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Background

Consider the Schrodinger equation in 1 dimension:

10W(x,t) + A¥(x,t) =0, x,teR
Y(x,0) = f(x)

The solution is given by
W(t,x) = A1) =51 (eEF).
The operator e**? is bounded on L2, in particular

lim e"2f = f in L*(R).
t—0
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Background

Consider the Schrodinger equation in 1 dimension:

10W(x,t) + A¥(x,t) =0, x,teR
Y(x,0) = f(x)

The solution is given by
Y(t,x) = e f(x) = F ! (e“izf) )
The operator et is bounded on L2, in particular
J@Oeimf = f in L*(R).

What about lim_o e'*2f(x) ?

Question

When tlinz) et2f(x) =f(x) for almost every x € R?
—
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Let (T¢)refo,17 be the family of operators

Tof(x) = eltA(x) = 5 (e“ff%) .

Theorem (Carleson, 1980)

Let & > % and f is x-Holder and compactly supported , then

lim T¢f(x) = f(x) for almost every x € R.
t—0

Furthermore, when o < 13, there exists a «x-Holder function f such that

limsup|Tf(x)| =00 for almost every x € R.
t—0
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Let (T¢)ie(o,17 be the family of operators

Tof(x) = eltA(x) = 5 (eitaz?) .

Theorem (Carleson, 1980, revised)
Let s > JT and f is in H*(R), then

lim T¢f(x) = f(x) for almost every x € R.
t—0

Furthermore, when o < 13, there exists a «x-Holder function f such that

limsup|Tf(x)| =00 for almost every x € R.
t—0
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Let (T¢)ie(o,17 be the family of operators

Tof(x) = eltA(x) = 5 (eitaz?) .

Theorem (Carleson, 1980, revised)
Let s > JT and f is in H*(R), then

lim T¢f(x) = f(x) for almost every x € R.
t—0
Furthermore, when o < 13, there exists a «x-Holder function f such that

limsup|Tf(x)| =00 for almost every x € R.
t—0

Theorem (Dahlberg & Kenig, 1982)
Ifs < % there exists f € H5(R) and a set E, |E| > 0, such that

limsup |Tif(x)| = +00  for almost every x € E.
t—0
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Carleson’s result

We want to bound the maximal operator

Tf(x) == sup [Tef(x)|= sup [e"2f(x)]
o<t<l1 te(0,1)

For s > All, H3(R) C H%(R). It is enough to show s = Al;-

Proposition (A priori estimate)

Let f € #(R). Then there exists C > 0 such that

IT*fllcs ey < ClElL, -
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Carleson’s result

We want to bound the maximal operator

Tf(x) == sup [Tef(x)|= sup [e"2f(x)]
o<t<l1 te(0,1)

For s > All, H3(R) C H%(R). It is enough to show s = Al;-

Proposition (A priori estimate)

Let f € #(R). Then there exists C > 0 such that

[T*fl|Ls ) < C||f||H%UR).
It's enough to prove a local estimate:
T flls 8,y < CFllL 3 gy

for r > 0 with a constant C independent of r.
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|dea of the proof

Step 1 Linearize
For each x € R there exists a time t(x) > 0 such that

. 1 -
e IAf(x)| > = suplettAf(x)]
t>0

so that .
T*f(x) < 2]e't™Af(x)].

Step 2 Dualize \
There exists w € L3 (B,) = L*'(B,), with lwll4 =1, such that

||e“(‘mf(-)||w3r)=] A (xw(x) dx

-
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|dea of the proof

Step 1 Linearize
For each x € R there exists a time t(x) > 0 such that

€A ()] > L suplettafi))
2t>0

so that .
T*f(x) < 2]e't™IAf(x)].

Step 2 Dualize ,
There exists w € L5 (B,) = L*'(B,), with Hw||% =1, such that

|ettIA(.) (s e,)= JR et IAF(x)w(x) dx

assuming supp(w) C B;.

5/19



|dea of the proof

Step 3 Split
Expand, use Fubini and Cauchy-Schwarz.

J eit(x)Af(X)W(X) dx = JJ' f:‘(z‘)ei(xﬁft(x]iz) d&w(x) dx
R

R2

= [ e [ e 2 g g
R R

tE

1

< Hﬂa%
)

J eilxe—te) W)
R

12
12
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|dea of the proof

Step 3 Split
Expand, use Fubini and Cauchy-Schwarz.

J eit(x)Af(X)W(X) dx = JJ' f:‘(z‘)ei(xéft(x]iz) d&w(x) dx
R
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= [ e [ e 2 g g
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1
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|dea of the proof

Step 3 Split
Expand, use Fubini and Cauchy-Schwarz.

J eit(x)Af(X)W(X) dx = JJ' f:‘(z‘)ei(xéft(x]iz) d&w(x) dx
R R?

