UNIVERSITA DI Pisa

FAacuLTYy OF MATHEMATICS

Unique Factorization in the
Ring of Integers of the
Complex Quadratic Fields

BACHELOR DEGREE THESIS

IN MATHEMATICS

CANDIDATE SUPERVISOR

Lorenzo Furio Davide Lombardo

Universita di Pisa

AcaDEMIC YEAR 2018 - 2019






Contents

Contents
Introduction

1 Preliminaries
1.1 Theideal class group . . . . . . . . . . ... ... ...
1.2 Ellipticcurves . . . . . . . . . . .

2 Rationality of the j-invariant
2.1 The action of CI(K) on ELL(OK) - . . v« o v v v oo
2.2 Algebraicity of the j-invariant . . . . . ... ... ... ..

3 Integrity of the j-invariant
3.1 Expansioning . . . ... ... ... ... e
3.2 TheTatecurve . . . . . . .. . . . . ... .. ... ....

4 Proof of the Gauss conjecture

Bibliography

t

11
11
13

17
18
21

29

39






Introduction

A question that arises spontaneously when one approaches the study of num-
ber fields and the relative rings of integers is whether or not they are rings
with unique factorization. In general, fixed a field, it is always possible to
calculate its ideal class group, but it is a very complex problem to determine
which fields, within a set described by a fixed property, have a class number
1. However, if we consider particular families of number fields it is sometimes
possible to exploit their characteristics to study the solution to this problem.
In our case we will study imaginary quadratic fields in order to determine for
which of them the relative ring of integers has unique factorization. One can
easily see that the quadratic extensions of Q are all and only those of the form
Q(y/m) for m € Z squarefree. Therefore the complex quadratic fields, the
only ones we will study, are Q(v/—m) for m € N squarefree.

In 1801, in Disquisitiones Arithmeticae [Gau86], Gauss conjectured that if
K = Q(v/—m), then O isa UFD ifand only if m € {1,2,3,7,11,19, 43,67, 163}.
Actually, the original Gauss conjecture was stated as a quadratic form prob-
lem, which turns out to be equivalent to the one stated above. The conjecture
was proved later by Heegner [Hee52|, Baker [Bak67] and Stark [Sta67]. Heeg-
ner’s proof had been riformulated by Serre [Ser89] using elliptic curves and
this is the proof that will be presented in this thesis. Note that we restricted
to the complex quadratic fields because if K = Q(y/m) with m € N square-
free, it is conjectured that the rings of integers with unique factorization are
infinite, but this fact still seems far from being proved.

In order to prove Gauss’s conjecture we will start by noting that Ok is a
lattice in C, so C/O % is biolomorphic to an elliptic curve E. We can therefore
study the properties of this curve to deduce the properties of Og. It can be
shown that F is a CM curve and that its endomorphism ring is Ok . Further-
more, assuming that Ok is a UFD, we will first show that its j-invariant is
rational and then later obtain that it is integer. Then, we will observe how
C’s automorphisms act on the torsion points of the curve, determining some
strict condition on j, which will allow us to show that there exists only a finite
number of CM curves with integer j-invariant. This concludes the proof of
the conjecture, noting that every (9@( V=d) which is a UFD corresponds to a
different elliptic curve with these properties. Furthermore, this method leads
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to explicitly obtain these curves, making it possible to check the class numbers
of all the Q(v/—d) fields found.

Let us now give a more precise description of the content of the thesis. In
the first chapter we will introduce some basic results in the theory of elliptic
curves that we will use in the next chapters. In the second chapter we will
show that, given a complex quadratic field K, there exists a finite number of
elliptic curves E up to isomorphism such that End(E) = Ok; to reach this re-
sult we will study how the group Aut(C) acts on the set of these curves. In the
third chapter we will describe the theory of the Tate curve, that is an elliptic
curve defined on a p-adic field whose points can be identified with a quotient

K */qz. This has the property that the elements of Gal(K/K) commute with

[
the isomorphism between K /7 and the group of the points of the curve. In

fact, since elliptic curves with rational j-invariant can be defined over Q, the
curves (C/C’)K of the previous chapter can be studied over an extenion of Q
that doesn’t lie in C, in particular we will consider some p-adic fields.We will
therefore end up deducing that if the j-invariant of an elliptic curve has nega-
tive p-adic evaluation for some prime p, its endomorphism ring is isomorphic
to Z, therefore the j-invariant of the CM curves has absolute value not greater
than 1 for all primes, then it’s an algebraic integer. From this it follows that if
Ok is a UFD, the j-invariant of the curve (C/O j 1S an integer. Finally in the
fourth chapter we will study how the absolute Galois group of Q acts of the
torsion points E[¢] for a prime ¢, representing the automorphisms in G Lo (Fy).
Using the theory of modular curves we will obtain a diophantine equation
with finitely many solutions, i.e. there are finitely many elliptic curves up to
isomorphism over C such that j satisfies the equation, in particular there are
finitely many elliptic curves whose endomorphism ring is isomorphic to Ok
and is a UFD. In addition, knowing the value of j allows to compute the ef-
fective curves and verify that the rings O with unique factorization are only
the 9 found by Gauss.
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Preliminaries

In this section we will introduce some basic results that we will use in the next
chapters.

1.1 The ideal class group

We begin observing some properties of Ok :

Proposition 1.1.1. Let K be a number field and O its ring of integers, then
Ok is a UFD if and only if it’s a PID.

We then define a particular group, named the ideal class group, in the
following way:

Definition 1.1.2. Named F(K) the fractional ideals of O and P(K) the

) = ZUE) 5 be

principal ideals among the fractional ideals, we define CI(K PE)

the ideal class group of O.

In fact, F(K) is an abelian group whose opration is the multiplication and
P(K) is a subgroup, then the quotient is well defined. The ideal class group
has the following property:

Theorem 1.1.3. Let K be a number field, then CI(K) is a finite group.

The ideal class group “measure” how much a ring of integers fails to be
a PID, in particular it is not difficult to note that Ok is a PID (and then a
UFD) if and only if CI(K) is trivial.
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1.2 Elliptic curves

The following results aim to report the basic properties of the endomorphisms
of an elliptic curve and to show the connection with the rings of the integers
of the complex quadratic fields.

When we consider elliptic curves over complex numbers, there is a corrispon-
dence between elliptic curves and complex tori, i.e. the quotients of C by a
lattice A, a discrete subgroup of rank 2. From now on we will call torus a
quotient C/ A

Definition 1.2.1. Let 77,75 be tori, we call an isogeny an additive surjective
holomorphic homomorphism ¢ : 77 — T5.

Proposition 1.2.2. For every isogeny c : Ty — Ts there exists a constant
a € C* such that ¢([z]) = [o - ] Vo e C.

Definition 1.2.3. Let T be a torus, we define the set of the endomorphisms
of the torus to be End(T) := {¢: T — T|c ¢ un’isogenia} | J{0}.

In the previous definition the isogenies are meant to be elements of C*,
rather than functions.

Proposition 1.2.4. End(T) is a subring of C whose elements are algebraic
integers with degree at most 2.

We can note that Z C End(7), in addition End(7’) is a discrete subgroup
of C, then it’s a free Z-module generated by 1 or 2 elements. In particular
End(T) = Z or End(T') = Z[a], where « is an algebraic integer of degree 2.
A torus is a complex variety of dimension 1, then we want to find a curve
in P2C which is biolomrphic to the torus, in particular we want to find a
correspondece between curves and tori.

Definition 1.2.5. Let K be a field, we define an elliptic curve to be a non-
singular plane algebraic curve defined over K by an equation in P?K of the
form

E: Y’Z+aXYZ+a3YZ? = X? + a9 X?*Z + ay X 7% + a6 Z°

In this thesis we will mainly deal with complex curves.

Definition 1.2.6. We define the Weierstrass function to be

3 3 (H-3)

weA\{0}
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The Weierstrass function is diperiodic respect to the lattice A, therefore
we can consider it as a function g : (C/ ‘A — C. Furthermore, it’s not difficult
to show that such a function is meromorphic and has poles of order 2 in
the elements of the lattice; equivalently we can consider it as a holomorphic
function g : C/A — P2C.

