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Complex analysis in the plane 1/2

Wirtinger derivatives:

∂

∂z
=
1

2

(
∂

∂x
− i

∂

∂y

)
∂

∂z
=
1

2

(
∂

∂x
+ i

∂

∂y

)

Chain rule: g ◦ f : C → C, z = f(w)

∂wg(f(w)) = gz(f(w))fw(w) + gz̄(f(w))fw(w)

∂wg(f(w)) = gz(f(w))fw̄(w) + gz̄(f(w))fw(w)

Proof : use Wirtinger derivatives and classical chain rule in R2.
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Complex analysis in the plane 2/2

Definition (Conformal map)
A function f on Ω ⊂ C is conformal if it is a biholomorphism.

(Note: f conformal =⇒ f is holomorphic and f ′ ̸= 0.)

Theorem (Riemann mapping theorem (1851) (1900))
Any non-empty open simply connected proper Ω ⊂ C admits a

bijective conformal map to the open unit disk D.

?

2 ⩽
ˆ 1

0

ˆ 1

0

|f ′(x+ iy)|dxdy

⩽

(¨
[0,1]2

|f ′(x+ iy)|2dxdy

) 1
2
(¨

[0,1]2
dxdy

) 1
2

=
√
2.

Grötzsch (1928) asked for “approximate conformality”.
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Maps of bounded distorsion

Consider f ∈W1,2
loc (C) such that ∃K ⩾ 1

max
α

|∂αf(z)| ⩽ Kmin
α

|∂αf(z)| for a.e. z

|fz(z)|+ |fz(z)| ⩽ K(|fz(z)|− |fz(z)|)

We can rearrange them to get:

|fz(z)| ⩽
K− 1

K+ 1
|fz(z)|

The Beltrami equation is fz(z) = µ(z)fz(z) for ∥µ∥L∞ ∈ (0, 1).

Linear algebra interpretation:

|Df(z)| = |fz(z)|+ |fz(z)| ⩽ K
|fz(z)|

2 − |fz(z)|
2

|Df(z)|
= K

J(f, z)

|Df(z)|

Remark. We have |Df(z)|2 ⩾ 2 J(f, z) by the AM-GM. Since

∥A∥22 = tr(AtA) ⩾ 2 det(A) for A ∈ R2×2.

What do these maps look like?
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Figure 1: (A) Face. (B) Conformal Mapping. (C) Induced Circle Packing.

(D) Conformal Checkerboard. (E) Quasiconformal Mapping. (F)

Quasiconformal Circle Packing.

Source by Zeng, Lui, Luo, Liu, Chan, Yau, Gu arXiv:1005.464
4



Let µ ∈ L∞(C), with ∥µ∥∞ = ε := K−1
K+1 .

Definition (Quasiconformal mappings)
Functions f on Ω ⊂ C that are W1,2

loc solutions to

∂

∂z̄
f(z) = µ(z)

∂

∂z
f(z) a.e. z ∈ Ω ⊂ C (B)

and that are homeomorphisms: continuous and open.

Are two solutions of (B) related?

Theorem (Stöılow factorization)

Let f, g ∈W1,2
loc (Ω) be two solutions to the same equation (B),

and let f be quasiconformal.

Then there exists a holomorphic map Φ on f(Ω) such that

g(z) = Φ(f(z)) for all z ∈ Ω.

Moreover, for any holomorphic function Φ on f(Ω), the map Φ ◦ f
is a solution of (B).
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Stöılow factorisation

Recall the Beltrami equation:

∂

∂z
f(z) = µ(z)

∂

∂z
f(z)

The Stöılow factorisation theorem says that two different solutions

to the Beltrami equation are related by a holomorphic function.

Ω Ω ′

Ω ′′

f

g
Φ

How can this be used?
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Applications to PDEs

Let A be symmetric and elliptic on C
1

K
|ξ|2 ⩽ ⟨A(z)ξ, ξ⟩ ⩽ K|ξ|2

Let u ∈W1,2
loc (Ω) be a solution of divA(z)∇u = 0.

1. Does u ∈W1,p
loc (Ω) for other (higher) p ?

2. What is the regularity of u?

Idea: construct a K-quasiconformal map from u.

Definition (A-harmonic conjugate)
A function v ∈W1,2

loc (Ω) such that(
0 −1

1 0

)
A(z)∇u = ∇v

Then f = u+ iv is K-quasiconformal. By Stöılow factorisation ∃Φ holomorphic

and F K-quasiconformal such that f = Φ ◦ F. Then

u = ℜ(f) = ℜ(Φ) ◦ F.
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Applications to PDEs

Theorem
Let u ∈W1,2

loc (Ω) be a solution of

divA(z)∇u = 0

Then, by Stöılow factorisation, we have the following:

1. Improved integrability: u ∈W1,p
loc (Ω) for p ∈ [2, 2K

K−1

)
.

2. From Mori’s theorem: u ∈ C1/K
loc (Ω).

Stöılow factorisation successfully used by (at least) one participant in this

school: Gallegos, Josep M. ”Size of the zero set of solutions of elliptic

PDEs near the boundary of Lipschitz domains with small Lipschitz

constant.” arXiv:2201.12307, check it out!
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Corollary (Uniqueness of normalised solution)
Let f, g ∈W1,2

loc (C) be two homeomorphic solutions to (B) on C.
If f and g fix the points 0 and 1, then f = g.

