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where we have denoted by ej = (ej,1, . . . , ej,n) the vectors of the basis of G = G(0).
Therefore we have

(3.43) αk(t) = αk(0) +
t

2π

(

ej,k +
∂Wj

∂Φk

(

Φk(0)
)

)

, Φk(t) = Φk(0) .

In particular, for t = 2π we have α(t)−α(0) = τj
(

Φ(0)
)

, the period on MΦ(0). On the
other hand, in coordinates ϑ, I the canonical flow due to the Hamiltonian Ij is

ϑk(t) = ϑk(0) + δj,kt , Ik(t) = Ik(0) .

By comparison with (3.43) we conclude that ϑ1, . . . , ϑn are angular coordinates with
period 1.

The form of the canonical transformation A of proposition 3.15 is found by setting
A = C ◦ψ where (α,Φ) = ψ(ϑ, I) is the canonical transformation(3.42) after a suitable
inversion, and (q, p) = C (α,Φ) is the canonical transformation (3.40). This concludes
the proof of proposition 3.15.

3.4.3 Non uniqueness of the action–angle variables

The action–angle variables defined above are not unique. Indeed, three arbitrary
choices have been made throughout the proof, namely: (i) the choice that M0 cor-
responds to Φ1 = . . . = Φn = 0; (ii) the choice of the point P corresponding to the
origin of Rn and of the manifold Σ; (iii) the choice of the basis e1, . . . , en of periods
on M0.

Lemma 3.17: Let ϑ, I be action angle variables. New action angle variables are
constructed by composition of the following canonical transformations:

(i) translation of the action variables

(3.44) Ij = Ij + cj , ϑj = ϑj , 1 ≤ j ≤ n

with c ≡ (c1, . . . , cn) ∈ R
n;

(ii) translation of the origin of the angles by a quantity depending on the torus,
namely

(3.45) ϑj = ϑj +
∂S

∂Ij
(I) , Ij = Ij , 1 ≤ j ≤ n

where S(I) is an arbitrary differentiable functions of the action variables;
(iii) linear transformation of the angle variables by a unimodular matrix12 A:

(3.46) ϑ = Aϑ , I = A
⊤I ,

Proof. The canonicity of the transformations above is easily checked. For instance,
for the transformations (i) and (ii) it is enough to verify that the fundamental Poisson
brackets are preserved. For the transformation (iii) just remark that ϑ = Aϑ involves

12 A matrix A is said to be unimodular if it has integer entries, and detA = ±1.



Integrable systems 77

γ2

γ1

e1

e2

C

C

Figure 3.3. Illustrating the construction of cycles on a torus.

only the angles; therefore, is is legitimate to apply the method of the extended point

transformation, thus writing the generating function as S = I
⊤
Aϑ .

Only the condition that A be a unimodular matrix needs some justification. To this
end, just remark that the angle structure of the torus is preserved if and only if the
basis (e1, . . . , en) of the group of periods is changed by e′j =

∑

k Ajkek (where Aj,k are
the entries of A) into a new basis of the same group. This leads to the condition that A
should be unimodular. A detailed proof is given in appendix A, lemma A.3. Q.E.D.

3.4.4 Explicit construction of action–angle variables

The explicit algorithm for constructing action–angle variables is based on the construc-
tion of the family of periods on the manifolds MΦ considered in the previous sections.
For simplicity, denote by e1, . . . , en the basis of the stationary group on any of the tori
parameterized by a given value of Φ. The following properties are immediate:

(i) to each period ej (j = 1, . . . , n) there corresponds on M0 a differentiable closed
curve γj, that we call a cycle, defined as (see fig. 3.3)

γj = {φsejP , 0 ≤ s < 1} ;

(ii) for j 6= k the cycles γj , γk are independent, in the sense that γj can not be
continuously deformed into γk;

(iii) in action–angle variables I, ϑ the continuous set of tori is parameterized by
I1, . . . , In, and the cycle γj is represented by

ϑj ∈ [0, 2π) , ϑk = ϑk,0 for k 6= j ,

ϑk,0 being constants.
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Since the transformation to action–angle variables is canonical, we have
∮

γj

∑

k

pk dqk =

∮

γj

∑

k

Ik dϑk .

On the other hand, by the characterization (iii) of the cycles all actions I1, . . . , In and
all angles ϑk with k 6= j are constant on γj , so that the integral on the r.h.s. gives

∮

γj

∑

k

Ik dϑk = Ij

∫ 2π

0

dϑj = 2πIj .

We conclude

(3.47) Ij =
1

2π

∮

γj

∑

k

pk dqk ,

where p1(Φ, q), . . . , pn(Φ, q) are obtained by inversion of Φ1 = Φ1(q, p), . . . ,Φn =
Φn(q, p) with respect to Φ1, . . . ,Φn. We emphasize that, by Stokes theorem, a contin-
uous deformation of the cycle γj does not change the result, so that any determination
of the cycles can be used in computing the integral (3.47). The resulting functions
I1, . . . , In depend only on Φ1, . . . ,Φn, of course.

