Explicit Serre's open image theorem for rational elliptic curves

Lorenzo Furio

17 April 2024

Open Image Theorem

Definition

Let K be a number field and $E_{/K}$ an elliptic curve. Set

 $\mathbf{G}_K := \operatorname{Gal}\left(\overline{K}_K\right)$ the absolute Galois group and $T_p := \varprojlim E[p^n]$ the p-adic Tate module of E. We define the Galois representations

$$ho_{E,p^{\infty}}: \mathbf{G}_K o \operatorname{Aut}(T_p) \cong \operatorname{GL}_2(\mathbb{Z}_p)$$

and

$$ho_{\mathit{E}}: \mathbf{G}_{\mathit{K}}
ightarrow \prod_{\mathit{p} \; \mathsf{prime}} \mathsf{GL}_2(\mathbb{Z}_{\mathit{p}}) = \mathsf{GL}_2(\widehat{\mathbb{Z}}).$$

Open Image Theorem

Definition

Let K be a number field and E_{K} an elliptic curve. Set $\mathbf{G}_{K} := \operatorname{Gal}\left(\overline{K}_{K}\right)$ the absolute Galois group and $T_{p} := \varprojlim E[p^{n}]$

$$\rho_{E,p^{\infty}}: \mathbf{G}_{K} \to \operatorname{Aut}(T_{p}) \cong \operatorname{GL}_{2}(\mathbb{Z}_{p})$$

the p-adic Tate module of E. We define the Galois representations

and

$$ho_{\mathsf{E}}: \mathbf{G}_{\mathsf{K}}
ightarrow \prod_{\mathsf{p} \ \mathsf{prime}} \mathsf{GL}_2(\mathbb{Z}_{\mathsf{p}}) = \mathsf{GL}_2(\widehat{\mathbb{Z}}).$$

Theorem (Serre, 1972)

If $^{E}/_{K}$ is an elliptic curve without CM, then the image of ρ_{E} is open in $GL_{2}(\widehat{\mathbb{Z}})$ and hence is a finite-index subgroup.

Theorem (Serre, 1972)

If $E_{/K}$ is an elliptic curve without CM, then the image of ρ_E is open in $GL_2(\widehat{\mathbb{Z}})$ and hence is a finite-index subgroup.

Question

Does there exist an integer N=N(K) such that for every elliptic curve E_{K} without CM the index $[GL_{2}(\widehat{\mathbb{Z}}): Im \rho_{E}]$ is smaller than N?

Theorem (Serre, 1972)

If $E_{/K}$ is an elliptic curve without CM, then the image of ρ_E is open in $GL_2(\widehat{\mathbb{Z}})$ and hence is a finite-index subgroup.

Question

Does there exist an integer N=N(K) such that for every elliptic curve E_{K} without CM the index $[GL_{2}(\widehat{\mathbb{Z}}): Im \rho_{E}]$ is smaller than N?

Conjecture

The question is true when $K = \mathbb{Q}$.

Theorem (Serre, 1972)

If $^{E}/_{K}$ is an elliptic curve without CM, then the image of ρ_{E} is open in $GL_{2}(\widehat{\mathbb{Z}})$ and hence is a finite-index subgroup.

Question

Does there exist an integer N=N(K) such that for every elliptic curve E_{K} without CM the index $[GL_{2}(\widehat{\mathbb{Z}}): Im \rho_{E}]$ is smaller than N?

Conjecture

The question is true when $K = \mathbb{Q}$.

current strategy \rightarrow giving a 'vertical' bound on the index of the image of local representations $\rho_{E,p^{\infty}}$;

Theorem (Serre, 1972)

If $^{E}/_{K}$ is an elliptic curve without CM, then the image of ρ_{E} is open in $GL_{2}(\widehat{\mathbb{Z}})$ and hence is a finite-index subgroup.

Question

Does there exist an integer N=N(K) such that for every elliptic curve E_{K} without CM the index $[GL_2(\widehat{\mathbb{Z}}): Im \rho_E]$ is smaller than N?

Conjecture

The question is true when $K = \mathbb{Q}$.