Proposition 1.2.7. The functions p(z) and ©'(z) satisfy an equation of the
form

(¢")? = 40" — 920 — g3
where
92 =60 cn\ (0} o7
g3 = 140> e n\ 0} ﬁ

Proposition 1.2.8. The following function

z = [p(z),p’(z),l] ZfZ#O
z — [0,1,00=0 ifz=0

18 a biolomorphism between T’ = (C/A and the curve E : Y?Z = 4X3 — g X 7% —
9323 in P2C.

Proposition 1.2.9. Let A be a lattice, every meromorphic A-periodic function
is a rational function of @ and .

In general we will represent the curve with its equation over C?, adding a
point at infinity corresponding to O.
We will refer to the curve obtained by a torus of lattice A as Fj.
Starting from the group law of T' it is possible to define a group law on the
curve such that the biolomorphism in the proposition 1.2.8 is a homomor-
phism. Intuitively, we define the sum of the points P and ) as the third
point of intersection between the curve and the line P(Q) whose coordinate y
has opposite sign. For x1 # x2, this corresponds to the following algebraic
relation (on affine coordinates):

k2 k2
(@1, 91) + (22,92) = <4 —x—x2, —k <4 —x1 — x2> — h> (1.1)

where k = % and h = y; — kx1. If 21 = xo then we have two cases:

either y; = —y2 # —y1, then we set (z1,y1) + (z2,y2) = O, with O being the
point at infinity; or (x1,y1) = (x2,y2), then the same relation of 1.1 holds,

2_
but k = 122/1 92 and h =y — k.

For elliptic curves which are not in the form y? = 42 — gax — g3 we know that
there exist a linear change of coordinates that sends it in such a form, therefore
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the group law on a generic curve is defined to be the one of the correspondent
curve in the form y? = 423 — gox — g3, with a change of coordinates.

It is not difficult to note that the group law described in the equation 1.1 is
a function whose coordinates are rational functions of the point of the curve,
with rational coefficients. Furthermore, the coordinates change that sends an
elliptic curves of the form y? = 423 — gox — g3 in one in the Weierstrass form,
i.e. in the form y? = 23 + ax + b, has rational coefficients, then the group
law on elliptic curves in Weierstrass form has coordinates which are rational
functions with rational coefficients.

Definition 1.2.10. The group

E[n]:={P € E|nP =0}
is called the n-torsion group.
Proposition 1.2.11. En| = Z/nZ X Z/nZ

We will say that two elliptic curves are isomorphic if there exist a holo-
morphic isomorphism between them, i.e. a function between the curves whose
coordinates are holomorphic functions and that is an isomorphism respect to
the group laws of the curves. In general we can consider holomorphic ho-
momorphisms, in particular we can definethe ring of the endomorphisms of
the curve End(E). Given an elliptic curve E, obtained by a lattice A, the
ring of the endomorphisms of the curve is isomorphic to the ring of the endo-
morphisms of the torus C/ '\, because there exists a holomorphic isomorphism
between the curve and the torus.

If we are handling elliptic curves over fields different from C we cannot use
the holomorphy condition to define the endomorphisms anymore, then we can
use the following:

Definition 1.2.12. Let K be a field and E/ 7 an elliptic curve defined over
it, we call endomorphism of the curve an algebraic function £ — FE that
induces a group homomorphism.

Proposition 1.2.13. E), = E), <= Ja € C such that Ay = aAs.

We note that a linear coordinate change is an isomorphism of elliptic
curves. In addition, given a generic curve of the form y? + a1y + asy =
2 + asx® + asx + ag, defined over a field of characteristic different from 2
and 3, there always exists a linear coordinates transformation that sends it
in an elliptic curve in Weierstrass form, i.e. in the form y?> = 3 + ax + b.
Therefore we can always assume that an elliptic curve is in Weierstrass form,
up to isomorphism.
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Definition 1.2.14. Given a generic elliptic curve
2 _ .3 2
Y°+ a2y + a3y = T + ax” + a4 + ag
define:

by = af + 4a3

by = 2a4 + aras

bg = a3 + 4dag

bs = ajag + 4azas — arazas + aga3 — af
cy = b3 — 24by

A = —b3bg — 8b — 27b2 + 9bobyby

3
In addition we define the j-invariant of the curve to be j = %4.
Theorem 1.2.15. The j-invariant of a curve is invariant under isomorphism.

This theorem allows us to define the j-invariant just for curves in the
Weierstrass form without loss of generality, then for the curve y? = 23 +ax+b
3

we have A = 4a® + 27b and j = 172%.

3
The curve y? = 42% — gox — g3 has j = 1728 52,
92727g3

Theorem 1.2.16. Two elliptic curves defined over an algebraically closed field
are isomorphic if and only if have the same j-invariant.

Theorem 1.2.17. Vc € C JA lattice such that j(E\) = c.

Corollary 1.2.18. FEvery complex elliptic curve, up to isomorphism, comes
from a torus.

Proposition 1.2.19. For complex elliptic curves the definition of endomor-
phism like in 1.2.12 is the same of the definition of holomorphic endomorphism
inherited from the tori.

Proof. The rational functions are clearly holomorphic in the projective plane,
then we just need to prove that the holomorphic homomorphisms consists of
rational functions.

We know that £ = FE, for some lattice A, then V¢ holomorphic homomor-
phism of F Ja € End (C/A> such that ¢(p(2), ¢'(2)) = (p(az), p'(az)). Since

al C A, the function p(az) is A-periodic, therefore, for the proposition 1.2.9,
it is a rational function of p(z) and @'(2). O

Example 1.2.20. Given the curve E : y? = 23 + z, the function (z,y) —
(—x,1y) is and endomorphism and its coordinates are rational functions.
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So fare, we mainly dealt with complex elliptic curves because we can estab-
lish a correspondence between such curves and complex tori. In general, for
elliptic curves defined over a generic field, not all the properties listed above
remain valid, but some of them do not depend on the particular choice of the
field, for example the theorem 1.2.16. In chapter 3, we will define also some
elliptic curves over number fields or their completions respect to some non
archimedean places.

Given these introductive properties, in order to study the ring Og of integers
of K = Q(v/—n), we will start considering the elliptic curves whose endomor-
phism ring is isomorphic to a Ok
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Rationality of the j-invariant

2.1 The action of CI(K) on ELL(Ok)

Definition 2.1.1. Let R be a ring, we define the following set:
ELL(R) == {E|End(E) = R}/g ¢ {A[End(Ep) = R}/omotetia
where F is a complex elliptic curve andA is a lattice in C.

Lemma 2.1.2. Let n € N\ {0} and K = Q(/—n), then ELL(Ok) # 0.

Proof. Let’s consider the lattice A = Ok and the curve E = C/O I therefore
Ok - Ok C Ok, then Og C End(F). Furthermore, if & € End(F), aOg C
Ok, then o € K. We know that a curve’s endomorphism is always an algebraic
integer, thus a € Ok, hence End(F) = Ok. In particular, this implies that
E € ELL(Ok), meaning that E stands for its isomorphism class. O

From now on, given an elliptic curve, we will write that the curve belongs
to ELL(R) to mean that its isomorphism class belongs to that set.
We will also use this notation: let A and B be Z-submodules of C, we will
write AB to indicate the module < {ab | a € A,b € B} >y, similar to the
notation used for the fractional ideals.
At last, from now on we fix K to be a complex quadratic field, unless otherwise
specified.
Let’s now consider a fractional ideal a € F(K). This is always a free Z-module
of rank n = [K : Q], hence, in the case in which K = Q(v/—n), a C C is a
Z-module of rank 2; in addition a C R, then a is a lattice in C. Therefore we
can consider the elliptic curve E, and note that

End(E,) 2 {a€ClaaCa}={ac K| (a)aa ! Caa'} =
:{QEK’(OC)QOK}:OK

11
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Hence E, € ELL(Ok). This remark leads to the following proposition.