In view of this discussion, the algorithm for constructing action–angle variables
for a given problem requires three steps.

(i) Find the cycles γj (j = 1, . . . , n). This is expected to be the hardest part,
because it requires in principle an integration of the system via Liouville’s al-
gorithm applied to the involution system Φ1, . . . ,Φn. However, in the most
commonly considered examples the first integrals have a nice form, so that the
cycles are easily determined.

(ii) Compute the action variables by quadrature, calculating the integrals (3.47).
This can be possibly done by introducing some arbitrary angle variables on the
cycles, and then integrating over them.

(iii) Apply the algorithm of Liouville to the new involution system I1, . . . , In in order
to find the angle variables ϑ1, . . . , ϑn.

(iv) If useful, and if there is any reason to do it, apply any of the transformations of
lemma 3.17 in order to obtain better sets of action–angle variables, depending
on the problem at hand.13

3.5 The theorem of Arnold–Jost

Having settled the problem of constructing action–angle variables, we turn now to the
statement of the theorem of Arnold–Jost on integrable systems.

13 The usefulness of the latter step is widely discussed in M. Born’s treatise [15], in con-
nection with the necessity of having a well definite set of action–angle variables to which
quantization rules can be applied.
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Theorem 3.18: Let the HamiltonianH(q, p) on the phase space F possess an invo-
lution system Φ1, . . . ,Φn of first integrals (so that it is integrable in Liouville’s sense).
Let c = (c1, . . . , cn) ∈ R

n be such that the level surface determined by the equations
Φ1(q, p) = c1, . . . ,Φn(q, p) = cn contains a compact and connected component Mc.
Then in a neighbourhood U of Mc there are canonical action–angle coordinates I, ϑ
mapping G × T

n to U , where G ∈ R
n is an open set, such that the Hamiltonian

depends only on I1, . . . , In, and the corresponding flow is

ϑj(t) = ϑj,0 + tωj(I1,0, . . . , In,0) , Ij(t) = Ij,0 , j = 1, . . . , n ,

where ϑj,0 and Ij,0 are the initial data, and ωj =
∂H
∂Ij

.

The proof is a straightforward application of proposition 3.15. Just proceed as in the
proof of Liouville’s theorem, using the actions I1, . . . , In as first integrals.

3.6 Delaunay variables for the Keplerian problem

A remarkable application of the theory of Arnold–Jost is the calculation of action–
angle variables for the motion in a central field of force, with particular reference
to the case of the Keplerian potential.14 The latter problem is known to possess four
independent first integrals (see examples 1.12 and 1.13). A complete involution system
of first integrals has been constructed in example 3.1. Let us recall that in spherical
coordinates r, ϑ, ϕ with the conjugated momenta pr, pϑ, pϕ the functions are

(3.48) J = pϕ , Γ2 = p2ϑ +
J2

sin2 ϑ
, E =

1

2m

(

p2r +
Γ2

r2

)

+ V (r) ,

where m is the mass of the point. Concerning the potential V (r), in Kepler’s case we
put

(3.49) V (r) = −k
r
,

14 The action angle variables that I’m going to calculate here were discovered by Delaunay.
His aim was to replace the orbital elements of a Keplerian orbit, which were used since
Lagrange’s time in perturbation theory, with an appropriate set of canonical variables.
A deduction of Delaunay variables using the method of Hamilton–Jacobi is found in
Poincaré’s treatises [71] and (more detailed) [72]. The calculation in these notes reflect
the exposition in M. Born’s book [15]. The introduction of action–angle variables in
Born’s treatise is connected with the search for adiabatic invariants, which were well
known to physicists when dealing with one–dimensional oscillators depending on slow
varying parameters. A clever generalization of these concepts to the case of separable
systems with many degrees of freedom is made by Born. Essentially, it may be said
that his book contains a complete treatment of action–angle variables for system which
exhibit a clear separation into one–dimensional systems for which the existence of cycles
is immediate. This in turn implies that the orbits lie on invariant tori. What is still
missing with respect to the theorem of Arnold–Jost is that the existence of invariant
tori is a general fact for integrable systems.



80 Chapter 3

Figure 3.4. Illustrating the construction of the cycles γϑ and γr for the problem

of motion in a central field under a generic potential. The cycle γr is represented

for the case of the Keplerian ptential.

where k is a positive constant. We also recall the expression of the Hamiltonian

(3.50) H =
1

2m

(

p2r +
p2ϑ
r2

+
p2ϕ

r2 sin2 ϑ

)

+ V (r) ;

this actually coincides with the third integral above when the explicit expressions of
Γ2 and J are substituted.

3.6.1 Determination of cycles

We consider the canonical flows generated by the three functions (3.48). The discussion
here is quite plain, because each function involves only two conjugated variables. This
considerably simplifies the task of constructing the cycles.

The function J is a trivially integrable Hamiltonian: the conjugate variable is
actually an angle, and is a cyclic variable, so that the cycle γϕ is parameterized by
the angle ϕ itself.

