Explicit Serre's open image theorem for rational elliptic curves

Lorenzo Furio

17 April 2024

Lorenzo Furio [Explicit Serre's open image theorem for rational elliptic curves](#page-27-0)

つくい

Open Image Theorem

Definition

Let K be a number field and $E_{/K}$ an elliptic curve. Set ${\sf G}_\mathcal{K}:=\mathsf{Gal}\left(\overline{\raisebox{2pt}{\rm{\mathcal{K}}}}\right)$ the absolute Galois group and $\mathcal{T}_p:=\varprojlim E[p^n]$ the p -adic Tate module of E . We define the Galois representations

$$
\rho_{E,p^{\infty}}:\,\mathbf{G}_{K}\rightarrow\text{Aut}(\,\mathcal{T}_{p})\cong\text{GL}_{2}(\mathbb{Z}_{p})
$$

and

$$
\rho_E : \mathbf{G}_{\mathcal{K}} \rightarrow \prod_{p \text{ prime}} \mathrm{GL}_2(\mathbb{Z}_p) = \mathrm{GL}_2(\widehat{\mathbb{Z}}).
$$

Open Image Theorem

Definition

Let K be a number field and $E_{/K}$ an elliptic curve. Set ${\sf G}_\mathcal{K}:=\mathsf{Gal}\left(\overline{\raisebox{2pt}{\rm{\mathcal{K}}}}\right)$ the absolute Galois group and $\mathcal{T}_p:=\varprojlim E[p^n]$ the p -adic Tate module of E . We define the Galois representations

$$
\rho_{E,p^{\infty}}:\,\mathbf{G}_{\mathcal{K}}\rightarrow\text{Aut}(\,\mathcal{T}_p)\cong\text{GL}_2(\mathbb{Z}_p)
$$

and

$$
\rho_E : \mathbf{G}_K \to \prod_{p \text{ prime}} \text{GL}_2(\mathbb{Z}_p) = \text{GL}_2(\widehat{\mathbb{Z}}).
$$

Theorem (Serre, 1972)

If $E_{/K}$ is an elliptic curve without CM, then the image of ρ_E is open in $GL_2(\widehat{\mathbb{Z}})$ and hence is a finite-index subgroup.

イロ トラ 風 トラ ミトラ エ

つくい

Theorem (Serre, 1972)

If $E_{/K}$ is an elliptic curve without CM, then the image of ρ_E is open in $GL_2(\widehat{\mathbb{Z}})$ and hence is a finite-index subgroup.

Question

Does there exist an integer $N = N(K)$ such that for every elliptic curve ${}^E\!\mathbin{\mathcal{F}}_{\mathcal{K}}$ without CM the index $[\mathsf{GL}_2(\widehat{\mathbb{Z}})$: $\mathsf{Im}\, \rho_E]$ is smaller than $N²$

Theorem (Serre, 1972)

If $E_{/K}$ is an elliptic curve without CM, then the image of ρ_E is open in $GL_2(\widehat{\mathbb{Z}})$ and hence is a finite-index subgroup.

Question

Does there exist an integer $N = N(K)$ such that for every elliptic curve ${}^E\!\mathbin{\mathcal{F}}_{\mathcal{K}}$ without CM the index $[\mathsf{GL}_2(\widehat{\mathbb{Z}})$: $\mathsf{Im}\, \rho_E]$ is smaller than N?

Conjecture

The question is true when $K = \mathbb{Q}$.

Theorem (Serre, 1972)

If $E_{/K}$ is an elliptic curve without CM, then the image of ρ_E is open in $GL_2(\widehat{\mathbb{Z}})$ and hence is a finite-index subgroup.

Question

Does there exist an integer $N = N(K)$ such that for every elliptic curve ${}^E\!\mathbin{\mathcal{F}}_{\mathcal{K}}$ without CM the index $[\mathsf{GL}_2(\widehat{\mathbb{Z}})$: $\mathsf{Im}\, \rho_E]$ is smaller than N?

