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Brascamp–Lieb inequalities
Let Bj : Rd → Rdj surjective linear maps.

ˆ
Rd

m∏
j=1

|fj(Bjx)|
pjdx 6 BL({Bj, pj})

m∏
j=1

(ˆ
Rdj

|fj(y)|dy

)pj

Feasibility (BL({Bj, pj}) < ∞):

I
∑

j pjdj = d

I dimV 6
∑
j

pjdimBjV for all subspaces V ⊂ Rd

Geometric data:

I (projection) BjB
t
j = Idj

I (isotropy)
∑

j pjB
t
jBj = Id

Loomis–Whitney in d = 3:

ˆ
R3

3∏
j=1

|fj(Bjx)|
1
2dx 6 BL({Bj, (

1
2
, 1
2
, 1
2
)})

3∏
j=1

(ˆ
R2

|fj(y)|dy

) 1
2
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From Gaussians to matrices

ˆ
Rd

m∏
j=1

|fj(Bjx)|
pjdx 6 BL({Bj, pj})

m∏
j=1

(ˆ
Rdj

|fj(y)|dy

)pj

Let gj(x) := exp(−1
2
〈Ajx, x〉) on Rdj , then

BL({Bj, pj}) >

´
Rd

∏
j|gj(Bjx)|

pjdx∏m
j=1

(´
Rdj gj(y)dy

)pj
=

(
det(

∑
j pjB

∗
jA
∗
jAjBj)∏m

j=1 det(A∗jAj)pj

)− 1
2

.

BL({Bj, pj}) = sup
Aj∈GL(dj)
A∈GL(d)

(
det(

∑
j pjB

∗
jA
∗
jAjBj)∏m

j=1 det(A∗jAj)pj

)− 1
2

I When BL({Bj, pj}) < ∞, how can we approximate it?



I How to approximate BL({Bj, pj})?

BL({Bj, pj}) = sup
Aj∈GL(dj)
A∈GL(d)

(
det(

∑
j pjB

∗
jA
∗
jAjBj)∏m

j=1 det(A∗jAj)pj

)− 1
2

Gressman rewrote it as

BL({Bj, pj})
−1 = inf

Aj∈SL(dj)
A∈SL(d)

m∏
j=1

(
d
− 1

2

j ‖AjBjA
∗‖HS

)pjdj

.

Let B = (B1, . . . , Bm) ∈ V = Rd×d1 × · · · × Rd×dm .
Let G = SL(d1)× · · · × SL(dm)× SL(d) acting on V as

SL(d1)× · · · × SL(dm)× SL(d)× V → V

((A1, . . . , Am, A),B) 7→ (A1B1A
∗, . . . , AmBmA∗)

Then
BL({B, pj})

−1 h inf
g∈G
‖g · B‖

is the length of a minimal vector w.r.t ‖ · ‖ in a given orbit.



















A map to separate closed orbits







“A bit of Algebra never hurts”
— Lukas M.

Thank you
Schön, dass Sie da sind

Thanks to Rajula, Linda Ness and Ramiro Lafuente for the
exciting maths discussions.






