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Consider a (sub)linear operator T : Lp → Lp

‖Tf‖Lp ≤ c(T )‖f‖Lp

How does T act on the support of f?

Remark

Let τhf(x) = f(x− h). Then

‖τh(Tf)‖Lp = ‖Tf‖Lp

• Replace dx with w(x) dx, for w ∈ L1
loc, w(x) > 0 a.e.

Remark

If Tf = f ∗K, for some kernel K, then

τh(Tf) = T (τhf)
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Weighted estimates

(ˆ
R
|Tf |pw dx

)1/p

≤ c(T,w)

(ˆ
R
|f |pw dx

)1/p

(1)

1 For which w does inequality (1) hold?

2 Can we characterise them, given T and p?

3 How does c(T,w) depends on w?

c(T,w) := sup
f∈Lp(w)
f 6=0

‖Tf‖Lp(w)

‖f‖Lp(w)
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Example: the Hilbert transform

Let ε > 0.

Hf(x) := lim
ε→0+

Hεf(x) :=

lim
ε→0+

1

π

ˆ
{|x−y|>ε}

f(y)

x− y
dy

Properties: ‖Hf‖L2 = ‖f‖L2 and H commutes with
1 translations

τh(Hf) = H(τhf)

2 dilations δλf(x) = f(λx), λ > 0

δλ(Hf) = H(δλf)

3 anti-commutes with reflection ρf(x) = f(−x)

ρ(Hf) = −H(ρf)

Remark: If T ∈ L (L2) satisfying 1. 2. 3., there exists c ∈ R :

Tf = cHf
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(ˆ
R
|Hf |2w dx

) 1
2

≤ c(H,w)

(ˆ
R
|f |2w dx

) 1
2

Theorem (Hunt, Muckenhoupt, Wheeden 1973)(ˆ
R
|Hf |2w dx

) 1
2

≤ c(H,w)

(ˆ
R
|f |2w dx

) 1
2

holds for all f ∈ L2(w) if and only if

sup
I⊆R

(
1

|I|

ˆ
I
w

)(
1

|I|

ˆ
I

1

w

)

=: [w]A2

<∞

How does c(H,w) depend on [w]A2 ?
Look for the smallest function ϕ : [1,∞)→ (0,∞) such that

c(H,w) ≤ ϕ([w]A2)

Theorem (Petermichl 2007)

ϕ is linear: c(H,w) ≤ c[w]A2 .
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What about more general operator T?

Definition (Calderón–Zygmund operator)

A T ∈ L (L2) such that

Tf(x) =

ˆ
R
K(x, y)f(y) dy for x 6∈ suppf

where |K(x, y)| ≤ C|x− y|−1 on R× R \ {x = y} and

|K(x+ h, y)−K(x, y)|+ |K(x, y + h)−K(x, y)| ≤ C|h|α

|x− y|1+α

for α ∈ (0, 1] and all |x− y| > 2|h|.

Theorem (Hytönen 2012)

If T is a Calderón–Zygmund operator then

‖Tf‖L2(w) ≤ c[w]A2‖f‖L2(w)
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Theorem (Hytönen 2012)

If T is a Calderón–Zygmund operator then

‖Tf‖L2(w) ≤ c[w]A2‖f‖L2(w) (2)

Remark: By extrapolation, (2) implies the sharp bound for 1 < p < ∞

‖Tf‖Lp(w) ≤ c[w]
max{1, 1

p−1
}

Ap
‖f‖Lp(w)

[w]Ap := sup
I⊆R

(
1

|I|

ˆ
I

w

)(
1

|I|

ˆ
I

1

w
1

p−1

)p−1

It is enough to show that [Pérez, Treil, Volberg 2010]

‖T (w1I)‖L2(w−1) ≤ c(T )[w]A2‖1I‖L2(w)
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‖T (w1I)‖L2(w−1) ≤ c(T )[w]A2‖1I‖L2(w)

7



Theorem (Hytönen 2012)

If T is a Calderón–Zygmund operator then

‖Tf‖L2(w) ≤ c[w]A2‖f‖L2(w) (2)

Remark: By extrapolation, (2) implies the sharp bound for 1 < p < ∞

‖Tf‖Lp(w) ≤ c[w]
max{1, 1

p−1
}

Ap
‖f‖Lp(w)

[w]Ap := sup
I⊆R

(
1

|I|

ˆ
I

w

)(
1

|I|

ˆ
I

1

w
1

p−1

)p−1

It is enough to show that [Pérez, Treil, Volberg 2010]
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Dyadic grids

Let j ∈ Z.