JR (E)ler J i(xtt(x)62) W i ) ax de

NN |
T
(et L
<IFl by |
LZ((H\&\Z)M&) HE
A

<l g A

6/19



|dea of the proof

Step 4 Estimate A.

AZ:J
R

Bound the oscillatory integral inside

([ «) o)

o
R R2 2

2
J ei(x&—t(x)iz)w(x) dx| dé.
R

1

|&] 7
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|dea of the proof

Step 4 Estimate A.

AZ:J
R

Bound the oscillatory integral inside

([ «) o)

:J ” et (W) E- (L t)E2) (o e dy e
R R2

&2

2
J ei(x&—t(x)‘iz)w(x) dx| dé.
R

1

|&] 7

Lemma (Carleson)
Let a,b € (—2,2), and y € (0,1). Then

. d 1 -
J el(‘ﬁ*baz)ﬁ < Cy (|b|'Y } |(1| Y _|_|a|'Y 1) o
R

7/19



|dea of the proof

Step 4 Estimate A.

AZ:J
R

Bound the oscillatory integral inside

([ «) o)

= | ]]L et gy
R JJR2 £

2
J ei(x&—t(x)iz)w(x) dx| dé.
R

1

|&] 7

Lemma (Carleson)
Let a,b € (—2,2), and y =1/2. Then

J ei(a£+biz)d_§‘/ <cl la 2.
R |E]
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|dea of the proof

Step 4 Estimate A.
AZ:J ” (9=t )y () ey
R JJRr2

1ag

cc|] Dl g,
R [x—yl2

Use Holder and Hardy-Littlewood-Sobolev inequalities:

[ Il g,

R x —yl2

A2 < Clw] 4

2
4 < CITy g

14
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|dea of the proof

Step 4 Estimate A.
AZ:J ” e 0 (=) oy T ey
R JJRr2

&2
<C” WOIIWYIL g gy,
Rz [x —ylz

Use Holder and Hardy-Littlewood-Sobolev inequalities:

wy) .
A2 < Cllw J d < Cllw .
X H HL% R |X_y|% Y y X || ”L%(R]
Summing up:
itA it()a
fi@e | LB ¢ v L4(B,) I 4 ) 1T

Take the limit as 1 — oo to conclude. ]
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Carleson’s positive result

Theorem (Carleson, 1980, revised)

Let s > and f is in H¥(R), then

lim T, f(x) = f(x) for almost every x € R.
t—0

A glimpse at the proof.
By density of .(R) in H%(R), the local estimate holds in H%(R).

ENgI

T*:H*(R) —» L*(R) is bounded for s>
This gives pointwise convergence a.e. for (Tf)te[O,H' so

lim e'*Af(x) = f(x) for almost every x € R.
t—0
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Negative result: Dahlberg and Kenig

Let s < %. We look for f € H*(R) such that
lim e"2f(x) # f(x)

t—0

for every x € E, where E C R is a set of positive measure.
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Negative result: Dahlberg and Kenig

Let s < %. We look for f € H*(R) such that

lim e"2f(x) # f(x)

t—0

for every x € E, where E C (0,1) is a set of positive measure.
Let f € .#(0,1) ={f on (0,1), measurable, ,f(x) < co a.e.}.
We are happy with f such that for every x € E

limsup e*4f(x) = 0.
t—0
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Negative result: Dahlberg and Kenig

Bound for T* = lim T, f(x) = f(x) a.e.
t—0
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Negative result: Dahlberg and Kenig

Bound for T* = lim T, f(x) = f(x) a.e.
t—0

T lire 2 Il = lim Tef(x) # f(x)
t—0
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Negative result: Dahlberg and Kenig

Bound for T* = lim T, f(x) = f(x) a.e.

t—0

[T fl[Le 2 [IF]] lim Tef(x) # f(x)
t—0

lim Ty f(x) = f(x) a.e.

t—0

Weak bound for T*
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Negative result: Dahlberg and Kenig

Bound for T* = lim T, f(x) = f(x) a.e.
t—0

[T fl[Le 2 [IF]] lim Tef(x) # f(x)
t—0

=y

Weak bound for T* lim T f(x) = f(x) a.e.
t—0

Reduce to a countable family.

Remark
Let (T¢)ter, with I C R, then

sup |Tefl = sup [Tif].
tel telnQ

Let t = % Let (T,.)nen be the family of operators
Tof(x) = et f(x),  T*f(x) = sup [Tof(x)I.
neN
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limeo Tef(x) = f(x) =  Weak bound for T*

Notice that

lim T.f(x) =f(x) ae. = limsupT, f(x)<oo a.e.
n—oo n—oo

| Range of p Conditions

1961 Stein 1<p<2 limsupTaf(x) <ooonkE CX, u(E) >0,
(T ) commuting with G compact group,
(X, ) G-homogeneous

1966 Sawyer | 1 < p < oo ergodic theory setting

1970 NikiSin | 1 <p <oo T hyperlinear and continuous in measure

12/19



Let (X, ) and (Y, V) two o-finite measure spaces.