Proposition 2.1.3. Let A be a lattice such that End(Ey) = Ok, then 3X € C
and Ja € F(K) such that A = Aa.

Proof. We know that every lattice can be normalized, i.e. 3A € A such that
%A =7 ® 77Z. By hypothesis OgA = A, then

1 1

However OgZ = Ok, hence
Ok COxk ®TOKL =7 O TL

Moreover [Q(7) : Q] = 2, but Ox CZ & 7Z C Q(7), then K C Q(7). Since
[Q(7) : Q] = [K : 2] we get that Q(r) = K. We conclude that 1A is a Og-
submodule of K, then it is a fractional ideal, that is 1A = a € F(K) =
A = Aa. O

Proposition 2.1.4. Let a € F(K) and let A be a lattice in C such that
E\ € ELL(OK), then al is a lattice and Eqp € ELL(O).

Proof. For a fixed b € F(K) we know that aA = aAfA = Aab that is a lattice
in C, furthermore

End(Eq) ={a€C|aaA CaA} ={acC| aab Cab} =
={ae K| (o) COxg}=0g
then Eqp € ELL(Ok). O

Proposition 2.1.5. Let a,b € F(K) and let A be a lattice in C, then
Eup 2 Eyp <= a=0b in Cl(K)
Proof.

B\ = Epp <
Ja € C tale che aaA = bA <—
Ja € C tale che aA = a 'bA <

1 1
Jo € C tale che ozXA = a_leA —

Ja € K tale che a = a~ b <—
a'b € P(K) <= a=bin CI(K)
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The last three propositions allow us to define an action of the ideal class
group on the set ELL(Ok). The following theorem aims to describe this
action.

Theorem 2.1.6. The group CI(K) acts on ELL(Ok) as

Cl(K)x ELL(Og) — ELL(Ok)
ax Fj — Eqn

Moreover, this action is simply transitive.

Proof. We first note that this action is well defined, i.e. E45 doesn’t depends
on the choice of the element of the class of a, indeed for the proposition 2.1.5
if two fractional ideals a and b belongs to the same class then E x =2 Epa.
We now show that the action is simply transitive, i.e. for every two elements
in ELL(Ok) there exists a unique class in C1(K) that sends an element in the
other. Let then Aj, Ag be two latticessuchhe that Ep, , Ep, € ELL(OK), we
know that for the proposition 2.1.3, A} = A\ja and Ay = \yb with a,b € F(K).
Hence

dec € F(K) tale che Ep, = Ey, <=
da € C tale che acA1 = Ay <

ta=0in Cl(K) <= t=a"lb

Therefore the action is transitive, because a=1b x Ey, = Ej,. Finally we note
that for the proposition 2.1.5, if the fractional ideals a and b maps the curve
FEp to the same element, then E py = Eyp =— a=0b. ]

Corollary 2.1.7. |ELL(Ok)| = |CU(K)|, in particular ELL(OK) is a finite

set.

2.2 Algebraicity of the j-invariant

We are now interested in studying the behaviour of the ring operations of
End(FE). If the complex elliptic curve E is related to a torus T, then End(7)
is a subring of C and inherits its operations, hence, in order to better un-
derstand the behaviour of the operations of End(E) we need to push forward
the operations of End(T") with the function z — (p(2),¢'(2)). Hence, if
a,f € End(T'), in End(F) they become

¢ ={(p(2),¢(2)) = (plaz), ¢'(az))}, ¥ = {(p(2), ¢'(2)) = (p(B2), ¢'(B2))}
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Then

oY ={(p(2),9'(2)) = (plafz), ¢ (aBz))} =
= o({(p(2), 9'(2)) = (p(B2),9'(B2))}) = poy

thus we note that the product in the ring End(E) is the composition of func-
tions. To explicit the sum, if (z,y) = (p(2), ©'(2)), we have

(¢ + ) (x,y) = (p((a+ B)z), o' (e + B)2)) =
= (p(az + B2),¢'(az + Bz)) =
= (p(az), ¢'(az)) + (p(B2), ¢'(B2)) = ¢(x,y) + P (z,y)

Where the sum of the point of the curve is the group law described in the equa-
tion 1.1, in particular, its coordinates are rational functions of the coordinates

of ¢(z,y) and ¥ (z,vy).

Remark 2.2.1. End(E) = End(T) is a commutative ring, hence the composi-
tion of two endomorphism of an elliptic curve is a commutative operation.

We now begin to study how the automorphisms of C are interacts with the
complex elliptic curves. In particular, given the curve E : y? = 23 4+ ax + b,
we set 0 F to be the curve obtained applying the automorphism o € Aut(C)
to its equation, that is, o F is the elliptic curve defined by the equation o F :
y? =23 +o(a)z +o(b).

Proposition 2.2.2. Let 0 € Aut(C), let E be a complez elliptic curve, then
End(cE) = End(E).

Proof. We first show that End(cF) = o0 End(F), where ¢ acts on the endo-
morphisms by acting on their coefficients. If E : y?> = 23 + ax + b, then
oFE : y? =23+ o(a)r + o(b) and the points (z,y) € E are sent in the points
(o(x),0(y)) € oE. Since every ¢ € End(cF) is a rational function, it can be
written in the form

([ p1(u,v) pa(u,v)
ot = (B i

) dove p1,p2,q1,¢2 € Clu, v]

the we obtain

 pi(o(@),0(y) paolz).o(y))
?lote).olv)) = <ql<o<x>,o<y>>’ q2<o<x>,o<y>>>

however, for every polynomial f(z,y) = Z cijr'y’ € Clz,y] we have
1:7j

floz,oy) =Y cigol)o(y) = alo (cig)a'y’)) = o((07 f)(x,y)

,J 1]
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Therefore ¢(o(x),0(y)) = o((c7 ¢)(x,y)), hence (07 1¢)(x,y) € E. It follows
that 0~ '¢(FE) C E, then, in order to show that 0~'¢ € End(E), we just need
to prove that it is a homomorphism. Lets consider the following equalities:

(07 o) ((z,) + (&', y)) = 0 (d(o((z,y) + 0(a',9)))) =
=0 (¢((0(2),0(y)) + (o(a"), 0(y)))) =
=0 (¢(o(2),0(y) + d(o(x),0(y))) =
=0 1 (¢(0(2),0(y)) + 0~ (d(0(2),0(y))) =
= (07'¢)(z,y) + (0~ 1<25)(96,y)

where the equality (*) holds because the group law of the curve is a rational
function with rational coefficients, then commutates with . We have proved
that End(0E) C 0 End(E), however, with the same reasoning in the opposite
direction, it is easy to see that the other inclusion is also valid, obtaining the
desired equality.

Now we just need to prove that End(E) = o End(FE). To do that, it is sufficient
to show that o is a ring homomorphism for End(E) and it is injective. If
¢, € End(F) then V(z,y) € E

a(@o)(z,y) = o(¢((o™ (x),07 () =

That is o(¢ 0 ¢)) = 0¢ o o9p. Furthermore

o(¢+v)(z,y) =o((¢+¥) (o (x), 07 (y))) =

o(¢p(o™ N (z),07 (y) + (e~ (x), 07 (y) =

=a(glo(@),07'(y) + oo™ (2),07 () =
=od(z,y) + o(z,y)

where the equality (*) holds because the group law of the curve is a rational
function with rational coefficients. The last equality implies that o(¢ + 1) =
o¢p+o1), then o is a homomorphism. Finally, o is injective because if 0¢ = o)
then ¢ = 0 togp = o~ lop = 9. O

Corollary 2.2.3. Let 0 € Aut(C), then E € ELL(R) — oE € ELL(R)
Proof. End(cF) =2 End(E) = R. O

Remark 2.2.4. If E € ELL(Of) then o E represents a finite number of curves
up to isomorphisms as o varies in Aut(C), because ELL(Ok) is a finite set.

Theorem 2.2.5. Let E € ELL(Ok), then [Q(j(E)) : Q] < hx, where hi =
|CIU(K)| is the class number of K.
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Proof. We know that for every curve E : y? = 23 4 ax + b we have that
oE: y? =23+ o(a)r + o(b), hence
o(a)’
o(a)3 4 270(b)?

j(oE) = 1728

CL3 .