Conjecture

The question is true when $K = \mathbb{Q}$.

current strategy \rightarrow giving a 'vertical' bound on the index of the image of local representations $\rho_{E,p^{\infty}}$;

∢ 何 ▶ (ヨ ▶ (ヨ ▶

Theorem (Serre, 1972)

If $E_{/K}$ is an elliptic curve without CM, then the image of ρ_E is open in $GL_2(\widehat{\mathbb{Z}})$ and hence is a finite-index subgroup.

Question

Does there exist an integer $N = N(K)$ such that for every elliptic curve ${}^E\!\mathbin{\mathcal{F}}_{\mathcal{K}}$ without CM the index $[\mathsf{GL}_2(\widehat{\mathbb{Z}})$: $\mathsf{Im}\, \rho_E]$ is smaller than N?

Conjecture

The question is true when $K = \mathbb{Q}$.

current strategy \rightarrow giving a 'vertical' bound on the index of the image of local representations $\rho_{E,p^{\infty}}$; \rightarrow giving a 'horizontal' bound on the primes, showing that $\rho_{E,p}$ is surjective trying to exclude that $\text{Im } \rho_{E,p}$ is contained in maximal [p](#page-6-0)roper subgroups of $GL_2(\mathbb{F}_p)$ $GL_2(\mathbb{F}_p)$ $GL_2(\mathbb{F}_p)$ $GL_2(\mathbb{F}_p)$ $GL_2(\mathbb{F}_p)$ $GL_2(\mathbb{F}_p)$ $GL_2(\mathbb{F}_p)$ [.](#page-0-0) $\mathbb{F}_p \longrightarrow \mathbb{F}_p$ Lorenzo Furio **[Explicit Serre's open image theorem for rational elliptic curves](#page-0-0)**

Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over $\mathbb Q$ with $j = j(E)$. Let N be the product of primes for which E has bad reduction.

There are constants C, γ such that

 $\textsf{[GL}_2(\widehat{\mathbb{Z}}) : \textsf{Im} \, \rho_E] < C \, \textsf{max}\{1, \textsf{h}(j)\}^{\gamma}.$

 \mathbf{A} . The first set of \mathbf{A}

Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over $\mathbb Q$ with $j = j(E)$. Let N be the product of primes for which E has bad reduction.

There are constants C, γ such that

$$
[\mathsf{GL}_2(\widehat{\mathbb{Z}}):\mathsf{Im}\,\rho_E]
$$

There is a constant C such that

 $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im} \, \rho_E] < C(\mathsf{68N}(1 + \log \log N)^{\frac{1}{2}})^{24\omega(N)}.$

Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over $\mathbb Q$ with $j = j(E)$. Let N be the product of primes for which E has bad reduction.

■ There are constants
$$
C, \gamma
$$
 such that

$$
[\mathsf{GL}_2(\widehat{\mathbb{Z}}):\mathsf{Im}\,\rho_E]
$$

There is a constant C such that $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im} \, \rho_E] < C(\mathsf{68N}(1 + \log \log N)^{\frac{1}{2}})^{24\omega(N)}.$ Assuming GRH there is a constant C such that $\left[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im} \, \rho_E\right] < (\mathsf{C} \log \mathsf{N} (\log \log 2N)^3)^{24\omega(N)}.$

 Ω

Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over $\mathbb Q$ with $j = j(E)$. Let N be the product of primes for which E has bad reduction.

■ There are constants
$$
C, \gamma
$$
 such that

$$
[\mathsf{GL}_2(\widehat{\mathbb{Z}}):\mathsf{Im}\,\rho_E]
$$

There is a constant C such that

 $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im} \, \rho_E] < C(\mathsf{68N}(1 + \log \log N)^{\frac{1}{2}})^{24\omega(N)}.$

Assuming GRH there is a constant C such that $\left[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im} \, \rho_E\right] < (\mathsf{C} \log \mathsf{N} (\log \log 2N)^3)^{24\omega(N)}.$

Theorem (Lombardo, 2015)

Let E be a non-CM elliptic curve over a number field K. Setting $C = \exp(1.9 \cdot 10^{10})$ and $\gamma = 12395$ we have

 $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$ $[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < \mathsf{C} ([\mathsf{K} : \mathbb{Q}] \, \mathsf{max} \{ \mathsf{1}, \mathsf{h}_\mathcal{F}(E), \mathsf{log} [\mathsf{K} : \mathbb{Q}] \})^\gamma.$

Theorem (F., 2024?)