Proof of the Corollary. By Stöılow factorisation,

• ∃ an entire function Φ such that g = Φ ◦ f.

• f and g are homeomorphisms =⇒ Φ injective, so Φ is conformal.

• Entire conformal maps are similarities: ∀ζ, z,w ∈ C
|Φ(ζ) −Φ(w)|

|Φ(z) −Φ(w)|
=

|ζ−w|

|z−w|

• a similarity which fixes 0 and 1 (and Φ(∞) = ∞) is the identity.

Remark. The map

f(z) = z+ ε

N∏
j=1

(z− ζj)

fixes {ζj, j = 1, . . . ,N}, is holomorphic and locally injective (f ′ ̸= 0 for small ε),

but it is not the identity.
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Recall the Beltrami equation:

∂

∂z
f(z) = µ(z)

∂

∂z
f(z)

Theorem (Stöılow factorization)
Let f, g ∈W1,2

loc (Ω) be two solutions to the same equation (B),

and let f be quasiconformal.

Then there exists a holomorphic map Φ on f(Ω) such that

g(z) = Φ(f(z)) for all z ∈ Ω.

Moreover, for any holomorphic function Φ on f(Ω), the map Φ ◦ f
is a solution of (B).
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Proof of the factorisation

Ω Ω ′

Ω ′′

f

g
Φ

Goal: show that the map Φ := g ◦ f−1 is holomorphic.

1. Assume g continuous (and in W1,2
loc ). Let f(z) = w.

2. Check that Φ ∈ ker ∂̄. Let h := f−1, so (h ◦ f)(z) = z.
∂z(h ◦ f)(z) = hw(w)fz(z) + hw̄(w)fz(z) = 1

∂z̄(h ◦ f)(z) = hw(w)fz̄(z) + hw̄(w)fz(z) = 0

(
fz fz̄

fz̄ fz

)(
hw

hw̄

)
=

(
1

0

)
=⇒

(
hw

hw̄

)
=

1

|fz|2 − |fz̄|2

(
fz

−fz̄

)
It follows that h satisfies

hw̄ = −µ(h(w))hw

substitute in: ∂w(g ◦ h)(w) = gz(h(w))hw̄(w) + gz̄(h(w))hw(w)

3. Use Weyl’s lemma: weak solutions to ∂̄ in L1loc(C) are analytic.
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Two operators

The solid Cauchy transform is

Cf(z) =
1

π

ˆ
C

f(ζ)

z− ζ
dζ

The Beurling transform S is given by

Su(z) = −
1

π

ˆ
C

u(ζ)

(z− ζ)2
dζ

Note:

• C := (∂z̄)
−1, mapping C : Lp(C) →W1,p(C) for p > 2.

• S is bounded on Lp(C), and S(∂z̄f) = ∂zf for f ∈W1,p(C).
Also

∥S∥p→p ⩽
1

ε
for p ∈ (1+ ε, (1+ ε) ′)
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Solving the Beltrami equation

Consider the inhomogeneous equation for φ ∈ Lpcomp(C).

∂z̄σ = µ(z)∂zσ+φ (B̃)

If σ solves (B̃) with φ = µ, then f = z+ σ solve (B).

Rewrite using ∂z = S∂z̄:

(I− µ(z)S)∂z̄σ = φ

A solution is given by

σ = ∂−1
z̄ (I− µ(z)S)−1φ = ∂−1

z̄

∑
k⩾0

(µ(z)S)kφ

The Neumann series converges for ∥µS∥ ⩽ ∥µ∥∞∥S∥ < 1.
If ∥µ∥∞ = ε, we need ∥S∥ < 1/ε, “not too large”.
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Why are weak W1,2 solution continuous? 1/2

Recall Iε := (1+ ε, 1+ 1/ε).

Theorem

Let Ω ⊂ C. If f ∈W1,2
loc (Ω) solves (B) with ∥µ∥∞ = ε < 1, then

f ∈W1,p
loc (Ω) for all p ∈ Iε.

Remark. In particular, f ∈W1,2+s
loc (Ω) for some s > 0, so by the

Sobolev embedding f is continuous.

Sketch of the proof. Consider F := ψf, for ψ ∈ C∞
c (Ω). Since f

is a solution to the Beltrami equation, by the chain rule

(ψf)z̄ − µ(ψf)z = f · (ψz̄ − µψz) =: φ.

Then F = ψf solves the inhomogeneous Beltrami equation

Fz̄ = µFz +φ

14



Why are weak W1,2 solution continuous? 2/2

We find expressions for the weak derivative of F, that are

Fz̄ = (I− µS)−1φ

Fz = S(Fz̄) = S ◦ (I− µS)−1φ

where φ := f · (ψz̄ − µψz), and F = ψf, ψ ∈ C∞
0 .

• For p ∈ Iε, we control ∥S∥p, ∥(I− µS)−1∥p
• Fz̄, Fz are in Lp since

∥DF∥p ⩽
(
∥(I− µS)−1∥p + ∥S∥p∥(I− µS)−1∥p

)
∥φ∥p

≲p ∥ψz̄ − µψz∥∞∥f∥p

which holds for p > 2.
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Thank you
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