Thanks to remark 2.2.4 we know that as o varies in Aut(C) we obtain a

finite number of curves o F up to isomorphism, however j is invariant under

isomorphism, then as o varies in Aut(C), j(cE) = o(j(F)) can take on a finite

number of values, in particular at most hx = |ELL(Ok)| values. Let j1, ..., jr,

where r < hg, be the admissible values of j(ocF) as o varies in Aut(C), let’s
T

consider the polynomial p(x) = H(:v — Ji), then we note that
i=1

T T T

o(p(x)) = o([[(@ =) = [[(= = 0(ii)) = [ [ (& = ji) = p(2)

i=1 i=1 i=1
in fact o(j;) € {j1,...,Jr}, and i #1 = o(j;) # o(j;), otherwise
o) =o(it) = ji=0 lo(ji) =0 lo(j) = ji

which is absurd. Therefore, if p(z) is fixed by every o € Aut(C) it means that
p(z) € Q[z], furthermore p(j(E)) = 0, hence j(E) is algebraic. At this point
it easy to note that we can estimate the degree of j(E) by taking

[QU(E)) : Q] < deg(p(x)) < hi

Corollary 2.2.6. If Ok is a UFD and E € ELL(Ok), then j(E) € Q.
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Integrity of the j-invariant

In this chapter we introduce the Tate curve and we will use it to prove that
the j-invariant of the curves in ELL(Ok) is an integer. We will sometimes
omit the proof of some following proposition; they can be found in capters I
and V of Silverman’s book [Sil94].

Before we can start, we need to generalize theorem 1.2.17 in the following way:

Theorem 3.0.1. Let K be a field of characteristic different from 2 and 3,
let ¢ € K, then there exists an elliptic curve E defined over K(c) such that
i(B) =c.

Proof. If ¢ = 0 then it suffices to consider the curve y? = z3 + 1.
If ¢ = 1728 then it suffices to consider the curve 32 = 23 + .
If else ¢ # 0,1728, we can define v = = (1728 — 1) € K and we have v # 0.

27 c
Hence ¢ = 1f§2, in particular we note that K(c) = K(v), then it suffices to
4

find a curve F defined over K () such that j(F) = c. If we consider the curve
E: =23+ %:c + % it easy to see that it is defined over K(v), moreover

& 1728

J(E) = 1728 1 =
4 +27% 1+ 3y

O

In the previous chapter we proved that a complex elliptic curve whose
endomorphism ring is isomorphic to a certain ring of integers Ok which is a
UFD, has a rational j-invariant, therefore the last theorem ensures that, up to
isomorphism over C, we can assume that this curve is defined by an equation
with rational coefficients.

17
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3.1 Expansion in ¢

Let A be a complex lattice, we know that we can assume that A is a normalized
lattice, up to homothety, then A = Z @ 7Z where (1) > 0. Therefore, we
have a function that sends every element of the complex upper half-plane in
a lattice. We note that defining the function ¢(z) = €?™* we can define an
isomorphism C/Z = C*. This function sends the discrete subgroup 7Z <
(C/Z to the discrete subgroup ¢ < C*. In particular, we have defined an
isomorphism C/ A= (C*/qz.

We can note that considering A as a function A(7) = Z @ 77Z, the Weierstrass
function becomes a two variables function p(z,7). The idea of considering
the function ¢ = e? P%* derives from the fact that the Weierstrass function is
periodic of period 1 both in z and in tau, therefore we would like to rewrite
it in the variables 2 piiz and 2 pii tau in a similar way to what is done for
Fourier series expansions.

q"u

m . Then:

Lemma 3.1.1. Let ¢ = 2™ u = €2™% F(u,q) = Z
nez

o F' converges absolutely and uniformly in the compact subspaces of C \
7 ® 1L

o I is an elliptic function for the lattice Z @ TZ, the points z € Z & T7Z
are poles of order 2 and there are no other poles.

o The Laurent series of F' in z =0 is

n

1 1

q
reil ST DY

n>1

F(U’Q) =

+ (powers of z)

We omit the proof of this lemma as it only consists in some long calcu-
lations. This proof can be found in the lemma [Sil94, chapter 1, lemma 6.1].
This lemma will be useful to prove the following theorem:

Theorem 3.1.2. If ¢ = €™ e u = €>™* then:

o Gtz T)=aniu+i—zzq7
(2m1) ’ = (1 _ q"u)2 12 — (1 _ qn)Q

q"u(l + q"u)

1y _
® @rip¥ (2,7) = (1 — q"u)3

neE”Z
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Proof. Let F(u,q) be as in 3.1.1, hence let’s consider the function

1 1 q"
- _F _ = 49 S S
@rp® ) T F ) = g 2 (1—qn)?
n>1
by the previous lemmathis is an elliptic function holomorphic in C\ Z & 7Z.
Expanding p(z,7) and F(u,q) as in lemma 3.1.1 we obtain the function

1 1 1 1 1
(2mi)2 | 22 + Z <(z —m—nt)?2  (m+ m’)2> B (27Tiz)2+

(m,n)€Z2\(0,0)

+ (powers of z) =

1 1 1
N - f
(2mi)? ( )GZZ:Q\(O 0) ((Z —-m—n71)2  (m+ m—)2> + (powers of )

Therefore it is not difficult to notice that this function is holomorphic bi-
periodic everywhere, hence limited and then constant. But since it vanishes
in 0 we deduce that it is constantly 0, And then we get wp(z, tau).

In order to obtain ¢'(z, 7) we just need to derive with % = 27riu% the function
p(z,7). O

Proposition 3.1.3. If j(7) is the j-invariant of the lattice Z. ® TZ, then

i) = ¢ + 3 elm”

n>0
where ¢(n) € Z ¥n € N.

We omit the proof of this proposition as it is again a long bunch of calcu-
lations on the g-expansion of the modular functions. For a reference, one can
read [Sil94, chapter 1, prop. 7.4].

Theorem 3.1.4. Let u,q € C such that |q| < 1, we define

nk n
se(g) =Y 0

_n
nzll q

a4(Q) = —583((]) ag(q) = _w

12
-y VICREEY
X(U, q) - = (1 o qn)2 2 1(Q)
Y(u,q) =) g + s1(q)
g =)

Ey: y* +ay =2’ + as(g)x + as(q)
Then the following hold:
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1. Ey is an elliptic curve and we have a holomorphic isomorphism
*
o : C/qZ — E,

(X(v,9),Y(w,q)  fuddq”

U — . VA
1) ifu€q

where O is the point at infinity

2. a4(q),ae(q) € Z[[q]]

3. j(Ey) = é + Z c(n)q", where the coefficients are just as in 3.1.3
n>0

4. VE/C dq € C* with |q| < 1 such that E = E,
Proof. 1. f A=7Z&77Z and Ey : y?> = 42 — gax — g3, the isomorphism is
given by 3.1.2 with the coordinates change
1 1

o =9 /
erip” =T T pmpt Tt

11 1
“="1 @it g

11 11 1
%=1 2?18 @i rs

2. We can expand denominators 1 — ¢” in the series s; and rearrange the
series. Then we notice that a4(q) € Z[[g]], while in the case of ag(q) we
note that

_ 5s3(q) +7ss5(q) _ 5d3+7d°\
n>1 \ dn
and 5d% + 7d° = 0(12) for all d € Z, indeed 5d> + 7d° = 2d + d = 0(3)
and if d is odd 5d3 +7d® = d+3d = 0(4), if d is even d?(5d+7d3) = 0(4).

3. The formula in proposition 3.1.3 gives the value of j for the functions in
theorem 3.1.2, but by the first point of this theorem we have that X (u, q)
and Y (u, q) are obtained by them with a linear coordinates change, hence
j doesn’t change.