Let E be a non-CM elliptic curve over Q . There exist explicit constants C_1 , C_2 such that

$$
[\mathsf{GL}_2(\widehat{\mathbb{Z}}):\mathsf{Im}\,\rho_E] < \mathcal{C}_1(\mathsf{h}_{\mathcal{F}}(E) + 32)^{3.531}
$$

and

$$
[GL_2(\widehat{\mathbb{Z}}): \text{Im } \rho_E] < C_2\left(\text{h}_{\mathcal{F}}(E) + 23.5\right)^{3+O\left(\frac{1}{\log\log\text{h}_{\mathcal{F}}(E)}\right)},
$$
\nwhere the function

\n
$$
O\left(\frac{1}{\log\log\text{h}_{\mathcal{F}}(E)}\right) \text{ is explicit.}
$$

押 ▶ イヨ ▶ イヨ ▶ │

 2990

∍

Theorem (F., 2024?)

Let E be a non-CM elliptic curve over $\mathbb Q$. There exist explicit constants C_1 , C_2 such that

$$
[\mathsf{GL}_2(\widehat{\mathbb{Z}}):\mathsf{Im}\,\rho_E] < \mathcal{C}_1(\mathsf{h}_{\mathcal{F}}(E) + 32)^{3.531}
$$

and

$$
[GL_2(\widehat{\mathbb{Z}}): \text{Im } \rho_E] < C_2\big(\mathsf{h}_{\mathcal{F}}(E) + 23.5\big)^{3+O\big(\frac{1}{\log\log\mathsf{h}_{\mathcal{F}}(E)}\big)},
$$
\nwhere the function $O\left(\frac{1}{\log\log\mathsf{h}_{\mathcal{F}}(E)}\right)$ is explicit.

Main improvements:

Classification of the possible images modulo p^n ;

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

性

Theorem (F., 2024?)

Let E be a non-CM elliptic curve over $\mathbb O$. There exist explicit constants C_1 , C_2 such that

$$
[\mathsf{GL}_2(\widehat{\mathbb{Z}}):\mathsf{Im}\,\rho_E] < \mathcal{C}_1(\mathsf{h}_{\mathcal{F}}(E) + 32)^{3.531}
$$

and

$$
[GL_2(\widehat{\mathbb{Z}}): \text{Im } \rho_E] < C_2\left(\text{h}_{\mathcal{F}}(E) + 23.5\right)^{3+O\left(\frac{1}{\log\log\text{h}_{\mathcal{F}}(E)}\right)},
$$
\nwhere the function $O\left(\frac{1}{\log\log\text{h}_{\mathcal{F}}(E)}\right)$ is explicit.

Main improvements:

- Classification of the possible images modulo p^n ;
- Bound on the product of the prime powers p^n for which Im ρ_{E,p^n} lies in the normaliser of a non-split Cartan.

す 何 ト す ヨ ト す ヨ ト

Im $\rho_{E,p}$ can be contained in

'exceptional' subgroups: Serre showed they cannot occur for $p > 13$.

化重变 化重

 QQ

- Im $\rho_{E,p}$ can be contained in
	- **E** 'exceptional' subgroups: Serre showed they cannot occur for $p > 13$.
	- **Borel subgroups**: they don't occur for $p > 37$ (Mazur, 1978).

