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Complex analysis in the plane 1/2

Wirtinger derivatives:

0 1(d .0
az_2<ax_lay>
d 1[/3 .0
az_z(mﬂay)

dwg(f(w)) = gz (f(w))fw (W) + gz(f(w)) frs(w)
Owg(f(w)) = gz(f(w))fw (W) + gz(f(w))fw (W)

Proof: use Wirtinger derivatives and classical chain rule in R?.



Complex analysis in the plane 2/2

Definition (Conformal map)
A function f on QO C C is conformal if it is a biholomorphism.

(Note: f conformal = f is holomorphic and ' #0.)

Theorem (Riemann mapping theorem (1851) (1900))
Any non-empty open simply connected proper O C C admits a

bijective conformal map to the open unit disk .
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Complex analysis in the plane 2/2

Definition (Conformal map)
A function f on QO C C is conformal if it is a biholomorphism.

(Note: f conformal = f is holomorphic and ' #0.)

Theorem (Riemann mapping theorem (1851) (1900))
Any non-empty open simply connected proper O C C admits a
bijective conformal map to the open unit disk .

° ° . ° °
.

(¢] (] o (]

11
Zg/ /|f/(x—|—iy)|dxdy
1

(oo ([ om) -2



Complex analysis in the plane 2/2

Definition (Conformal map)
A function f on QO C C is conformal if it is a biholomorphism.

(Note: f conformal = f is holomorphic and ' #0.)

Theorem (Riemann mapping theorem (1851) (1900))
Any non-empty open simply connected proper O C C admits a

bijective conformal map to the open unit disk .
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Grotzsch (1928) asked for “approximate conformality”. 5



Maps of bounded distorsion

Consider f € W/>2(C) such that 3K > 1

loc
max|04f(z)] < Kmin|0,f(z)] forae. z
x x
If2(2)] + Ifz(2)] < K(If2(2) — Ifz(2)])
We can rearrange them to get:

K—1
f2(2)| < ——
[fz(z)| K+1

The Beltrami equation is fz(z) = p(z)f.(z) for |||~ € (0,1).

If2(z)]
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Maps of bounded distorsion

Consider f € W/>2(C) such that 3K > 1

loc

mo?x\a(xf(z)l < Kmoicn\ao(f(z)\ for ae. z
If2(2)| + Ifz(z)| < K(If2(2)] — [fz(2)])

We can rearrange them to get:

K—1
—(z)] € ——
Ifz(z)] < K+1

The Beltrami equation is fz(z) = p(z)f.(z) for |||~ € (0,1).

If2(z)]

Linear algebra interpretation:
[f2(2)* — Ifz(2)? J(f,2)
Df(z)| = [f.(z)| + [fz(z)| < K =K
IDF(2)] = I£. (=) + f=(2) E e

Remark. We have [Df(z)> > 2J(f,z) by the AM-GM. Since
|A[I3 = tr(AtA) > 2det(A) for A € R?*2.

What do these maps look like?



Figure 1: (A) Face. (B) Conformal Mapping. (C) Induced Circle Packing.
(D) Conformal Checkerboard. (E) Quasiconformal Mapping. (F)
Quasiconformal Circle Packing.

Source by Zeng, Lui, Luo, Liu, Chan, Yau, Gu arXiv:1005.464



Let i€ L(C), with [|uflee = € = K1,

Definition (Quasiconformal mappings)
Functions f on QO C C that are \/\/ﬂo’c2 solutions to

0 0
ﬁf(l) = H(Z)af

and that are homeomorphisms: continuous and open.

(z) ae.zeQcCC

Are two solutions of (B) related?

(B)



: . K-
Let p € L®(C), with |[ufleo = € = g7

Definition (Quasiconformal mappmgs)
Functions f on Q C C that are W,1,? solutions to

—f(z) ae.zeQcCC (B)

and that are homeomorphisms: continuous and open.
Are two solutions of (B) related?

Theorem (Stoilow factorization)

Let f,g € WL2(Q) be two solutions to the same equation (B),
and let f be quasiconformal.
Then there exists a holomorphic map ® on f(Q)) such that

g(z) = O(f(z)) for all z € Q.