4. By corollary 1.2.18 there exists a normalized lattice A = Z @ 7Z such
that E =2 Ey, then for the point 1 if ¢ = €™ we get that F = E,.
O]
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3.2 The Tate curve

So far, we have only dealt with elliptic curves over C, however it may also be
interesting to consider elliptic curves defined over other fields. In chapter 2
we proved that the j-invariant of a CM curve is algebraic, hence the curve can
be defined over a number field Q(«) up to isomorphism (over C). Therefore
we can study the properties of this curve over an extension of Q(«) which is
not contained in C, for instance, if p is a prime ideal of Q(«), we can consider
the p-adic completion K = Q(a)p. From now on we will refer to p-adic fields
as completions of number fields with respect to a prime p, or, equivalently, as
finite extensions of @,. In particular in this section we will deal with elliptic
curves defined over p-adic fields.

As a first observation we note that the approach used to describe complex
elliptic curves starting from tori fails in the p-adic case, in fact, if in a p-adic
field K existed a discrete non-zero subgroup, this would contain an element
x # 0, so adding p” times z we would obtain that p"x belongs to this subgroup
V¥n € N. But since nlgrolo [p"x| = 0, it follows that 0 is an accumulation point

and therefore the subgroup cannot be discrete.

However, the g-expantion studied in the complex case, allows us, by analogy,
to define an elliptic curve also in the p-adic case, indeed K* admits discrete
subgroups of the type ¢%, so we can identify the quotients K */qz with suitable

elliptic curves.

Theorem 3.2.1. Let K be a p-adic field with absolute value | - |, let ¢ € K*
such that |q| < 1, then with the same notation of theorem 3.1.4 we have:

1. a4(q),a6(q) converges in K, moreover the curve E; : y? + xy = a3 +
as(q)x + as(q) (which from now on we will call the Tate curve) has a
j-tnvariant as in the equation 3.1.5.

2. The series X (u,q),Y (u,q) converge for allu € K\ ¢*, furthermore they
define an injective homomorphism

o K*/qZ — Eq<K)

(X(u,q), Y (u,q))  ifuéq”

u — , 7
1) ifué€q

3. The function ¢ of the previous point commutates with the action of the
Galois group Gal (K/K), i.e. Vo € Gal (K/K) we have

ogop(u) =¢oo(u) Vu e K*
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Proof. 1. a4 and ag converge if the series s converge. Since |¢| < 1, we
have that |1 — ¢"| = 1, hence, it is sufficient to show that the series
Z Inkqn| < Z |¢"| converges, and this is true. In the same way, also
n>1 n>1
the series j(q) = é—i— Z ¢(n)q" converge and by theorem 3.1.3 we obtain

n>0

that this is an identity of formal series in Z[[q]], then it is an identity for
all ¢ for which it converges in a field complete with respect to a place,
in particular, in our case, it is an identity over K.

2. Similarly to point 1, it’s easy to note that X and Y converge Vu € K\¢”.

*
X and Y are well defined over &£ / 7 because the multiplication of u by
a power of ¢ just rearrenges the terms of the summation. Furthermore,

Yu € K*/qz the point (X (u,q),Y (u,q)) belongs to the curve E,(K),
because the theorem 3.1.4 implies that, in the complex case, X and Y
verify the equation of the curve, then this is still true a relation of formal
series in Q(u)[[q]], so it is also true as a relation over K. The property of
being a homomorphism is also inherited by the identity of formal series.
Finally, in order to prove that it is injective, it is sufficient to notice that
the elements in the kernel are those u such that ¢(u) = O is the point at
the infinity, that is, all those values for which X and Y do not converge,
which are all and only the elements of ¢%. Hence, the kernel is trivial in

/qZ, then ¢ is injective.

3. The automorphisms that fix K don’t change the p-adic norm of an ele-
ment, then it is not difficult to show that the automorphisms commutate
with the limit operation of the series, i.e. that, giver a series Z Ty, then

n>0
o Z Ty = Z oxy. Then we get

n>0 n>0

doa(u) = (X

O

Lemma 3.2.2. Let K be a p-adic field and let o € K such that |a| > 1, then
Jlqg € K* such that |q| < 1 and j(Eq) = «, furthermore q € K («).

Proof. We know by 3.1.3 that if ¢(—1) = 1, then

ano c(n—1)g"

i(q) = j(Eq) = .
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We call

= 1 = q = g—cC C —C
flg) = - T dE T = ¢ (0)¢*+(c(0)*~c(1))¢*+... € Z[[q]]

then Jg(q¢) € Z[[q]] such that g(f(q)) = ¢ as formal series. Clearly we also
have f(g(q)) = g. Since g(q) € Z[[g]] and |a| > 1, the series g(1) converges in
K(a). If we label as ¢ the value of such a series, we see that

i=a(3) = s=r=1(s(3)) =1

and then j(q) = a.

We proved that such a ¢ exists, let’s now prove that it is unique. If there
existed ¢, ¢’ such that |q|,|¢'| < 1 and j(q) = j(¢') then we would have f(q) =
f(d'), hence

0=f(a) — f(d)l =

=lg—q'|-11 = c(0)(g +¢) + (c(0)” = c(1))(¢* + q¢' +¢%) + .| =

=lg—d|
and then ¢ = ¢'. O

We introduced the Tate curve, then we can study how to apply its proper-
ties in order to prove that the j-invariant of CM elliptic curves is an integer.
Before doing so, let us introduce the following lemma, which in a certain sense
refines the result of theorem 1.2.16.
Lemma 3.2.3. Let E, E' be two elliptic curves defined over the field K such
_ !

that E = E’ over K, then there exists an extension K/K such that 5 # [K':
K] <6 and E = E' over K'.

Proof. We can assume that the curves are in Weierstrass form, indeed it is
true up to some linear coordinates changes over K, then let
E:y’=234ar+b e E':y?=2+cx+d
By the theorem 1.2.16 we know that j(E) = j(E') = j € K, thenif j # 0,1728,
by j’s formula we notice that a, b, c,d # 0, hence we have that
1728 1728 » & a\3 (b>2
~ (&= (:

= — = —
2 2
1+80 1+55G at d

c
Let v = % € K, then by the previous relation it’s easy to notice that v? = e
and 73 = g. Then, we see that the function

r — Yz

y%\/gy
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is an isomorphism E — E’, where \/g is a root of %. In fact,

2
b
( dy> — (12)* +ava+b —>

b, b, a bob
2 a I
dy dac +C’ycx+d d(

— Y’ =2 +cr+d

2 +cr+d) =

Therefore, the curves E, E’ are isomorphic over a quadratic (or trivial) exten-

sion K <\/§>.
If else j = 1728 we note that b,d = 0 and a,c # 0. Hence we consider the
function

C
As we did before, we can show that it is an isomorphism between E and E’,
in addition, it is defined over K ({1/%), then it is defined over an extension
whose degree is a divisor of 4.
Finally, if j = 0 then a,c =0 and b, d # 0, hence the function

y — \[y

is an isomorphism between E and E’ defined over K <{5/§>, hence defined

over an extension whose degree is a divisor of 6. O

Proposition 3.2.4. Let K be a p-adic field with valuation v, let E/K be an
elliptic curve such that [j(E)| > 1, let £ > 3 be a prime such that £ {v(j(E)),

then there exists o € Gal(K /K) that acts on the group E[f] = Z/KZ X Z/EZ as

a matriz of the form <1 1) , i.e. there exist Py, Py € E[{] such that
01

E[f] =< Pl,P2> e O'(Pl):Pl, 0(P2)2P1+P2

Proof. Let’s start considering a finite Galois extension L/ 7 such that £ {
[L : K], then, if w is the valuation of L that extends v, we have that
w(j(E)) = eyyv(j(E)), where e, |[L : K] is the ramification index, hence
it is coprime with ¢, therefore £ { v(j(E)) <= €1 w(j(F)). So L satisfies the
hypothesis of the theorem, moreover, if we prove the statement for L, it would
hold also for K, because if we find the automorphism ¢ in the statement we
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have o € Gal(K /L) C Gal(K/K).

