LATEX Ti*k*Z**poster**

Fourth order Schrödinger equation and Strichartz estimates: an extreme adventure Gianmarco Brocchi supervised by Diogo Oliveira e Silva University of Birmingham

Schrödinger where $\widehat{f}(\xi) := \int_{\mathbb{R}} e^{-i x \xi} f(x) dx$ is the Fourier Transform.

The evolution of a quantum system is described by the solution of the Schrödinger equation $u(t, x)$: $\sqrt{ }$ $i\partial_t u(t,x) = \partial_x^2 u(t,x)$ $x, t \in \mathbb{R}$ $\mathfrak{u}(0,\mathsf{x})=\mathfrak{u}_0(\mathsf{x})$ where $\mathfrak{i}^2=-1$. The solution \mathfrak{u} is $\mathfrak{u}(\mathsf{t},\mathsf{x}) = e^{-\mathrm{i} \mathsf{t} \mathfrak{d}_\mathsf{x}^2} \mathfrak{u}_0 =$ $\frac{1}{2\pi}\int_{\mathbb{R}}$ $e^{i(x\xi+t\xi^2)}\widehat{\mathfrak{u}}$ cover the contract of the cont $\delta(\xi)d\xi$

Schrödinger waves & Strichartz estimates

Figure 1: Erwin

These estimates are a fundamental tool in proving well-posedness of the Nonlinear Schrödinger Equation via fixed point theorems.
Figure 3: Robert Strichartz

Definition. An *extremizing sequence* is a sequence $\{f_n\}_{n\in\mathbb{N}}$ in the unit ball of L^2 such that

lim ⁿ→[∞] $\|e^{-it\partial_x^2}f_n\|_L$ q $_{t}^{q}(\mathbb{R})L_{x}^{p}$ $R_{\chi}(\mathbb{R}) \rightarrow \mathbb{C}.$

• This is a *dispersive* equation: its solutions spread out in space as time evolves.

To measure dispersion we integrate in time and space, estimating a mixed norm: $\|e^{-it\partial_x^2}u_0\|_L$ q $_{t}^{q}(\mathbb{R};L_{x}^{p})$ $\mathbb{P}_{\mathfrak{X}}(\mathbb{R})$) $\leqslant C \|\mathfrak{u}_0\|_L$ $2(\mathbb{R})$ (Strichartz)

and $2 \leqslant p \leqslant \infty$.

q

 $+$

1

=

1

2

 \overline{p}

where $\frac{2}{7}$

1

p

Restriction* theory & Even Trick

The space-time Fourier transform of u

1

q

•

1

2

•

1

6

•

1

4

Figure 2: Admissible (p, q) for [\(Strichartz\)](#page-0-0)

This time $supp(\rho) \subset Q = \{(\tau,\xi) : \tau = \xi^4\}$ and the support of the convolution $\rho * \rho * \rho$ is

 $\{(\tau,\xi)\in\mathbb{R}^2:3^3\tau\geqslant\xi^4\}.$

Extremizers

Remark 1*.* Extremizing sequences may not converge! **Definition.** An *extremizer* is a function $f \neq 0$ that realises equality in an inequality.

In fact, we can write $u(t, x)$ as the inverse space-time Fourier transform of a measure supported on P, like $\sigma := \delta(\tau - \xi^2).$

4 th order Schrödinger equation

Let's focus on the fourth order equation:

$$
i\partial_t u(t,x) + \partial_x^4 u(t,x) = 0, \quad x, t \in \mathbb{R}
$$
 (1)

The solution with initial datum $f \in L^2(\mathbb{R})$ is

$$
S(t)f:=e^{it\partial_x^4}f=\frac{1}{2\pi}\int_{\mathbb{R}}e^{i(x\xi+t\xi^4)}\widehat{f}(\xi)d\xi\,.
$$

We have the Strichartz estimate:

$$
\|\partial^{\frac{1}{3}}e^{it\partial^4}f\|_{L_{t,x}^6(\mathbb{R}\times\mathbb{R})}\leqslant S\,\|f\|_{L^2(\mathbb{R})}\,. \qquad \quad (\star)
$$

Where $\partial^{\frac{1}{3}}f(x):=\frac{1}{2\pi}$ 2π $\int e^{ix\xi} |\xi|^{\frac{1}{3}}$ $\hat{\vec{J}}\hat{\vec{f}}(\xi) d\xi$, and \vec{S} is the best constant.

Let C be the best constant in [\(Strichartz\)](#page-0-0), when $q = p = 6$. By a result in [\[1\]](#page-0-1), if $S > C$ then extremizers for (\star) exist.

Using the Even Trick with $w(\xi) := |\xi|^{\frac{2}{3}}$ and $\rho := \delta(\tau - \xi^4)$ we have

The support of the (3-fold) convolution $\sigma * \sigma * \sigma$ is

 $\overline{P+P+P} = \{(\tau,\xi) : 3\tau \geq \xi^2\}.$ This is because $supp(\sigma) \subset P$ and $supp(\sigma * \sigma) \subseteq \overline{supp(\sigma) + supp(\sigma)},$ and so

 $supp(\sigma * \sigma * \sigma) \subseteq \overline{P + P + P}.$

$$
\| \partial^{\frac13} e^{it\partial^4} f \|_{L^6_{t,x}(\mathbb{R} \times \mathbb{R})}^3 = (2\pi)^{-2} \| \widehat{f} \sqrt{w} \rho * \widehat{f} \sqrt{w} \rho * \widehat{f} \sqrt{w} \rho \|_{L^2_{t,x}}.
$$

Convolution of singular measures II

,

Moreover, its Radon-Nikodym derivative is radial and constant along branches of quartics $\tau = \alpha \xi^4$. Its value at a point depends only on the aperture α of the quartic through that point.