Moreover, for any holomorphic function ® on f(Q), the map @ o f
is a solution of (B).



Stoilow factorisation

Recall the Beltrami equation:
0 0
— f(z) = el
a5 &) = nz5

The Stoilow factorisation theorem says that two different solutions

f(z)

to the Beltrami equation are related by a holomorphic function.

o _ " .o



Stoilow factorisation

Recall the Beltrami equation:
0 0
— f(z) = el
a5 &) = nz5

The Stoilow factorisation theorem says that two different solutions

f(z)

to the Beltrami equation are related by a holomorphic function.

o _ " .o

Q//

How can this be used?



Applications to PDEs

Let A be symmetric and elliptic on C

1

e < (A(2)E, &) <KIgf?
Let u € W],2(Q) be a solution of divA(z)Vu = 0.

1. Does u € WP (Q) for other (higher) p ?
2. What is the regularity of u?



Applications to PDEs

Let A be symmetric and elliptic on C

1

e < (A(2)E, &) <KIgf?
Let u € W],2(Q) be a solution of divA(z)Vu = 0.

1. Does u € WP (Q) for other (higher) p ?
2. What is the regularity of u?

Idea: construct a K-quasiconformal map from wu.

Definition (A-harmonic conjugate)
A function v € W ,2(Q) such that

(? _o]) A(z)Vu = Vv

Then f =u+ iv is K-quasiconformal. By Stoilow factorisation 3® holomorphic
and F K-quasiconformal such that f = ® o F. Then

u=R(f) =R(D)oF. g



Applications to PDEs

Theorem
Letu € W,L’CZ(Q) be a solution of

divA(z)Vu =0
Then, by Stoilow factorisation, we have the following:

1. Improved integrability: w e WP (Q) forp € 2, 25).

loc

2. From Mori’s theorem: u € C]/K(Q).

loc



Applications to PDEs

Theorem
Letu € W,]o’cz(Q) be a solution of

divA(z)Vu =0
Then, by Stoilow factorisation, we have the following:

1. Improved integrability: w e WP (Q) forp € 2, 25).

loc

2. From Mori’s theorem: u € C]/K(Q).

loc

Stoilow factorisation successfully used by (at least) one participant in this
school: Gallegos, Josep M. "Size of the zero set of solutions of elliptic
PDEs near the boundary of Lipschitz domains with small Lipschitz
constant.” arXiv:2201.12307, check it out!



Corollary (Uniqueness of normalised solution)
Let f,g € WL2(C) be two homeomorphic solutions to (B) on C.

If f and g fix the points 0 and 1, then f = g.



Corollary (Uniqueness of normalised solution)
Let f,g € WL2(C) be two homeomorphic solutions to (B) on C.

If f and g fix the points 0 and 1, then f = g.

Proof of the Corollary. By Stoilow factorisation,

e I an entire function ® such that g= ® of.
e f and g are homeomorphisms = @ injective, so @ is conformal.

e Entire conformal maps are similarities: V(,z,w € C
©(2) — D) _ [e—wl
D(z) —O(W)|  [z—w|

e a similarity which fixes 0 and 1 (and ®@(o0) = o) is the identity. [

Remark. The map
N
fz)=z+e]J(z— &)
j=1

fixes {Cj,j = 1,..., N}, is holomorphic and locally injective (f’ # 0 for small ¢),
but it is not the identity.



Recall the Beltrami equation:

0 0

a—zf(z) = u(Z)afo(Z)

Theorem (Stoilow factorization)
Let f,g € W}o’CZ(Q) be two solutions to the same equation (B),
and let f be quasiconformal.

Then there exists a holomorphic map ® on f(Q) such that
g(z) = O(f(z)) for all z € Q.