By lemma 3.2.2 d¢ € K such that ¥ = E; over K, hence, in particular, by
lemma 3.2.3, the two curves are isomorphic over a finite extension whose de-
gree is always prime to ¢, because ¢ > 3. Therefore we just need to prove the
statement for E,, for which the Galois automorphisms commutate with the
isomorphism between the curves. Let ( = (y, then we can assume that { € K,
otherwise we can consider the extension & (C)/K whose degree divides £ — 1,
which is coprime with /. Let @Q = q% € K be a fixed f-th root of ¢, since
v(g) = —0(§(E)), we have that (¢,0(g)) = (£,v(j(E))) = 1, then K(@) 7 is
totally ramified of degree ¢, moreover, since it is a Kummer extension, it is
cyclic extension of degree ¢, hence Jo € Gal(K(Q)/K) such that ¢(Q) = ¢Q.
We note that o is the automorphism we were looking for.

It is easy to notice that < (,Q > < % is a subgroup with ¢? elements,
moreover, every element has an order which is a divisor of ¢, then the homo-
morphism of theorem 3.2.1 sends < ¢, Q) > into ¢-torsion points of the curve
E,. However, by theorem 3.2.1, we know that this homomorphism is injective,
then by cardinality arguments, it is an isomorphism ¢ : < {,Q >— E[¢]. We
also know that ¢ commutate with the automorphism o chosen before, then if
Py = ¢(C) e P, = ¢(Q) we have that

Q
>
I
S
2
S
I
S
N
<
I
ASS
o
_.I_
,Q\
S
I
LS
_|_
3

O]

Remark 3.2.5. Since / is a prime, Py, P5 are a basis of E[{] as a [Fy-space, which
is isomorphic to F2. Then there exists a representation p, : Gal(K/K) —
GLy(Fy) which describes how the elements of the Galois group act on the
torsion points of the curve, fixed a basis.

Corollary 3.2.6. Let K be a number field, let E/K be an elliptic curve such
that j(E) ¢ Ok, then for all primes £ but a finite number, there exists o €
1 1

Gal(K/K) such that py(o) = )

Proof. Let p be a prime in O such that v,(j(E)) < 0, let’s consider the
p-adic completion K, since £ is defined over K we can assume that it is
defined over K, and |j(E)| > 1. If we fix and immersion K < K, this gives
an immersion Gal(K,/K,) C Gal(K/K). We know that 30 € Gal(K,/K))

such that ps(0) = (1 L . However, we have o0 € Gal(K/K), in addition,

0 1
the coordinates of the points in E[¢] belongs to K C K,, hence the corollary
is proved. O



26 CHAPTER 3. INTEGRITY OF THE j-INVARIANT

Theorem 3.2.7. Let K be a number field and let EE be an elliptic curver
defined over K, then if j(E) ¢ O we have that End(E) = Z.

Proof. Unless you consider a finite extension of K, we know that Endc(E) =
Endg (F), indeed Endc(F) is finitely generated over Z, then it’s enough to
consider the field of definition of its generators, which is a finite extension by
lemma 3.2.3. If we manage to prove the theorem for a finite extention of K we
have proved it also for K, because the endomorphisms over K form a subset
of the endomorphisms over every extension. We also know that [j(E)| > 1,
then we can choose a prime ¢ big enough satisfying the hypothesis of corollary
3.2.6, in particular, by that corollary, there exists a basis Pj, P, of E[f] and

an automorphism o € Gal(K/K) such that o acts as <(1) 1) € GLy(Fy). Let

¢ € End(F), taking the restriction of ¢ to E[/] is still an endomorphism, then
a b

d) € My(Fy), then we have obtained

it can be written as a matrix ¢, = (
c

a homomorphism
[OF End(E) — MQ(F[)
¢ — O

As the endomorphisms are defined over the field fixed by the Galois group, ¢
commutate with o, therefore

o) ()= (2 6)

at+c=a

SO

= c=0ANa=d
b+d=a+0b

hence ¢, = @ b .
0 a

Let’s now suppose that Z C End(E) C Og(y=q) for d € N, ie. that End(FE)

is an order in (9@( V=d)’ then we can assume that ¢ splits in Q(v/—d), because
in every number field there exists an infinite number of split primes. We
can also assume that ¢ { [Og/=3 : End(E)], because the index is a finite
number. Then we can see that the Z-module ¢ End(FE) is sent to 0 by @y,
moreover, if ¢ € ker ®,, as an element of OQ( V=d) is a multiple of ¢, hence
ker ®y = {End(FE). Therefore, ®, is an injective map by taking the quotient
by the kernel:

— End(E)

q)g : 7€End(E) — Mg(Fz)
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In particular ZEEnfd(@) ~ End(F) ® %, hence
Z]z] Fy[z]
Folz] Felz] o

TerVa) @D

where the first equality holds because ¢ { [Og =3 : End(E)], the second
because £ # 2, and the fourth is a consequence of the chinese remainder
theorem by noting that ¢ splits in OQ( J=d)’ then x2 + d is reducible.

We notice that

|End(E) ® Fe| = |F7| = ¢* = '{ (g b) S Mz(Fz)H

a

then by the injectivity of ®; and by the equality between cardinalities we get
b

a
between that set and End(F) ® Fy. Then there exists ¢ € End(F) ® Fy such

that ®, is surjective onto {(a ) € MQ(]FK)}, then it is an isomorphism
0
0 1 . .
that ¢p = , but this is absurd because there are no nilpotent elements
0 0
inF %. O

Corollary 3.2.8. Let K = Q(v/—d) such that O is a UFD, let E € ELL(Ok),
then j(E) € Z.

Proof. By the corollary 2.2.6 we know that j(£) € Q, moreover End(E) 2 Z,
then by theorem 3.2.7 j(E) € Og = Z. O
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Proof of the Gauss conjecture

Proposition 4.0.1. Let d € Z be squarefree such that d > 2 and d Z£ 3(4), if
K = Q(v/—d) then Ok is not a UFD.

Proof. We have —d # 1(4), therefore O = Z[v/—d]. In order to prove that it
is not a UFD we will show that 2 is irreducible but not prime. If there exists
a + by/—d such that a + bv/—d|2, by taking its norm we will obtain a? + b2d|4.
However, by hypothesis, d > 5, then b = 0 and a € {1, £2}, that is a+bv/—d
is invertible or equal to 2 up to multiplication by an invertible element, hence
2 is irreducible.

We notice that if d is even, then 2| — d but 2  £4/—d, otherwise if d is odd
2|1+ d but 2114 v/—d, then 2 is not a prime. O

Proposition 4.0.2. Let d = 3(4) such that O, /=3, is a UFD, then Vp € Z
such that p < %, p s inert in OQ(\/jd).

Proof. We have —d = 1(4), then O = Z [H\Q/Td] Let’s suppose that p is

not inert, then
1++v—d 1—+v—d
p—<a+b+2 ><a+b2 )—

d+1
:a2+ab+b27j; =

:a2+ab+b2+b2d;3 > d;?’

Therefore if p < % then it is inert. O

Definition 4.0.3. Let E be a rational elliptic curve, we define the field
of definition of the endomorphisms to be the smallest field K/Q such that
Endg (F) = Endc(E).

29




30 CHAPTER 4. DIMOSTRAZIONE DELLA CONGETTURA

Lemma 4.0.4. Let E be a rational elliptic curve, let K be its field of definition
of the endomorphisms, then [K : Q] < 2.

