
Deep learning volatility
A deep neural network perspective on pricing and calibration in rough

volatility models

Mario Correddu

July 8, 2022

Mario Correddu () Deep learning volatility July 8, 2022 1 / 23

Introduction

goal: option pricing
Problem: we need regularity properties of stochastic models in order
to apply any common option pricing method
common used models trade accuracy for applicability
rough volatility suffer from applicability issues (Montecarlo pricing is
slow)
Possible workaround: approximate pricing function using neural
networks

Mario Correddu () Deep learning volatility July 8, 2022 2 / 23

Calibration problem

let’s set M = M(θ)θ∈Θ an abstract model parametrized by θ ∈ Rn

let P : M(θ, ζ)→ Rm , ζ ∈ Z ′ be the pricing map, where Z ′ denotes
the financial products we aim to price, such as vanilla options for (a
set of) given maturities and strikes.
given a distance δ, θ̂ ∈ Theta solves a δ-calibration problem for a
model M(Θ) for the conditions PMKT (ζ) if

θ̂ = argmin
θ∈Θ

δ(P(M(θ), ζ),PMKT (ζ))

given a distance δ, θ̂ ∈ Theta solves an approximate δ-calibration
problem for a model M(Θ) for the conditions PMKT (ζ) if

θ̂ = argmin
θ∈Θ

δ(P̃(M(θ), ζ),PMKT (ζ))

where P̃ is numerical approximation of P

Mario Correddu () Deep learning volatility July 8, 2022 3 / 23

Neural Networks

Definition: Neural network
Let L ∈ N and the tuple (N1,N2...,NL) ∈ NL denote the number of layers
(depth) and the number of nodes (neurons) on each layer, respectively.
Furthermore, we introduce the affine functions

wl : x → Al+1x + bl+1

for 1 ≤ l ≤ L− 1, acting between layers Nl and Nl+1 of layer l + 1.
Then a Neural Network

F (w , ·) = F ((w1, ...,wL), ·) : RN0 → RNL

is defined as the composition: F := FL ◦ · · · ◦ F1 where each component is
of the form Fl := σl ◦Wl . The function σl : R→ R is referred to as the
activation function.

Mario Correddu () Deep learning volatility July 8, 2022 4 / 23

Neural Networks

Mario Correddu () Deep learning volatility July 8, 2022 5 / 23

Neural Networks

Theorem 1
Universal approximation theorem (Hornik et al. 1989)
Let NNσ

d0,d1
be the set of neural networks with activation function

σ : R→ R, input dimension d0 ∈ N and output dimension d1 ∈ N. Then,
if σ is continuous and non-constant, NNσ

d0,d1
is dense in Lp(µ) for all finite

measures µ.

Mario Correddu () Deep learning volatility July 8, 2022 6 / 23

Neural Networks

Theorem 2
Universal approximation theorem for derivatives (Hornik et al.1990)
Let F ∗ ∈ Cn and F : Rd0 → R and NNσ

d0,1 be the set of single-layer neural
networks with activation function σ : R→ R, input dimension d0 ∈ N and
output dimension 1. Then, if the (non-constant) activation function is
σ ∈ Cn(R), then NNσ

d0,1 arbitrarily approximates f and all its derivatives
up to order n.

Mario Correddu () Deep learning volatility July 8, 2022 7 / 23

Neural Networks

Theorem 3
Estimation bounds for Neural Networks (Barron 1994)
Let NNσ

d0,d1
be the set of single-layer neural networks with Sigmoid

activation function σ(x) = ex

ex +1 , input dimension d0 ∈ N and output
dimension d1 ∈ N. Then:

E||F ∗ − F̂ ||22 ≤ O

(
C2

f
n + nd0

N logN
)

where n is the number of nodes, N is the training set size and CF∗ is the
first absolute moment of the Fourier magnitude distribution of F∗
meaning if F ∗(x) =

∫
Rd eiωx f̃ (ω)dω, then:

Cf =
∫
Rd
|ω|1|f̃ |dω

Mario Correddu () Deep learning volatility July 8, 2022 8 / 23

Neural Networks

Theorem 4
Power of depth of Neural Networks (Eldan and Shamir 2016)
There exists a simple (approximately radial) function on R d , expressible
by a small 3-layer feedforward neural networks, which cannot be
approximated by any 2- layer network, to more than a certain constant
accuracy, unless its width is exponential in the dimension.

Mario Correddu () Deep learning volatility July 8, 2022 9 / 23

Neural networks in finance

first used a data driven approach train a Neural network to return the
price of options given market data
Problems: meaning of calibrated network parameters are unexplained
and issues of generalizability, and traditional paradigms of finance
such as no arbitrage are hard to guarantee in the absence of a model.
second Hernandez proposed to learn an inverse map from the market
prices to the model parameters

Π−1 : (P(ζ))ζ∈Z ′ → θ̂

no control on the inverse function and accuracy degrades for out
samples out of the training set

Mario Correddu () Deep learning volatility July 8, 2022 10 / 23

Two step approach

We present another approach:
1 We first learn (approximate) the pricing map by a neural network that

maps parameters of a stochastic model to pricing functions (or
implied volatilities) and we store this map during an off-line training
procedure. In other words we learn:

