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Open Image Theorem

Definition

Let K be a number field and E/K an elliptic curve. Set
Gk = Gal K/K the absolute Galois group and T, := I<Ln E[p"]
the p-adic Tate module of E. We define the Galois representations

PE,p Gk — Aut( ) GLQ( )

and
pe: Gk = ] GLa(Z,) = GLy(Z).

p prime
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Open Image Theorem

Let K be a number field and E/K an elliptic curve. Set
Gy = Gal K/K the absolute Galois group and T, := I<Ln E[p"]

the p-adic Tate module of E. We define the Galois representations
PE.p Gk — Aut( ) GL2( )
and

pe Gk = [ GLa(Z,) = GLo(Z).

p prime

Theorem (Serre, 1972)

If E/K is an elliptic curve without CM, then the image of pg is
open in GLy(Z) and hence is a finite-index subgroup.
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Uniformity Question

If E/K is an elliptic curve without CM, then the image of pg is

open in GLg(z) and hence is a finite-index subgroup.
v
Does there exist an integer N = N(K) such that for every elliptic

curve E/K without CM the index [GLo(Z) : Im pg] is smaller than
N?
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Uniformity Question

If E/K is an elliptic curve without CM, then the image of pg is

open in GLg(z) and hence is a finite-index subgroup.
v
Does there exist an integer N = N(K) such that for every elliptic

curve E/K without CM the index [GLo(Z) : Im pg] is smaller than
N? )

The question is true when K = Q.
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Uniformity Question

Theorem (Serre, 1972

If E/K is an elliptic curve without CM, then the image of pg is
open in GLy(Z) and hence is a finite-index subgroup.

v
Does there exist an integer N = N(K) such that for every elliptic

curve E/K without CM the index [GLo(Z) : Im pg] is smaller than
N? )

The question is true when K = Q.

current strategy —  giving a 'vertical’ bound on the index of the
image of local representations pg po;
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Uniformity Question

Theorem (Serre, 1972

If E/K is an elliptic curve without CM, then the image of pg is
open in GLy(Z) and hence is a finite-index subgroup.

Does there exist an integer N = N(K) such that for every elliptic

curve E/K without CM the index [GLo(Z) : Im pg] is smaller than
N?

The question is true when K = Q.

current strategy —  giving a 'vertical’ bound on the index of the
image of local representations pg po;

— giving a ‘horizontal’ bound on the primes,

showing that pg ,, is surjective trying to ex-

clude that Im pg , is contained in maximal

proper subgroups of GLo(IF,).




Existent bounds

Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over Q with j = j(E). Let N be
the product of primes for which E has bad reduction.

m There are constants C,~y such that
[GLo(Z) : Im pg] < C max{1,h(j)}".
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Existent bounds

Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over Q with j = j(E). Let N be
the product of primes for which E has bad reduction.

m There are constants C,~y such that
[GLo(Z) : Im pg] < C max{1,h(j)}".
m There is a constant C such that

[GLo(Z) : Im pg] < C(68N(1 + log log N)z )M,
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Existent bounds

Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over Q with j = j(E). Let N be
the product of primes for which E has bad reduction.

m There are constants C,~y such that
[GLo(Z) : Im pg] < C max{1,h(j)}".
m There is a constant C such that
[GLa(Z) : Im pg] < C(68N(1 + log log N)z)2*(V),
m Assuming GRH there is a constant C such that
[GLo2(Z) : Im pg] < (C log N(log log 2N)3)24(N),
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Existent bounds
Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over Q with j = j(E). Let N be
the product of primes for which E has bad reduction.

m There are constants C,~y such that
[GLo(Z) : Im pg] < C max{1,h(j)}".
m There is a constant C such that
[GLa(Z) : Im pg] < C(68N(1 + log log N)z)2*(V),
m Assuming GRH there is a constant C such that
[GLo2(Z) : Im pg] < (C log N(log log 2N)3)24(N),

Theorem (Lombardo, 2015)

Let E be a non-CM elliptic curve over a number field K. Setting
C = exp(1.9 - 10%%) and v = 12395 we have

[GLa(Z) : Im pe] < C(IK : Q] max{L,h#(E), log[K : QI})".




Theorem (F., 20247)

Let E be a non-CM elliptic curve over Q. There exist explicit
constants Cy, C, such that

[GLo(Z) : Im pg] < Ci(hzs(E) +32)353

and

(GLo(Z) : Im pe] < Go(hr(E) + 23.5) O amaizter).

where the function O (W) is explicit.
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Theorem (F., 20247)

Let E be a non-CM elliptic curve over Q. There exist explicit
constants Cy, C, such that

[GLo(Z) : Im pg] < Ci(hzs(E) +32)353

and
2 o
[GL2(Z) : Im pg] < Go(hr(E) + 23.5)3+O('°g'°ghf(E))7

where the function O (W) is explicit.

Main improvements:

m Classification of the possible images modulo p”;
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Theorem (F., 20247)

Let E be a non-CM elliptic curve over Q. There exist explicit
constants Cy, C, such that

[GLo(Z) : Im pg] < Ci(hzs(E) +32)353

and
2 o
[GL2(Z) : Im pg] < Go(hr(E) + 23.5)3+O('°g'°ghf(E))7

where the function O (W) is explicit.