Proof. We know that if End(F) = Z then K = Q, so we easily get the thesis,
otherwise we know that Endc(F) = Z[w] as rings, where w is an algebraic
integer of degree 2, hence it satisfies an equation w? = aw + b with a,b € Z.
We also know that Gal(Q/Q) acts on End¢(FE) by acting on its coefficients,
then there is a homomorphism

U : Gal(Q/Q) — Aut(Endc(FE)) = Aut(Z[w])
Let us consider Aut(Z[w]): if ¢ € Aut(Z[w]) then ¢(1) = 1, moreover ¢(w? —
aw —b) = ¢(0) = 0, hence ¢(w)? — ¢(a)p(w) — ¢(b) = p(w)? — ag(w) — b = 0.
Therefore, ¢(w) can assume only two values, then Aut(Z|w]) = Z/2Z :

If K is the field of definition of the endomorphisms, Gal(Q/K) = ker ¥, in
particular [Gal(Q/Q) : Gal(Q/K)] < 2 and this concludes the proof. O

Remark 4.0.5. As we have already remarked, there exists an action
pe: Gal(Q/Q) — Aut(E[(]) = GLy(Fy)
the we can restrict it to another action
pe: Gal(Q/K) — GLy(Fy)
and since [Gal(Q/Q) : Gal(Q/K)] = 2 we obtain that
[0 (Gal(Q/Q)) : pr (Gal(Q/K))] < 2

Given the complex quadratic field Q(v/—d), let 2 # ¢ € Z be an inert
prime in OQ( v=d) then

_ 2] _ Fela]
Oav=a) @Fe= g ©Fe= g = Fe

Therefore, given an elliptic curve E € EEE(OQ( \/jd)) we know that the en-
domorphisms act on the /-torsion points, in particular OQ( v=a) ® Fp = Fpe
faithfully acts on E[¢]. Hence, by cardinality arguments, we get that E[(] is
a [Fy2-space of dimension 1, and the endomorphisms act as the multiplication
by a scalar. Therefore we deduce that if K is the field of definition of the
endomorphisms, then ¢ € Gal(Q/K) commutates with the endomorphisms,
because they are rational function and o fixes their coefficients, so ¢ is a linear
endomorphism of E[f]as Fy2-space.
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Proposition 4.0.6. Let E € EEE((’)Q(\/:I)) be a rational elliptic curve, let
2 # 1 € N be an inert prime in O@(\/jd), then there exists a basis of E[l] such

that
pe (Gal(Q/Q)) € Nepyw,) ({ (Z _db> S GLQ(}FZ)}>

a

Proof. Let 0 # v € E[{], then v,v/—d - v is a basis of E[(] as Fy-space, where
v —d is an element of End(F) & Og(v=a)- Indeed, given a,b € Fy we have
that

av+bvV—db =0 —
—= (a+b/—dv=0 —=
— a+b/—d=0in End(E) @ F, <—
< a,b=0

As in theorem 3.2.7, we can represent End(E) ® Fy in My (Fy) by considering
the restriction of the endomorphisms to the ¢-torsion points. With this choice
of a basis, we get that, given an endomorphism a 4 by/—d € End(E) ® Fy,

(a + bv—d)v = av + b(v/—dv)

= (a+bV/—d)— (a _db>
(a + bv/—d)(vV/—dv) = —dbv + a(y/—dv)

b a

Moreover, since £ is inert in (9@( J=d) We have the isomorphism End(FE)®F, =
Fp2. Let’s call

C - {(‘b‘ _db> € GLQ(IFE)} — {(Z _db> € Ma(Fy)

we can notice that C' = (End(E) ® F¢)* = F}, then it is a cyclic group.
As remarked above, the elements of Gal(Q/K) commutate with the endomor-
phisms, hence

(a,b) # (0,0)}

H := py(Gal(Q/K)) € Zgr,r,) (C) € Nar,w,) (C)

If p¢(Gal(Q/Q)) = H then the previous inclusion would conclude the proof;
so, we just have to consider the case [p,(Gal(Q/Q)) : H] = 2. We begin by
showing that

v (GG )AC %))
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_ ATV
Let (@ P € GLoF) such that v (¢ "%} e ¢ 3(¢ ~¥) c ¢
v 0 b a vood

satisfying the equation

)
v 6] \b a bood )

since the trace is invariant by conjugation, thanks to the equation 4.1 we get

that
o 1
Tr a db =Tr a db = 2a=2d = a=2d
b a oo ad

The same equation gives, by taking the determinants,
a? +db* =a+dv? = b=+l

If we choose matrices such that b # 0, with some calculations we obtain that:

;

aa + bp = aa F dby

—db = dbd =44
a+af =af F . o

ay + bd = +£ba + avy B = Fdy

—dby + ad = +b8 + ad

Hence we obtained that

S0 I V) I G B

then we get the desired equality.

It is not difficult to notice that if in the equation 4.1 the two matrices in C'
are the same, i.e. if (a,b) = (a/,V’), with the same calculations we get that
a =6 and 8 = —dy. Then Zgp,r, (C) € C, moreover we know that C is a
cyclic group, hence Zgr,r,)(C) = C.

Therefore H C C. Let H' = p; (Gal(Q/Q)), we know that [H' : H] = 2,
in particular H < H', then H' C Ngp,(r,)(H). If we manage to prove that
Ngr,r,)(H) € N then the thesis follows.

Let’s assume that H < C' contains an element different from a multiple of the

identity, then it is a matrix of the form (Z _db>, with b # 0. If (a ?) €
a Y
Ngr,(r,) (H) then it should verify the equation 4.1 with such a, b and with some

a’,b'; however, since b # 0, in the same way we obtain that (a §> €N, in
Y
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particular Ngr,,)(H) € N.

If else every element in H is a multiple of the identity, then H consists of
multiples of the identity for every basis of E[¢] we can choose, because the
conjugation in GLy(F,) fixes the elements of H. Let h € H'\ H, we know

that the quotient H //H is cyclic and has order 2, then H' =< h, H >; hence
we just need to find a basis such that h € N, so that H =< h,H > <
N. Since [H' : H] = 2, h is such that h? = X for some A\ € F}, then its
minimal polynomial divides 22 — X, in particular its eigenvalues belong to the
set {#=v/A}. Let’s treat this two cases separately:

e )\ is a square in Fy: then there are two sub-cases: either h is similar

to =/ M or it is similar to (?

0
Ve
block because its minimal polynomial has roots with multiplicity 1. Such
matrices belong to N, hence h, considered in the basis for which it is

diagonal, belongs to IV, then the thesis follows.

), in fact,it cannot be a Jordan

e )\ is not a square in Fy: since h is not a multiple of the identity, there
exists v € E[{] such that v, hv are a basis of E[¢]. With such a basis

h(v) = (hv) and h(hv) = Av, then h is the matrix 0 g . Since ¢

1
is inert in OQ( v=a We know that —d is not a square modulo /¢, then

3p € Fy such that p* = 2;. Then by conjugating the matrix <(1) 3)

-1
by the matrix H
0 1

(6666 )=

Hence we founnd a basis such that h € N, then the thesis follows.

0) we obtain

At this point, we will try to put together the results obtained to find the
rings of the integers of imaginary quadratic fields with unique factorization.
When Gauss worked out his conjecture he calculated the class number of all
the first imaginary quadratic fields, finding that for d € {1,2,3,7,11,19, 43,
67,163} the ring OQ(\/Td) is a UFD. In particular he verified that for d < 163
they are the only fields with class number equal to 1. In order to prove
that they are the only fields with this property we can therefore assume that
d > 163. Let K = Q(v/—d) as usual, suppose that O is a UFD, then by
proposition 4.0.1 we know that d = 3(4), then by proposition 4.0.2 all primes
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p < ‘71 are inert in K, in particular, all primes smaller than 41 are inert in K.
Let us now introduce the following theorem which will be necessary to prove
the conjecture.

Theorem 4.0.7. Let £ € N be a prime number, then there exists a curve
Y, £ (¢) defined over Q such that there exists a correspondence

Vi@ — {iE)] Py . priGal@/Q) € Nap,w,(©)}

where the inclusion holds in a suitable basis of E[l] and where, fized € €

F; \F;?,
C = { (Z Eb) € GLQ(IFg)}

We will omit the proof of this theorem, which is long and difficult. The
reader can see the book of Deligne and Rapoport [DR73] or Siksek’s notes [Sik]
for a reference. We will try to explain in broad terms how the curve Y, (¢) can
be found. The group so far labeled as C' is called non-split Cartan subgroup;
it is generally written as Cps(¢), while its normalizer is written as C;f,(¢). Let
X (£) be the compact modular curve that classifies the isomorphism classes of
elliptic curves with complete level-£ structure. We can define the curves

Xas ) =X ) e xhO =K1

which are the compact modular curves of the groups Cys(¢) e a C;f,(¢) respec-
tively. We call Y,,5(¢) and Y, (¢) the respective non-compact modular curves.
For small values of ¢, in particular for £ < 7 (the one we will need to complete
the proof of the conjecture), the curve X', (/) is rational, i.e. isomorphic to
P'Q. By fixing an isomorphism P'Q — X!, (¢) we can parametrize all the
point of Y, (£)(Q) with v € Q but a finite set of points, corresponding to the
cusps of X, (¢).