 Ω

- Im $\rho_{E,p}$ can be contained in
	- **E** 'exceptional' subgroups: Serre showed they cannot occur for $p > 13$.
	- **Borel subgroups**: they don't occur for $p > 37$ (Mazur, 1978).
	- **Normalisers of Cartan subgroups:** Cartan subgroups can be of two types

AD ▶ ◀ ヨ ▶ ◀ ヨ ▶

 Ω

Im $\rho_{E,p}$ can be contained in

- **E** 'exceptional' subgroups: Serre showed they cannot occur for $p > 13$.
- **Borel subgroups**: they don't occur for $p > 37$ (Mazur, 1978).
- **Normalisers of Cartan subgroups:** Cartan subgroups can be of two types
	- **split**: This doesn't occur for $p > 13$ (Bilu–Parent, 2011).

AD ▶ ◀ ヨ ▶ ◀ ヨ ▶ │

Im $\rho_{E,p}$ can be contained in

- **E** 'exceptional' subgroups: Serre showed they cannot occur for $p > 13$.
- **Borel subgroups**: they don't occur for $p > 37$ (Mazur, 1978).
- **Normalisers of Cartan subgroups:** Cartan subgroups can be of two types
	- **split**: This doesn't occur for $p > 13$ (Bilu–Parent, 2011).
	- **non-split**: we don't know.

何 ▶ イヨ ▶ イヨ ▶ │

Im $\rho_{E,p}$ can be contained in

- **E** 'exceptional' subgroups: Serre showed they cannot occur for $p > 13$.
- **Borel subgroups**: they don't occur for $p > 37$ (Mazur, 1978).
- **Normalisers of Cartan subgroups:** Cartan subgroups can be of two types
	- **split**: This doesn't occur for $p > 13$ (Bilu–Parent, 2011).
	- **non-split**: we don't know.

Definition

Given an odd prime $p, \varepsilon \in \mathbb{Z}_p$ which is not a square modulo p and a positive integer n, we call a non-split Cartan subgroup

$$
C_{ns}(p^n):=\left\{\begin{pmatrix}a&\varepsilon b\\b&a\end{pmatrix}: a,b\in\mathbb{Z}_{/p^n\mathbb{Z}} \text{ not both } 0 \text{ mod } p\right\}
$$

and
$$
C_{ns}^+(p^n) = C_{ns}(p^n) \cup \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} C_{ns}(p^n)
$$
 its normaliser.

Possible images modulo $pⁿ$

Theorem (Zywina, 2011)

Suppose that $p>3$ and ${\sf Im}\,\rho_{E,p}\subseteq C^+_{ns}(p)$, for every $n\geq 1$ one of the following holds:

$$
\blacksquare \mathsf{Im} \, \rho_{E,p^n} \subseteq C^+_{ns}(p^n);
$$

■ Im
$$
\rho_{E,p}
$$
 \supset $I + p^{4n} M_2(\mathbb{Z}_p)$.

Possible images modulo $pⁿ$

Theorem (Zywina, 2011)

Suppose that $p>3$ and ${\sf Im}\,\rho_{E,p}\subseteq C^+_{ns}(p)$, for every $n\geq 1$ one of the following holds:

$$
\blacksquare \mathsf{Im} \, \rho_{E,p^n} \subseteq C^+_{ns}(p^n);
$$

$$
\blacksquare \operatorname{Im} \rho_{E,p^{\infty}} \supset I + p^{4n} M_2(\mathbb{Z}_p).
$$

Remark

If $\text{Im } \rho_{E, p^{\infty}} \supset I + p^{4n} M_2(\mathbb{Z}_p)$, the index of the image is bounded by p^{16n} .

伊 ▶ ヨ ヨ ▶ ヨ ヨ

Possible images modulo $pⁿ$

Theorem (Zywina, 2011)

Suppose that $p>3$ and ${\sf Im}\,\rho_{E,p}\subseteq C^+_{ns}(p)$, for every $n\geq 1$ one of the following holds:

$$
\blacksquare \mathsf{Im} \, \rho_{E,p^n} \subseteq \mathsf{C}_{\mathsf{ns}}^+(p^n);
$$

$$
\blacksquare \operatorname{Im} \rho_{E,p^{\infty}} \supset I + p^{4n} M_2(\mathbb{Z}_p).
$$

Remark

If $\text{Im } \rho_{E, p^{\infty}} \supset I + p^{4n} M_2(\mathbb{Z}_p)$, the index of the image is bounded by p^{16n} .