- current strategy
- \rightarrow giving a 'vertical' bound on the index of the image of local representations $\rho_{E,p^{\infty}}$;
- \rightarrow giving a 'horizontal' bound on the primes, showing that $\rho_{E,p}$ is surjective trying to exclude that Im $\rho_{E,p}$ is contained in maximal proper subgroups of $GL_2(\mathbb{F}_p)$.

Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over \mathbb{Q} with j = j(E). Let N be the product of primes for which E has bad reduction.

■ There are constants C, γ such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_{\mathit{E}}] < C\, \mathsf{max}\{1,\mathsf{h}(j)\}^{\gamma}.$$

Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over \mathbb{Q} with j = j(E). Let N be the product of primes for which E has bad reduction.

■ There are constants C, γ such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_{\mathit{E}}] < C\, \mathsf{max}\{1,\mathsf{h}(j)\}^{\gamma}.$$

■ There is a constant C such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\,
ho_{\mathit{E}}] < C(68N(1 + \log\log N)^{\frac{1}{2}})^{24\omega(N)}.$$

Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over \mathbb{Q} with j = j(E). Let N be the product of primes for which E has bad reduction.

■ There are constants C, γ such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_{\mathit{E}}] < C\, \mathsf{max}\{1,\mathsf{h}(j)\}^{\gamma}.$$

■ There is a constant C such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}): \mathsf{Im}\, \rho_{\mathsf{E}}] < C(68N(1+\log\log N)^{\frac{1}{2}})^{24\omega(N)}.$$

Assuming GRH there is a constant C such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\,\rho_E] < (C\log N(\log\log 2N)^3)^{24\omega(N)}.$$

Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over \mathbb{Q} with j = j(E). Let N be the product of primes for which E has bad reduction.

■ There are constants C, γ such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_{\mathit{E}}] < C\, \mathsf{max}\{1,\mathsf{h}(j)\}^{\gamma}.$$

■ There is a constant C such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_{\mathit{E}}] < \mathit{C}(68\mathit{N}(1 + \log\log\mathit{N})^{\frac{1}{2}})^{24\omega(\mathit{N})}.$$

Assuming GRH there is a constant C such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\,\rho_E] < (C\log N(\log\log 2N)^3)^{24\omega(N)}.$$

Theorem (Lombardo, 2015)

Let E be a non-CM elliptic curve over a number field K. Setting $C=\exp(1.9\cdot 10^{10})$ and $\gamma=12395$ we have

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\, \rho_E] < C([K:\mathbb{Q}]\,\mathsf{max}\{1,\mathsf{h}_{\mathcal{F}}(E),\mathsf{log}[K:\mathbb{Q}]\})^{\gamma}.$$

Theorem (F., 2024?)

Let E be a non-CM elliptic curve over \mathbb{Q} . There exist explicit constants C_1 , C_2 such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\,
ho_{\mathit{E}}] < \mathit{C}_1(\mathsf{h}_{\mathcal{F}}(\mathit{E}) + 32)^{3.531}$$

and

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\,\rho_E] < C_2(\mathsf{h}_{\mathcal{F}}(E) + 23.5)^{3+O\left(\frac{1}{\log\log\mathsf{h}_{\mathcal{F}}(E)}\right)},$$

where the function $O\left(\frac{1}{\log\log\log h_{\mathcal{F}}(E)}\right)$ is explicit.

Theorem (F., 2024?)

Let E be a non-CM elliptic curve over \mathbb{Q} . There exist explicit constants C_1 , C_2 such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\,
ho_{\mathit{E}}] < \mathit{C}_1(\mathsf{h}_{\mathcal{F}}(\mathit{E}) + 32)^{3.531}$$

and

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\,\rho_E] < C_2(\mathsf{h}_{\mathcal{F}}(E) + 23.5)^{3+O\left(\frac{1}{\log\log\mathsf{h}_{\mathcal{F}}(E)}\right)},$$

where the function $O\left(\frac{1}{\log\log h_{\mathcal{F}}(E)}\right)$ is explicit.

Main improvements:

• Classification of the possible images modulo p^n ;

Theorem (F., 2024?)