By definition, there exists a morphism j such that

. X o
j: Xns(0) 7 GL(F,) =~ X(1) =P

and given P € X1 (£)(Q), by theorem 4.0.7 it represents an elliptic curve F,
moreover j(P) = j(F).

We know that all primes ¢ < 41 are inert in K, then by proposition 4.0.6,
given a curve E € ELL(Ok), the image of py is contained in C;f,(¢), hence,
thank to theorem 4.0.7, E corresponds to a point P of X,/,(3)(Q) and to a
point P; of X1, (7)(Q). These points correspond to some rational numbers us
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and uy. Since we can explicit the equations of X1, (3)(Q) and X1, (7)(Q), we
obtain

J(E) = ja(us) = uj (4.2)

) ) (ur(u? + 7)(u2 — Tur + 14)(5u2 — 14uy — 7))3
FE) = =64
JB) = jr(ur) (ud — Tu2 + Tuz +7)7

(4.3)

These equations can be found in Baran’s article [Bar10]. From now on we will
write u = uy.

Since Ok is a UFD, by corollary 3.2.8 we know that j(FE) € Z. In particular,
by equation 4.3, we obtain that

(w(u? 4+ 7)(u? — Tu + 14)(5u® — 14u — 7))3

Z
(ud —Tu? +Tu+T7)7 €

J(E) = jr(u) = 64

If we solve this equation we can restrict the set of possible elliptic curves
whose ring of endomorphisms has unique factorization. First of all, since the
equation is defined over P'Q, by calculating j; at the point at infinity we
obtain j7(co) = 26 - 5% = 8000, then oo is a solution of the equation and
therefore leads to an admissible value of j. Now we can restrict the equation
to Q. Let’s call

flu) =uw® +7)(u* = Tu+14)(5u> — 1du—7) e g(u) =u’ — 70’ + Tu+7

then, since f(u),g(u) € Z[u], there exist two polynomials a(u),b(u) € Z[u]
such that

fw)a(u) + g(u)b(u) =r
where r € Z is the resultant of f and g. It’s easy to notice that deg(af) =
deg(bg) = n, then, if we write u = % with X,Y € Z coprimes, we can
homogenize the polynomials f and g in the following way

X

F(X,Y)=f <Y> YT e GX,)Y)=gyg <§> Y3

and replacing it in the equation we obtain
FX,)Y)AX,Y)+ G X,Y)B(X,Y) =rY"
Therefore, fixed two coprime integers X and Y, one can note that
(G(X,Y), F(X,Y))|lrY™

moreover G(X,Y) = X3 — 7X2Y + 7XY? + 7Y, then by euclidean division
we obtain that (G(X,Y),Y) = (X3,Y) = 1, in particular (G(X,Y),Y™") = 1,
and so

(G(X,Y),F(X,Y))|r
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We know that

XY FY)
Moy Moy ©F

therefore, if p € Z is prime such that p|G(X,Y), necessarily p|2F(X,Y), then
pl2r.

One can compute the resultant obtaining r = —26985857024 = —215.77 then
p=2Vp="7. We notice that 72 G(X,Y), indeed

GX,Y)=0(7) < X?-7X*Y +7XY247Y3=0(7) < X =7Z
and then we obtain
G(T1Z,Y)=1(T*Z* - T*Z°Y + TZY? + Y?) = 7(49)

since 71Y, because (X,Y) = 1.
Let k = v2(G(X,Y)), let’s suppose that k£ > 15, hence, since j is an integer,

v2(64F(X,Y)%) = 6 + 3ua(F(X,Y)) > Tk

However (F(X,Y),G(X,Y))|2'?-77, then v2(F(X,Y)) < 15, because k > 15.
By combining the inequalities we get

Th < 6+ 3va(F(X,Y)) <6+3-15 =51

which never holds, because k£ > 15. This implies that v2(G(X,Y)) < 15. In
particular we know that

X3 —7X2Y +7XY?2 4773 =207 for0<a<15,0<b<1
However, by the equation 4.2 we know that 7 mus be a cube, but this is true
if and only if G(X,Y) is a cube; hence a = 0(3) and b = 0(3). Therefore, we
get 6 equations:

X3 —7X2Y +7XY? 4773 = 23 con0<a<h

These are Thue equations, then they have a finite number of solutions; there
exist a way of bound and then compute these solutions. By solving the equa-
tions with X and Y being coprimes with Y # 0 one can find the solutions

(2,1), (11,2), (-19,-9), (-=5,-1), (-3,-1), (-3,5), (1,-1), (1,1)

These correspond to the following j-invariants:
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Solution J j factorization
(—3,5) —262537412640768000 —218.33.53.233. 293
(2,1) —147197952000 —215.33.5%. 113
(—5,-1) —884736000 —218.33. 53
(1,1) —32768 —215
(—=3,-1) 1728 26. 33
(1,-1) 287496 23.3%.113
(11,2) 66735540581252505802048 | 26113233 . 1493 - 2693
(—19,-9) | 6838755720062350457411072 | 2°-176-193.293 . 1493

Each j uniquely identifies a class of isomorphisms of elliptic curves and their
endomorphism rings are the possible solutions to our conjecture. Indeed, if
K = Q(v/—d), for d > 163, and Ok is a UFD, then the curve E = C/(QK is
such that j(F) belongs to the list above. Then we only need to check whether
such j, including the value obtained at the point at infinity, produce non-CM
elliptic curves or whether the quadratic fields in which their endomorphism
rings are immersed have class number 1 or not. Such listed j could also return
values of d less than or equal to 163, in which case we can ignore them, as
they have already been verified previously.

The next table lists the values of d for which the curves associated with j, up
to isomorphism, have as a ring of endomorphisms an order in Q(v/—d):

j j factorization d
—262537412640768000 —218.33.53.233.293 163
—147197952000 —215.33.53.113 67
—884736000 —218.33 .53 43
—32768 —215 11
1728 26 .33
8000 26 . 53 2
287496 23.33.113
66735540581252505802048 | 26113 - 233 . 1493 - 269 | non CM
6838755720062350457411072 | 29-175.193.29%.149% | non CM

The study of the modular curve X;f,(7) and its integer points to solve the
class 1 number problem were addressed by Kenku [Ken85]. At the end of his
article he gives a table of values of j which includes those given above. Such
values are also listed in Baran’s article [Barl0, table 5.4], where all and only
the values we have just obtained are shown.
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Note that the solutions of the equation led us to obtain some values of d that
we had already excluded, since Gauss already verified them. This is because
the only hypothesis deriving from the assumption that d > 163 consists in the
fact that the first £ < 41 are inert in Q(y/—d), in our specific case, that 3 and
7 are inert in Q(v/—d). It is therefore logical that the values d = 43,67, 163
appear in our table, since in these cases 3,7 < %, so by the proposition 77?7
they are inert. Moreover, it is known that primes 3 modulo 4 are inert in
Q(%), so the value d = 1 was also logical to appear. For d = 11 we know that
—11 = 3(7) is not a square, so x? + 11 is irreducible in F;, so 7 is inert in
Q(v/—11); anyway 11 = 1(3) is a square, i.e. 3 is not inert. For ¢ = 3, however,
the normalizer of a split Cartan subgroup is contained in the normalizer of
a non-split Cartan subgroup, which justifies the fact that 11 appears in our
table. A result in this respect can be found in Serre’s book [Ser89, appendix
A, A.6]. An analogous discourse is valid for the case d = 2. The values found
by Gauss which did not appear are d = 3,7, 19, in fact 3 and 7 are respectively
ramified in Q(v/—3) and in Q(y/—7), while —19 = 2(7), so 7 is not inert in
Q(v-T9).

This completes the proof of the conjecture.
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