Moreover, for any holomorphic function ® on f(Q), the map ® o f
is a solution of (B).
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Proof of the factorisation

Q—"-q
lg 7 Goal: show that the map @ := g o f~! is holomorphic.
@

Q//

1. Assume g continuous (and in W,2). Let f(z) = w.

2. Check that @ € kerd. Let h:==f"", so (hof)(z) = z.
0:(hof)(z) = hy(W)f.(z) + hg (W)fz(z) =1
0z(h o f)(z) = hy(W)fz(z) + ha(W)f.(z) =0

—-
N

11
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Q—"-q
lg 7 Goal: show that the map @ := g o f~! is holomorphic.
@

Q//

1. Assume g continuous (and in W,2). Let f(z) = w.

2. Check that ® € kerd. Let h:=f"1, s0 (hof)(z) =
0;(hof)(z) = hn(W)f.(z) + ha(W)fz(z) =1
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(e D)) = ()t (%)
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Proof of the factorisation

Q—"-q

lg 7 Goal: show that the map @ := g o f~! is holomorphic.
@

Q// )

1. Assume g continuous (and in W»2). Let f(z) = w.

loc

2. Check that ® € kerd. Let h:=f"1, s0 (hof)(z) =

(hOfJ(Z) hy (W)f2(2) + ha(W)fz(z) =1
s(hof)(z) =h,(W)fz(z) + hg(w)f,(z) =0

D0 - Gkl

It follows that h satisfies

11



Proof of the factorisation

Q—"-q

lg 7 Goal: show that the map @ := g o f~! is holomorphic.
@

Q// )

1. Assume g continuous (and in W,2). Let f(z) = w.

2. Check that ® € kerd. Let h:=f"1, s0 (hof)(z) =

(hOfJ(Z) hy (W)f2(2) + ha(W)fz(z) =1
s(hof)(z) =h,(W)fz(z) + hg(w)f,(z) =0

D0 - Gkl

It follows that h satisfies

5

hw = —u(h(w))h,

substitute in: 935(g o h)(w) = g, (h(w))hyz (W) + gz(h(w))h,, (W)

3. Use Weyl's lemma: weak solutions to d in L] (C) are analytic. [

11



Two operators

The solid Cauchy transform is

Cf(z) = ! [C fO) 4

T z—(

The Beurling transform S is given by

Suz) = — /C wa) 4,

7 Jo (z—Q)?

Note:

e C:=(05)~", mapping C: LP(C) — WP (C) for p > 2.

e S is bounded on LP(C), and S(dzf) = d,.f for f € WHP(C).
Also

forpe (14+¢(1+¢))

;| =

ISllp—p <

12



Solving the Beltrami equation

Consider the inhomogeneous equation for @ € L&mp(C).

0:0 = w(z)0,0+ @ (1§)

If o solves (B) with @ =y, then f =z + o solve (B).

Rewrite using 0, = S03:

(I—p(z)S)oz0=¢

13



Solving the Beltrami equation

Consider the inhomogeneous equation for @ € L&mp(C).

0:0 = w(z)0,0+ @ (1§)

If o solves (B) with @ =y, then f =z + o solve (B).
Rewrite using 0, = S03:

(I—p(z)S)oz0=¢
A solution is given by

c=0;'(I—p(z)S) Te=0:") (nz)S)*p
k>0

The Neumann series converges for ||uS|| < [|u]|oo|S]| < 1.
If ||1|lco = €, we need [|S|| < 1/¢, “not too large”.

13



Why are weak W2 solution continuous? 1/2

Recall T, == (1 +¢,1+1/¢).

Theorem

Let Q C C. Iff € W)>2(Q) solves (B) with ||| = € < 1, then

loc

fe WLP(Q) forall p € 1.

Remark. In particular, f € W»275(Q) for some s > 0, so by the

loc
Sobolev embedding f is continuous.

Sketch of the proof. Consider F = {f, for P € CX(Q). Since f
is a solution to the Beltrami equation, by the chain rule

(Wf)z — p(bf), =f- (bz —wb,) = o.
Then F = 1f solves the inhomogeneous Beltrami equation

Fz=uk.+ ¢

14



Why are weak W2 solution continuous? 2/2

We find expressions for the weak derivative of F, that are

F:=(I—pS) o
F2=S(Fz) =So(I—uS) "o

where @ :=f - (Pz —mp;), and F =9f, P € CF.

e For p € I, we control [|S]p, [|(I—u1S) ™|

e Fz F, are in LP since

IDFlp < (1= w1S) " lp + ISIp T — 1) p) el
SP Hll’i - PuszoonHP

which holds for p > 2.

ii5)



Thank you
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