Main improvements:
m Classification of the possible images modulo p”;

m Bound on the product of the prime powers p” for which
Im pg pn lies in the normaliser of a non-split Cartan.
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Maximal subgroups of GLy(F),)

Im pe , can be contained in
m ‘exceptional’ subgroups: Serre showed they cannot occur for
p > 13.
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Maximal subgroups of GLy(F),)

Im pe , can be contained in
m ‘exceptional’ subgroups: Serre showed they cannot occur for
p > 13.
m Borel subgroups: they don't occur for p > 37 (Mazur, 1978).
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Maximal subgroups of GLy(F),)

Im pe , can be contained in

m ‘exceptional’ subgroups: Serre showed they cannot occur for
p > 13.

m Borel subgroups: they don't occur for p > 37 (Mazur, 1978).
m Normalisers of Cartan subgroups: Cartan subgroups can be
of two types
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Maximal subgroups of GLy(F),)

Im pe , can be contained in

m ‘exceptional’ subgroups: Serre showed they cannot occur for
p > 13.

m Borel subgroups: they don't occur for p > 37 (Mazur, 1978).
m Normalisers of Cartan subgroups: Cartan subgroups can be
of two types

m split: This doesn't occur for p > 13 (Bilu—Parent, 2011).
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Maximal subgroups of GLy(F),)

Im pe , can be contained in

m ‘exceptional’ subgroups: Serre showed they cannot occur for
p > 13.

m Borel subgroups: they don't occur for p > 37 (Mazur, 1978).
m Normalisers of Cartan subgroups: Cartan subgroups can be
of two types
m split: This doesn't occur for p > 13 (Bilu—Parent, 2011).
m non-split: we don't know.
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Maximal subgroups of GLy(F),)

Im pe , can be contained in
m ‘exceptional’ subgroups: Serre showed they cannot occur for
p > 13.
m Borel subgroups: they don't occur for p > 37 (Mazur, 1978).
m Normalisers of Cartan subgroups: Cartan subgroups can be
of two types
m split: This doesn't occur for p > 13 (Bilu—Parent, 2011).
m non-split: we don't know.

Definition

Given an odd prime p, € € Z, which is not a square modulo p and
a positive integer n, we call a non-split Cartan subgroup

Cos(p") == {(Z Eab> ca,be Z/an not both 0 mod p}

and C.(p") = Cps(p™) U ((1) _01> Cns(p") its normaliser.

T = = =
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Possible images modulo p”

Theorem (Zywina, 2011)

Suppose that p > 3 and Im pg , C C;(p), for every n > 1 one of
the following holds:

. |mpE7pn g C’;Z(pn)’.

B Impg peo O 1+ p*"Mao(Z)).
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Possible images modulo p”
Theorem (Zywina, 2011)

Suppose that p > 3 and Im pg , C C;(p), for every n > 1 one of
the following holds:
. |mpE7pn g C’;’;(pn)’.
B Impg peo O 1+ p*"Mao(Z)).
v
If Im pg poe D | + p*"Mo(Z,), the index of the image is bounded
by p16n_
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Possible images modulo p”
Theorem (Zywina, 2011)

Suppose that p > 3 and Im pg , C C;(p), for every n > 1 one of
the following holds:

. |mpE7pn g C’j;(pn)’.

B Impg peo O 1+ p*"Mao(Z)).

If Im pg poe D | + p*"Mo(Zp), the index of the image is bounded
by p16n_

\,

If p> 37 and pg p is not surjective, then Im pg , = CL(p).

Combining these two results, we notice that it is sufficient to
bound all the prime powers p” such that Im pg ,n € C(p").

T = = =
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Possible images modulo p”

Theorem (F.,2024)

Suppose that p > 5 and Im pg , € C.(p).
If n is the smallest integer such that Im pg peo O | + p"Ma(Zp) and
n > 2, then
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Possible images modulo p”

Theorem (F.,2024)

Suppose that p > 5 and Im pg , € C.(p).
If n is the smallest integer such that Im pg peo O | + p"Ma(Zp) and
n > 2, then

In this case, we have that [GL2(Z,) : Im pg p] < p?".
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Bound in the Cartan case

Theorem (Le Fourn, 2016)

Let E/Q be a non-CM elliptic curve and let A be a product of odd
primes p such that Im pg , C C(p). We have that

A < 29N+ 1035 (max{hz(E), 985} + 4w(A) log 2),
where w(N) is the prime divisor counting function.
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Bound in the Cartan case

Theorem (Le Fourn, 2016)

Let E/Q be a non-CM elliptic curve and let A be a product of odd
primes p such that Im pg , C C(p). We have that

A < 29N+ 1035 (max{hz(E), 985} + 4w(A) log 2),
where w(N) is the prime divisor counting function.

Theorem (F. — Lombardo, F.)

Let E/Q be a non-CM elliptic curve and let A be a product of odd
p" such that Im pg pn C C(p"). We have
3
A < 2908 - 2¢(N) (hf(E) +2log A+ 2 log (h7(E) +1) + 5) .
In particular,

A < 26000 (hz(E) + 32)**"" and A < 2908h f(E)”O(
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Thank you for your attention
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