The function Γ2 can be considered as the Hamiltonian of a point with unit mass,
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moving on the segment [0, π] under the action of the potential V (ϑ) = J2/sin2 ϑ. For
Γ2 > Γ2

min = J2 the orbit in the phase plane ϑ, pϑ is a closed line, giving the second
cycle γϑ (see fig. 3.4). Remark that the construction of the cycles γϕ and γϑ does not
depend on the form of the potential V (r).

The third function can be considered as the Hamiltonian of a point moving on
the half–line r > 0 under the action of the potential

V ∗(r) =
Γ2

2mr2
+ V (r) .

In the Keplerian case the motion on the half line r is bounded for Emin < E < 0, with
Emin = −mk2/(2Γ2), while for E ≥ 0 it is unbounded. In the first case the orbit in
the phase plane r, pr is a closed curve, and this gives the third cycle γr (see fig. 3.4).
Conversely, no cycle can be found for E ≥ 0, and the invariant surface in phase space
for the complete problem is actually the product T2×R. In the latter case the angular
variables can be introduced only for the cycles γϕ and γϑ.

3.6.2 Construction of the action variables.

Here we restrict our consideration to the Keplerian potential, with the condition
Emin < E < 0. By inversion of (3.48) we get

(3.51)

pr =

[

2m(E − V (r))− Γ2

r2

]
1

2

pϑ =

(

Γ2 − J2

sin2 ϑ

)
1

2

pϕ = J .

We have to integrate the differential form pr dr+ pϑ dϑ+ pϕ dϕ over the cycles γϕ, γϑ
and γr. This gives

(3.52)

Iϕ =
1

2π

∮

γϕ

pϕdϕ = J

Iϑ =
1

2π

∮

γϑ

pϑdϑ = Γ− |J |

Ir =
1

2π

∮

γr

prdr = −Γ + k

√

− m

2E
.

This gives the actions Iϕ, Iϑ and Ir as functions of J, Γ and E . The exlicit expression
as a function of the canonical coordinate is readily found by replacing the expressions
of J, Γ and E in (3.48).

3.6.3 Delaunay variables

By a straightforward inversion of the third of (3.52) we calculate the Hamiltonian as

(3.53) H = − mk2

2 (Ir + Iϑ + |Iϕ|)2
.
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It is immediately seen that the Hamiltonian actually depends on the sum of the action
variables. This implies that the three frequencies of the system coincide, which justifies
the fact that in the Keplerian description of the planetary motion only one frequency
does actually appear. A better set of action variables is constructed by introducing
the variables of Delaunay L,G,Θ defined by the linear transformation

(3.54)

L = Ir + Iϑ + |Iϕ|
G = Iϑ + |Iϕ|
Θ = |Iϕ| .

It is immediate to notice that G and Θ coincide with Γ and J , respectively. Since the
transformation is performed via a unimodular matrix, the corresponding transforma-
tion on the angles preserves the periods, as stated by lemma 3.17. The Hamiltonian
in Delaunay’s variables takes the well known form

(3.55) H = −mk
2

2L2
.

Denoting by ℓ, g, h the angles conjugated to the actions G, G, Θ we can write Hamil-
ton’s equations as

ℓ̇ =
mk2

L3
, ġ = ḣ == L̇ = Ġ = Θ̇ = 0 .

Thus the motion is periodic with a single frequency

ω(L) =
mk2

L3
.

3.6.4 Construction of the angle variables

The canonical transformation should now be completed by constructing the angle
variables associated to the actions L,G and Θ. To this end we must first write the
generating function

S =

∫

(prdr + pϑdϑ+ pϕdϕ)

=

∫

√

−m
2k2

L2
+

2mk

r
− G2

r2
dr +

∫

√

G2 − Θ2

sin2 ϑ
dϑ+

∫

Θdϕ .

The angle variables are then given by

ℓ =
∂S

∂L
=
m2k2

L3

∫

dr
√

−m2k2

L2 + 2mk
r

− G
r2

,

g =
∂S

∂G
= G

∫

dϑ
√

G2 − Θ2

sin2 ϑ

−G

∫

dr

r2
√

−m2k2

L2 + 2mk
r

− G2

r2

,

h =
∂S

∂Θ
= −Θ

∫

dϑ

sin2 ϑ
√

G2 − Θ2

sin2 ϑ

+

∫

dϕ .
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Thus, the calculation of the angle variables is reduced to a quadrature.
It may also be useful to recall the relation between the Delaunay actions and the

so called orbital elements. I just report these relations

(3.56) L =
√
mka , G = L

√

1− e2 , Θ = G cos ι ,

where a is the semimajor axis, e is the eccentricity and ι is the inclination of the
orbital plane.

The conjugated angles are also related to orbital elements. Indeed, ℓ is the so
called mean anomaly, namely an angle that evolves uniformly, thus averaging in some
sense the true anomaly which is the angle giving the actual position of the planet on
the sky. The angle g and h are the longitude of the perihelion and the longitude of
the node, respectively.
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