Let E be a non-CM elliptic curve over \mathbb{Q} . There exist explicit constants C_1 , C_2 such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\,
ho_{\mathit{E}}] < \mathit{C}_1(\mathsf{h}_{\mathcal{F}}(\mathit{E}) + 32)^{3.531}$$

and

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{Im}\,\rho_E] < C_2(\mathsf{h}_{\mathcal{F}}(E) + 23.5)^{3+O\left(\frac{1}{\log\log\mathsf{h}_{\mathcal{F}}(E)}\right)},$$

where the function $O\left(\frac{1}{\log\log h_{\mathcal{F}}(E)}\right)$ is explicit.

Main improvements:

- Classification of the possible images modulo p^n ;
- Bound on the product of the prime powers p^n for which Im ρ_{E,p^n} lies in the normaliser of a non-split Cartan.

 $\operatorname{Im} \rho_{E,p}$ can be contained in

• **'exceptional' subgroups**: Serre showed they cannot occur for p > 13.

- **'exceptional' subgroups**: Serre showed they cannot occur for p > 13.
- Borel subgroups: they don't occur for p > 37 (Mazur, 1978).

- 'exceptional' subgroups: Serre showed they cannot occur for p > 13.
- **Borel subgroups**: they don't occur for p > 37 (Mazur, 1978).
- Normalisers of Cartan subgroups: Cartan subgroups can be of two types

- 'exceptional' subgroups: Serre showed they cannot occur for p > 13.
- **Borel subgroups**: they don't occur for p > 37 (Mazur, 1978).
- Normalisers of Cartan subgroups: Cartan subgroups can be of two types
 - **split**: This doesn't occur for p > 13 (Bilu–Parent, 2011).

- **'exceptional' subgroups**: Serre showed they cannot occur for p > 13.
- **Borel subgroups**: they don't occur for p > 37 (Mazur, 1978).
- Normalisers of Cartan subgroups: Cartan subgroups can be of two types
 - **split**: This doesn't occur for p > 13 (Bilu–Parent, 2011).
 - **non-split**: we don't know.

 $\operatorname{Im} \rho_{E,p}$ can be contained in

- **'exceptional' subgroups**: Serre showed they cannot occur for p > 13.
- Borel subgroups: they don't occur for p > 37 (Mazur, 1978).
- Normalisers of Cartan subgroups: Cartan subgroups can be of two types
 - **split**: This doesn't occur for p > 13 (Bilu–Parent, 2011).
 - **non-split**: we don't know.

Definition

Given an odd prime p, $\varepsilon \in \mathbb{Z}_p$ which is not a square modulo p and a positive integer n, we call a non-split Cartan subgroup

$$C_{ns}(p^n) := \left\{ \begin{pmatrix} a & \varepsilon b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z}_{p^n \mathbb{Z}} \text{ not both 0 mod } p \right\}$$

and
$$C_{ns}^+(p^n)=C_{ns}(p^n)\cup \begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} C_{ns}(p^n)$$
 its normaliser.

Theorem (Zywina, 2011)

Suppose that p > 3 and $\text{Im } \rho_{E,p} \subseteq C_{ns}^+(p)$, for every $n \ge 1$ one of the following holds:

- $\blacksquare \operatorname{Im} \rho_{E,p^n} \subseteq C_{ns}^+(p^n);$
- $\blacksquare \operatorname{Im} \rho_{E,p^{\infty}} \supset I + p^{4n} M_2(\mathbb{Z}_p).$

Theorem (Zywina, 2011)

Suppose that p > 3 and $\text{Im } \rho_{E,p} \subseteq C_{ns}^+(p)$, for every $n \ge 1$ one of the following holds:

- $\blacksquare \operatorname{Im} \rho_{E,p^n} \subseteq C_{ns}^+(p^n);$
- $\blacksquare \operatorname{Im} \rho_{E,p^{\infty}} \supset I + p^{4n} M_2(\mathbb{Z}_p).$

Remark

If Im $\rho_{E,p^{\infty}} \supset I + p^{4n}M_2(\mathbb{Z}_p)$, the index of the image is bounded by p^{16n} .