Theorem

If $p > 37$ and $\rho_{E,p}$ is not surjective, then $\text{Im } \rho_{E,p} = C_{ns}^{+}(p)$.

Remark

Combining these two results, we notice that it is sufficient to bound all the [p](#page-23-0)rime powers ρ^n such that $\textsf{Im}\, \rho_{E, \rho^n} \subseteq C^+_{\textsf{ns}}(\rho^n).$ $\textsf{Im}\, \rho_{E, \rho^n} \subseteq C^+_{\textsf{ns}}(\rho^n).$

 $0Q$

Theorem (F.,2024)

Suppose that $p > 5$ and $\text{Im } \rho_{E,p} \subseteq C_{\text{ns}}^+(p)$. If n is the smallest integer such that $\text{Im } \rho_{E, p^{\infty}} \supset I + p^{n} M_2(\mathbb{Z}_p)$ and $n > 2$, then

$$
\text{Im }\rho_{E,p^n}=C^+_{ns}(p^n).
$$

伊 ▶ ヨ ヨ ▶ ヨ ヨ

Theorem (F.,2024)

Suppose that $p > 5$ and $\text{Im } \rho_{E,p} \subseteq C_{\text{ns}}^+(p)$. If n is the smallest integer such that $\text{Im } \rho_{E, p^{\infty}} \supset I + p^{n} M_2(\mathbb{Z}_p)$ and $n > 2$, then

$$
\operatorname{Im}\rho_{E,p^n}=C_{ns}^+(p^n).
$$

Remark

In this case, we have that $[\mathsf{GL}_2(\mathbb{Z}_p):\mathsf{Im}\,\rho_{E,p^\infty}]\leq p^{2n}.$

何 ▶ (三) (三)

Theorem (Le Fourn, 2016)

Let E_{on} be a non-CM elliptic curve and let Λ be a product of odd primes p such that ${\sf Im}\,\rho_{E,p}\subseteq C^+_{ns}(p).$ We have that $\Lambda < 2^{\omega(\Lambda)+1} \cdot 10^{3.5}$ (max $\{\mathsf{h}_\mathcal{F}(E), 985\} + 4\omega(\Lambda)$ log 2), where $\omega(\Lambda)$ is the prime divisor counting function.

Theorem (Le Fourn, 2016)

Let E_{on} be a non-CM elliptic curve and let Λ be a product of odd primes p such that ${\sf Im}\,\rho_{E,p}\subseteq C^+_{ns}(p).$ We have that $\Lambda < 2^{\omega(\Lambda)+1} \cdot 10^{3.5}$ (max $\{\mathsf{h}_\mathcal{F}(E), 985\} + 4\omega(\Lambda)$ log 2), where $\omega(\Lambda)$ is the prime divisor counting function.

Theorem (F. – Lombardo, F.)

Let E_{on} be a non-CM elliptic curve and let Λ be a product of odd p^n such that ${\sf Im}\,\rho_{E,p^n}\subseteq\mathcal{C}^+_{ns}(p^n).$ We have $\Lambda < 2908 \cdot 2^{\omega(\Lambda)} \left(\mathsf{h}_\mathcal{F}(\mathcal{E}) + 2 \log \Lambda + \frac{3}{2} \log \left(\mathsf{h}_\mathcal{F}(\mathcal{E}) + 1 \right) + 5 \right).$ In particular,

 $\Lambda < 26000\left(\text{h}_{\mathcal{F}}(E) + 32 \right)^{1.177}$ and $\quad \Lambda < 2908\,\text{h}_{\mathcal{F}}(E)^{1+O\left(\frac{1}{\log\log\text{h}_{\mathcal{F}}(E)} \right)}.$

≮ロト (何) (日) (日)

 \equiv

Thank you for your attention

 2990

∍