Φ̃NN(Θ, ζ) = P̃(M(Θ, ζ))

2 we calibrate (on-line) the now deterministic approximative learned
price map:

θ = argmin
θ∈Θ

δ(Φ̃NN(θ, ζ),PMKT (ζ))

Mario Correddu () Deep learning volatility July 8, 2022 11 / 23

Challenges of the two step approach

Mainly two:
approximate the pricing function between model error bounds
need for fast functional evaluation do perform calibration online

Mario Correddu () Deep learning volatility July 8, 2022 12 / 23

Features of the two step approach with NN

Evaluations of Φ̃NN are almost instantaneous and automatic
differentiation of Φ̃NN with respect to the model parameters returns
fast and accurate approximations of the Jacobians.
the neural network is only used as a computational enhancement of
models therefore can understand and interpret the output as a
function of model parameters against traditional numerical methods
and existing risk management libraries of models remain valid with
minimal modification.
training becomes more robust (with respect to generalisation errors
on unseen data).
training of the network is done once and offline thus can be done
without worrying about time and computing resources generating as
much synthetical data as needed.
this approach is applicable to any model that allows a consistent
numerical pricer
Mario Correddu () Deep learning volatility July 8, 2022 13 / 23

Pointwise and grid-based training

We train the network to learn the implied volatility surface instead of the
price, and using the mean squared error as objective function. We can:

train the neural network as a function of the strikes and the expiration
date, giving the objective function:
Thus the output of the network is always a real number. The training
set is generated by sampling according to a suitable distributions the
values of strikes and maturities.
the grid-based approach consists in learning the entire volatility
surface σKi ,Ti giving the objective function written as
Thus the output of the network can be interpreted as an image whose
entries are indexed by the strikes and expiration times taken into
consideration.

Mario Correddu () Deep learning volatility July 8, 2022 14 / 23

Pointwise and grid-based training

We prefer the grid-based approach, justified by the following properties:
while interpolation in pointiwise is done by the network and in the
grid-based it has do be done manually, interpolation of the volatility
surface is very well understood.
grid-based approach provides a variance reduction simply because
there are less parameters in input
in the grid-based approach we can generate data by simulating a path
and use it for all the different strikes and maturities.

Mario Correddu () Deep learning volatility July 8, 2022 15 / 23

Calibration algorithm

We assume that the pricing map is at least C1 wrt to its input parameters
θ. Thus we can calculate the gradient of the pricing function and deploy
standard optimizations algorithms.
We will use the Levenberg–Marquardt method that turned out to
outperform every other gradient based method. LM combines the gradient
descent method and the Gauss-Newton method, whose parameter update
are given by:

hgd = αJT (y − ŷ)[
JT J

]
hgn = JT (y − ŷ)

in the equation: (
JT J + λI

)
hlm = JT (y − ŷ)

where J is the local Jacobian of the model function ŷ(x ; p) of an
independent variable x and parameters p

Mario Correddu () Deep learning volatility July 8, 2022 16 / 23

Network Architecture

The network consists in:
A fully connected feed forward neural network with four hidden layers
and 30 nodes on each layers
Input dimension = n, number of model parameters
Output dimension = 11 strikes × 8 maturities for this experiment,
but this choice of grid can be enriched or modified.
The four inner layers have 30 nodes each, which adding the
corresponding biases results in 30n + 6478 network parameters.
σElu = α(ex − 1) as the activation function for the network.

Mario Correddu () Deep learning volatility July 8, 2022 17 / 23

Network Architecture

Mario Correddu () Deep learning volatility July 8, 2022 18 / 23

rBergomi model

We apply the machine we built to the rBergomi model which is given by
the following equation:

dXt = −1
2vtdt +

√
vtdWt

vt = ξ0(t)E
(√

2Hν
∫ t

0
(t − s)H−1/2dZs

)
Where t > 0, X0 = 0, E() is the stochastic exponential, W and Z are two
correlated Brownian motions with correlation parameter o ∈ [−1, 1], H is
the Hurst parameter, and

√
2Hν denotes the volatility of variance. ξ0(t) is

the forward variance curve, that for our experiments we will approximate
with a piecewise constant function.

Mario Correddu () Deep learning volatility July 8, 2022 19 / 23

Numerical experiments

NN Error Analysis rough Bergomi with Piecewise Constant Term Structure

Mario Correddu () Deep learning volatility July 8, 2022 20 / 23

numerical experiments

Mario Correddu () Deep learning volatility July 8, 2022 21 / 23

Barrier options

Vanilla options where we parametrize the pricing function using as
output the implied volatility surface.
Digital Barrier level: binary, path-dependent options. The ’out’ barrier
option pays off at expiry unless at any time previously the underlying
asset reaches a level B. While ‘in’ options give a payoff if the level is
reached. We consider down options meaning that the barrier B is
below the initial asset value S0. Then the payoff is given by:

Pdown−and−in = E [1{τB≤T}]

Pdown−and−out = E [1{τB≥T}]

where τB = inf{St = B}. The grid used as output is given by:

∆Barrier = {Bi ,Tj}i = 1 . . . n, j = 1 . . .m

Mario Correddu () Deep learning volatility July 8, 2022 22 / 23

Numerical experiments

Mario Correddu () Deep learning volatility July 8, 2022 23 / 23