Theorem (Zywina, 2011)

Suppose that p > 3 and $\text{Im } \rho_{E,p} \subseteq C_{ns}^+(p)$, for every $n \ge 1$ one of the following holds:

- $\blacksquare \operatorname{Im} \rho_{E,p^n} \subseteq C_{ns}^+(p^n);$
- $\blacksquare \operatorname{Im} \rho_{E,p^{\infty}} \supset I + p^{4n} M_2(\mathbb{Z}_p).$

Remark

If Im $\rho_{E,p^{\infty}} \supset I + p^{4n} M_2(\mathbb{Z}_p)$, the index of the image is bounded by p^{16n} .

Theorem

If p > 37 and $\rho_{E,p}$ is not surjective, then Im $\rho_{E,p} = C_{ps}^+(p)$.

Remark

Combining these two results, we notice that it is sufficient to bound all the prime powers p^n such that $\operatorname{Im} \rho_{E,p^n} \subseteq C_{ns}^+(p^n)$.

Theorem (F.,2024)

Suppose that p>5 and $\operatorname{Im} \rho_{E,p}\subseteq C_{ns}^+(p)$. If n is the smallest integer such that $\operatorname{Im} \rho_{E,p^\infty}\supset I+p^nM_2(\mathbb{Z}_p)$ and n>2, then

$$\operatorname{Im} \rho_{E,p^n} = C_{ns}^+(p^n).$$

Theorem (F.,2024)

Suppose that p>5 and $\operatorname{Im} \rho_{E,p}\subseteq C_{ns}^+(p)$. If n is the smallest integer such that $\operatorname{Im} \rho_{E,p^\infty}\supset I+p^nM_2(\mathbb{Z}_p)$ and n>2, then

$$\operatorname{Im} \rho_{E,p^n} = C_{ns}^+(p^n).$$

Remark

In this case, we have that $[GL_2(\mathbb{Z}_p) : \operatorname{Im} \rho_{E,p^{\infty}}] \leq p^{2n}$.

Bound in the Cartan case

Theorem (Le Fourn, 2016)

Let $E_{/\mathbb{Q}}$ be a non-CM elliptic curve and let Λ be a product of odd primes p such that $\operatorname{Im} \rho_{E,p} \subseteq C_{ns}^+(p)$. We have that $\Lambda < 2^{\omega(\Lambda)+1} \cdot 10^{3.5} (\max\{h_{\mathcal{F}}(E), 985\} + 4\omega(\Lambda) \log 2),$ where $\omega(\Lambda)$ is the prime divisor counting function.

Bound in the Cartan case

Theorem (Le Fourn, 2016)

Let $E_{/\mathbb{Q}}$ be a non-CM elliptic curve and let Λ be a product of odd primes p such that $\operatorname{Im} \rho_{E,p} \subseteq C_{ns}^+(p)$. We have that

$$\Lambda < 2^{\omega(\Lambda)+1} \cdot 10^{3.5} (\max\{h_{\mathcal{F}}(E), 985\} + 4\omega(\Lambda) \log 2),$$

where $\omega(\Lambda)$ is the prime divisor counting function.

Theorem (F. – Lombardo, F.)

Let $E_{/\mathbb{Q}}$ be a non-CM elliptic curve and let Λ be a product of odd p^n such that $\operatorname{Im} \rho_{E,p^n} \subseteq C_{ns}^+(p^n)$. We have

$$\Lambda < 2908 \cdot 2^{\omega(\Lambda)} \left(h_{\mathcal{F}}(E) + 2 \log \Lambda + \frac{3}{2} \log \left(h_{\mathcal{F}}(E) + 1 \right) + 5 \right).$$

In particular,

$$\Lambda < 26000 \left(h_{\mathcal{F}}(E) + 32 \right)^{1.177} \text{ and } \quad \Lambda < 2908 \, h_{\mathcal{F}}(E)^{1 + \mathcal{O}\left(\frac{1}{\log\log h_{\mathcal{F}}(E)}\right)}.$$

Thank you for your attention