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How does T' act on the support of f?

Remark
Let 7, f(z) = f(z — h). Then

ITn(TH)llze = T £l v

e Replace dz with w(z)dz, for w € Ll _, w(z) >0 a.e.

Remark
If Tf = fx* K, for some kernel K, then

(T f) =T(nf)
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Weighted estimates
1/p 1/p
</\Tf\”wda;> < (T, w) (/mpwdx) (1)
R R

@ For which w does inequality (1) hold?
@ Can we characterise them, given T and p?

@ How does ¢(T', w) depends on w?
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Example: the Hilbert transform

Let € > 0.

Hf(z) = lim Hcf(z) = lim 1/ /) dy

e—0t+ 0T T J{g—y|>e} T — Y

Properties: |H f||z2 = ||f||z2 and H commutes with
@ translations

m(H [f) = H(7nf)
@ dilations 0 f(x) = f(Az),A >0
S(Hf) = H(3\)
@ anti-commutes with reflection pf(x) = f(—x)
p(Hf)=—H(pf)
Remark: If T € £ (L?) satisfying 1. 2. 3., there exists c € R :
Tf=cHf
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Theorem (Hunt, Muckenhoupt, Wheeden 1973)

(f uLIwada:)é <t ([ rwadx)%

holds for all f € L*(w) if and only if
e fw) () =t
w(— [w)|l= [ -] =w 00
rer \I 1) \ [Tl Jr w "

How does ¢(H,w) depend on [w]a, ?
Look for the smallest function ¢: [1,00) — (0, 00) such that

c(H,w) < ¢([w]4,)

Theorem (Petermichl 2007)

@ is linear: ¢(H,w) < clw]a,.




What about more general operator T7



What about more general operator T7

Definition (Calderén—Zygmund operator)
AT € Z(L?) such that

Tf() = [ K(y)i@dy forx ¢ suppf
R
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What about more general operator T7

Definition (Calderén—Zygmund operator)
AT € Z(L?) such that

Tfe) = [ K(@w.9)f6)dy for & suwpf
where |K(z,y)| < Clz —y|~' on R x R\ {z = y} and
[K (2 + h,y) = K(z,9)| + [K(z,y + h) = K(z,9)| <
for a € (0, 1] and all |z — y| > 2|A].

Theorem (Hytonen 2012)
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Theorem (Hytonen 2012)
If T is a Calderén—-Zygmund operator then

1T £l 2wy < clw]ag |22 w) (2)

Remark: By extrapolation, (2) implies the sharp bound for 1 < p < o

ma =3
ITflloqw) < clwla, "7 1f | zow)

belay = sup (|}| / > (ﬁ / wl)

It is enough to show that [Pérez, Treil, Volberg 2010]

1T (W)l 21y < e(T)[w]a 11l 22 (w)
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Dyadic grids

Let j € Z. Consider {277([0,1) +m),m € Z} = D,

J
2 =J2 -
JEZ —t

Properties:
e [,J e, thenINJe{l, J0}
e Any I € D has one parent 1) and two children I; and I,

! ‘I(l) E@jfl
%]’ 517

).
Il I, j+1

Drawback of 9: two quadrants.
There is no I € @, such that I D [-1,0) U [0, 1).
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Haar functions

Given I € 9 define _—
1
hy = (1, — 1p)|I]"2

Then {h;}1co is a basis of L2(R)

Given f € L?(R), decompose

F=> Arf

1e®

where Arf = (f, hr)h;.
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ITfll2y = sup [Tf.g)l, (Tf.g)= > (TArf,Asg)
gGLi(Zg‘l) 1,J€
g

Different cases given J:

IfarfromJ‘IclosetoJ‘IDJorng

Figure: Hilbert transform of 1|_; 1)
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Decomposition of T’

(Tf,9)= > (TArf,Asg)

1,JED
Different cases given J:

I far from J | I closeto J | ID JorIC.J

Definition
Fix r € N. An interval I € 9@ is good if d(I,J) > ¢(I) for any
J € D with £(J) > 27¢(I) otherwise I is bad.

EmmE
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Shifted dyadic grids &

Let € (0,1). Then [z]; = 01001001000101 . .. = {wy, }nen and

o0
T = g wp2™"
n=1

Note that @; +27" =9, if 27" > 277,

D +x=D;+ Z wp2™ "

E)b 2—n<27J
i .
B Ifw=T+ Y w2 ™"
- 2—n<(I)

For w = {wn}nez define 923;0 = {I—i—w, Ie 92)]} and

P = U 923;’
jez



Independence

Definition
Fix r € N. An interval I € 9% is good if d(I,J) > ¢(I) for any
J € D¢ with £(J) > 27¢(I), otherwise I is bad.

Position of I depends on

=1Iy+ Z w2 "
2—n<(I)
Goodness of I depends on the position of J

J=Jo+ Z w, 27"
2—n<l(J)

=Jo+ Z wn2 " Z wp2™ "

27T /(I)§2*”<£(J)
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Independence

Let P be a probability measure on Q := {0, 1}Z.
Let B = 2% UD. Then

11[ and ﬂ{]eggood}

are independent random variables.
o [17] - Bo[Lireay, 3] = Bo[1r - Tueag, 3] = Bo (L]

If P({I € Dgooq}) > 0, then

1
E[1/] = mmﬂlgood]

good
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Definition (Dilated grids)
For s € [1,2) define

DY = {sI = [sa,sb),I = [a,b) € D}

Remark
o 59“ is a dyadic grid for all s € [1,2) and w € {0, 1}Z.
@ Any dyadic grid on R equals s&“ for some s and w

@ sP“ has two quadrants if and only if w, =0 for all n > N.

Example (Infinitely many shifts)

Since

H =0101... = w' H =1010... = w?
319 319

the corresponding grids 925“1,2%‘“2 have one quadrant.
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Petermichl’s dyadic shift

1
hr = (11, — 1p)[I["2 —

fup = (hr, — hy,)(272)

Definition (Petermichl’s dyadic shift operator)

MIf =" (f,hi)hi

1€

Note that IITh; = f and || LILf||;2 = || f||L2-




Petermichl’s dyadic shift

LIf =) (f hi)hr

1€
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Petermichl’s dyadic shift

I f = Y (f, ha)for
Iespw
How does III*% interact with 74, dy, p?
@ translations
To (% f) = 117 () (1af)
@ dilations
OA(IT* f) = TG (5, f)

© reflection
p(II* f) = =TI~ (pf)

Theorem (Hytonen 2008)
Let v be a probability measure on Q x [1,2), then

RS TES



Thank you for all the shifts
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Sparse domination

Definition (Sparse family)

Let n € (0,1). A collection . C D is n-sparse if for every I € .7
there exists E C I such that {E;}; are disjoint and |Ef| > n|I|.

Given f and g find . C % such that
T I 3
! ﬁg>|§e§(]f|f|> (fal) 1m )

Remark. If T' satisfies (3) then [|T'f| L2 () < c[w]a, || fl|12(w) for all
w € Ag, and so T': LP(w) — LP(w) for all 1 < p < oo and all
w e Ap.



Sparse T'1 theorems

Theorem (David & Journé 1984)

Let T be a singular integral operator (S10) with
Calderén-Zygmund kernel, then T € £ (L?) if for all I

(1T + T*(11)l, 1r) < C|I| (4)

Theorem (Lacey & Mena 2016)

Let T' be a SIO with Calderén-Zygmund kernel that satisfies (4).
Then for any f,g € € ° there exists a sparse collection .7 such

" .ol <e S (fin) (Fial)

les