Consider {2−j([0, 1) +m),m ∈ Z}

=: Dj

D :=
⋃
j∈Z

Dj

j

Properties:

I, J ∈ D, then I ∩ J ∈ {I, J, ∅}
Any I ∈ D has one parent I(1) and two children Il and Ir

I(1) ∈ Dj−1
Dj 3 I

Il Ir
Dj+1

Drawback of D: two quadrants.
There is no I ∈ D, such that I ⊇ [−1, 0) ∪ [0, 1).
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Haar functions

Definition

Given I ∈ D define

hI := (1Ir − 1Il)|I|
− 1

2

Then {hI}I∈D is a basis of L2(R)

I

Given f ∈ L2(R), decompose

f =
∑
I∈D

∆If

where ∆If := 〈f, hI〉hI .
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Decomposition of T

‖Tf‖L2(w) = sup
g∈L2(w−1)

g 6=0

|〈Tf, g〉|,

〈Tf, g〉 =
∑
I,J∈D

〈T∆If,∆Jg〉

Different cases given J :

I far from J I close to J I ⊃ J or I ⊆ J

0-2 2 4 6 8 10 12 14

-2

2

4

Figure: Hilbert transform of 1[−1,1)
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Shifted dyadic grids Dω

Let x ∈ (0, 1).

Then [x]2 = 01001001000101 . . . = {ωn}n∈N and

x =
∞∑
n=1

ωn2−n

Note that Dj + 2−n = Dj if 2−n ≥ 2−j .

Dj

Dj + x = Dj +
∑

2−n<2−j

ωn2−n

I+̇ω := I +
∑

2−n<`(I)

ωn2−n

For ω = {ωn}n∈Z define Dω
j := {I+̇ω, I ∈ Dj} and

Dω :=
⋃
j∈Z

Dω
j

12
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Independence

Definition

Fix r ∈ N. An interval I ∈ Dω is good if d(I, J) > `(I) for any
J ∈ Dω with `(J) > 2r`(I), otherwise I is bad.

Position of I depends on

I = I0 +
∑

2−n<`(I)

ωn2−n

Goodness of I depends on the position of J

J = J0 +
∑

2−n<`(J)

ωn2−n

= J0 +
∑

2−n<`(I)

ωn2−n +
∑

`(I)≤2−n<`(J)

ωn2−n

13



Independence

Let P be a probability measure on Ω := {0, 1}Z.
Let Dω = Dω

good ∪ Dω
bad. Then

1I and 1{I∈Dωgood}

are independent random variables.

Eω
[
1I

]
· Eω

[
1{I∈Dωgood}

]
= Eω

[
1I · 1{I∈Dωgood}

]
= Eω

[
1Igood

]
If P

(
{I ∈ Dωgood}

)
> 0, then

E
[
1I

]
=

1

E
[
1{I∈Dωgood}

]E[1Igood]

14
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Definition (Dilated grids)

For s ∈ [1, 2) define

sDω := {sI := [sa, sb), I = [a, b) ∈ Dω}

Remark

sDω is a dyadic grid for all s ∈ [1, 2) and ω ∈ {0, 1}Z.

Any dyadic grid on R equals sDω for some s and ω

sDω has two quadrants if and only if ωn = 0 for all n > N .

Example (Infinitely many shifts)

Since [
1

3

]
2

= 0101 . . . = ω1

[
2

3

]
2

= 1010 . . . = ω2

the corresponding grids Dω1
, Dω2

have one quadrant.
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Petermichl’s dyadic shift

hI := (1Ir − 1Il)|I|−
1
2

I

hI := (hIr − hIl)(2−
1
2 )

I

Definition (Petermichl’s dyadic shift operator)

Xf :=
∑
I∈D
〈f, hI〉hI

Note that XhI = hI and ‖Xf‖L2 = ‖f‖L2 .
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Petermichl’s dyadic shift

Xf :=
∑
I∈D
〈f, hI〉hI

Xs,ωf :=
∑
I∈sDω

〈f, hI〉hI

How does Xs,ω interact with τa, δλ, ρ?
1 translations

τa(Xs,ωf) = Xτa(s,ω)(τaf)

2 dilations
δλ(Xs,ωf) = Xδλ(s,ω)(δλf)

3 reflection
ρ(Xs,ωf) = −Xs,1−ω(ρf)

Theorem (Hytönen 2008)

Let µ be a probability measure on Ω× [1, 2), then

ˆ
Ω
Xs,ωf dµ(s,ω) = c Hf
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Thank you for all the shifts
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Sparse domination

Definition (Sparse family)

Let η ∈ (0, 1). A collection S ⊆ D is η-sparse if for every I ∈ S
there exists EI ⊆ I such that {EI}I are disjoint and |EI | > η|I|.

Given f and g find S ⊆ Dω such that

|〈Tf, g〉| ≤ c
∑
I∈S

( 
I
|f |
)( 

I
|g|
)
|I| (3)

Remark. If T satisfies (3) then ‖Tf‖L2(w) ≤ c[w]A2‖f‖L2(w) for all
w ∈ A2, and so T : Lp(w)→ Lp(w) for all 1 < p <∞ and all
w ∈ Ap.
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Sparse T1 theorems

Theorem (David & Journé 1984)

Let T be a singular integral operator (SIO) with
Calderón–Zygmund kernel, then T ∈ L (L2) if for all I

〈|T (1I)|+ |T ?(1I)|,1I〉 ≤ C|I| (4)

Theorem (Lacey & Mena 2016)

Let T be a SIO with Calderón–Zygmund kernel that satisfies (4).
Then for any f, g ∈ C∞c there exists a sparse collection S such
that

|〈Tf, g〉| ≤ c
∑
I∈S

( 
I
|f |
)( 

I
|g|
)
|I|
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