Definition (Continuity in measure)

A linear operator T: LP (X, u) — .# (Y, V) is continuous in measure if

v{yeY: Tfly) >A) =0 as |[fllpx) — 0.

13/19



Let (X, ) and (Y, V) two o-finite measure spaces.

Definition (Continuity in measure)

A linear operator T: LP (X, u) — .# (Y, V) is continuous in measure if

v{yeY: Tfly) >A) =0 as |[fllpx) — 0.

Theorem (Banach, 1926)

Let (T )nen be linear operators from LP (X, u) to .# (Y, V), continuous in
measure. If for every f € LP (X, 1)

limsup T, f(y) < oo a.e. = T* continuous in measure.
n—o0o
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Let (X, ) and (Y, V) two o-finite measure spaces.

Definition (Hyperlinearity)
An operator T: LP(X, u) — # (Y, V) is hyperlinear if for each fo € LP(X)
there exist a linear operator T¢, such that

(i) [Tgyfol =TTl v- a.e. and

(ii) [Teogl < [Tgl v- a.e. for all g € LP(X).

Example (Truncated maximal operator)

Given a sequence of operators (T, )n: LP (X, u) — #Z(Y, V), then

TN == sup  [T.f]
1<ngN

is hyperlinear.

Given f € LP(X), exists n¢: Y — {1,..., N} such that

TN Y) = [T ) TW)] -

14 /19



Niki$in's theorem

Take Y = [0, 1], and let v be the Lebesgue measure.

Theorem (Nikigin, 1970)
Let 1 < p <oo, and T*: LP(X, u) — [0, 1] such that

@ hyperlinear,

@ continuous in measure.
Then Ve > 0 there exists E. C [0, 1] with [Ec| > 1 — € such that

Tl aree ey Se Ifllee x)
with q = min{p, 2}.
Equivalently, there exists C. > 0 such that

C
[ty € Ee s THF(y) > M < 5 [l

for all A > 0.
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Apply Nikisin's theorem

Our maximal operator is hyperlinear and continuous in measure

T H (R, d&) — ([0, 1])
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Apply Nikisin's theorem

Our maximal operator is hyperlinear and continuous in measure

T L2 (R, (1 + &2)5dE) — .#(10,1])
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Apply Nikisin's theorem

Our maximal operator is hyperlinear and continuous in measure

T L2 (R, (1 + &2)5dE) — .#(10,1])

Apply Nikigin with p =2, X =R. There exists E C [0, 1] such that

HT*f||L2~°°(E) S ”f”LZ[R,(g)ZSdg) .

Equivalently, there exists C > 0 such that VA >0

) C
v € E = THly) > A < 55 Il
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Apply Nikisin's theorem

Our maximal operator is hyperlinear and continuous in measure

T L2 (R, (1 + &2)5dE) — .#(10,1])

Apply Nikigin with p =2, X =R. There exists E C [0, 1] such that

HT*f||L2~°°(E) S ”f”LZ[R,(g)ZSdg) .

Equivalently, there exists C > 0 such that VA >0
* C 2
fy € E 5 T(y) > M) < 35 Il
Take i, such that lim ||fn|1s=0, and for some Ag, E C {T*f, > Ao},
n—oo

0 < [El < HT*fn > Aol S [Ifnllrs ™\ O.
Contradiction #¢.
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Consider f € C2(—1,1).
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Consider f € C2(—1,1).

f(x) = f(nx)
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Consider f € C2(—1,1).

X

L1

ll” T ‘\\.

f(x) = f(nx) e2in®x



Consider f € C2(—1,1).

f(nx) e2in?x

f(x) = f(nx) e2in?x
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Consider f € C2(—1,1).

2
€]%% dE,

(&)

2 2s
(a—Zn)\ &+ 2n) dE

—h>

— nZsfl J'
R

5 1 1—4s R
4s5—1 n—oo
S )~ <n) — 0.
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Negative result

Let n(x) = 5 and consider

Toio fu(x) = €37 i (x) = —J fly)et'~ dy.
R
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Negative result

Let n(x) = 5 and consider

g(x) = Topyfn(x) = €07 f(x) = *J f(y)et™~ dy.
R
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Negative result

Let n(x) = 5 and consider

iy D Pt
G0x) == T fa () = €5 ful) = = | fly)et™ ay.
R
Ao := min|g(x)].

x€E
Since |g(x)| = |Tn(x)fn(x)‘ < T (x)

. 1

[El<Hx €E: T > Al S Ifnllfism) S s

Contradiction, since for s < %

1
O<|E|SW_>O as n — oQ.
ni-
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Theorem (Carleson, Dahlberg & Kenig)

for f € H3(R) if and only if s > 1

[
B

lim T, f(x) = f(x) for almost every x € R,
t—0
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