[1] Jin-Cheng Jiang, Benoit Pausader, and Shuanglin Shao. "The linear profile decomposition for the fourth order Schrödinger equation". In: *Journal of Differential Equations* 249.10 (2010), pp. 2521– 2547.

Figure 4: Support of the measure $\rho * \rho * \rho$

 2π S^6 \geqslant $\Vert f$ $\overline{\mathsf{w}}\mathsf{v} * \mathsf{f}$ $\overline{\mathsf{w}}\mathsf{v} * \mathsf{f}$ $\overline{{\mathcal W} \mathcal V} \|_1^2$ $\overline{L^2(\mathbb{R}^2)}$ $\|f\|_1^6$ $\mathrm{L}^2(\mathbb{R})$ $=c_0$ \int_0^1 −1 $g^2(t)dt$. where $\rm g(t) = (w v * w v * w v)(1, 3^{-3} t^{-4})$ and $c_0 =$ $2^{3}3^{\frac{3}{4}}\Gamma(\frac{5}{4})$ $\frac{5!}{\Gamma\left(\frac{5}{12}\right)^3}$. Writing g in the basis of Legendre polynomials $g = \sum c_n L_n$ gives $\|g\|_{L}^{2}$ $\frac{2}{L^2}$ = \sum $n\geqslant 0$ $c_{2n}^2 \geqslant c_0^2 + c_2^2 + c_4^2 \approx 0.306879 >$ π 6 $\frac{1}{\sqrt{2}}$ 3 . This lower bound for S is good enough to ensure that $S > C$.

$$
\mathcal{F}(u)(\tau,\xi)=\int_{\mathbb{R}\times\mathbb{R}}e^{-i(x\xi+\tau t)}u(t,x)dxdt
$$

is supported on the parabola $P = \{(\tau, \xi) \in \mathbb{R}^2, \tau = \xi^2\}.$

This operation is called *Fourier extension*. It is the adjoint operator of the *Fourier Restriction*.

The propagator $e^{-\mathrm{i} t\partial^2}$ is the Fourier extension (from P) of the measure $\widehat{\mathfrak{u}}$ cover the contract of the cont $\sum_{i=1}^{n}$

$$
u_0 \xrightarrow{\qquad \qquad} u(t,x)
$$

$$
u_0 \xrightarrow{\qquad \qquad} \widehat{u_0} \xrightarrow{\qquad \qquad} \widehat{u_0} \sigma \xrightarrow{\qquad \qquad} \mathcal{F}^{-1}(\widehat{u_0} \sigma) = u(t,x)
$$

 χ

Reduce the L⁶-norm to L²-norm Raise the norm to power 3 $\|u\|_{I}^{3}$ L_t^6 $_{t}^{6}(\mathbb{R})$ L $_{x}^{6}$ $\mathcal{L}_{\mathbf{x}}(\mathbb{R})=\||\mathbf{u}|^3\|_{\mathsf{L}}$ 2 $_{t}^{2}(\mathbb{R})L_{x}^{2}$ $\frac{2}{x}(\mathbb{R})$ then apply Plancherel using the space-time Fourier Transform: $(2\pi)^3 \| \mathfrak{u} \cdot \mathfrak{u} \cdot \mathfrak{u} \|_{\mathrm{L}^2(\mathbb{R}_t \times \mathbb{R}_x)} = \| \mathcal{F}(\mathfrak{u}) \ast \mathcal{F}(\mathfrak{u}) \ast \mathcal{F}(\mathfrak{u}) \|_{\mathrm{L}^2(\mathbb{R}_\tau \times \mathbb{R}_\xi)} = \| \widehat{\mathfrak{u}} \|$ $\frac{c}{c}$ δ σ∗ $\widehat{\mathfrak{u}}$ α ^U δ σ∗ $\widehat{\mathfrak{u}}$ α ^U $\mathbb{C}[\sigma] |_{\mathrm{L}^2(\mathbb{R}_\tau\times\mathbb{R}_\xi)}$. The problem reduces to estimating the L^2 -norm of (3-fold) convolutions of the weighted measure $\widehat{\mathfrak{u}}$ $\frac{c}{c}$ $\delta \sigma$ with itself.

Convolution of singular measures

Existence of Extremizers

Theorem. *Extremizers for the Strichartz inequality* (*) *exist.*

Consider $f(x) = e^{-x^4} \sqrt{w(x)}$. Then $\Vert f$ √ $\overline{\mathsf{w}}\mathsf{v} * \mathsf{f}$ √ $\overline{\mathsf{w}}\mathsf{v} * \mathsf{f}$ √ $\overline{{\bf \rm w}{\bf \rm v}}$ $\|_{\rm I}^2$ $L^2(\mathbb{R}^2) =$ $\sqrt{2}$ \mathbb{R}^2 $e^{-2\tau}(wv*w*w)v)^2(\xi,\tau)d\xi d\tau,$ We can also compute the $||f||_2$ explicitly. Changing variables and exploiting the

homogeneity we obtain

√ √ √

References