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1 Estimates for a O-problem

Sections 2, 3 up to Lemma 3.7 from [1]

A summary written by Gianmarco Brocchi
after Adrian Nachman, Idan Regev, and Daniel Tataru [1]

Abstract

We study solvability of the inhomogeneous problem L,u = f,
where Lgu := Ou + qii, and g € L?. The authors prove new pointwise
bounds for fractional integrals and pseudo-differential operators with
non-smooth symbols, as well as new estimates for pointwise multiplier
in negative Besov spaces.

1.1 Introduction

Consider the problem B
Ou+ qii = f. (1)

Indicate with L, the operator 0+ q-. We want to study the inverse operator
L. ', particularly the dependence on ¢ of the operator norm ||L_*||.

Let s € [0,1). The operator 9: H*(C) — H*1(C), as well as the multi-
plication by ¢ for ¢ € L*/*(C). When s = 1, ¢ € L? and we have

L, H(C) — H™2(C).
Our aim is to prove the following theorem.

Theorem 1. Given q¢ € L?, for every f € H™ there exists an UNIGUE
solution u = Lq_lf to the problem (1), obeying the following bound:

lull S WL AN -3
Moreover, the operator norm only depends on the L*-norm of q:

1L S Cllgll2)-

Solutions of equation (1) are related to the Scattering Transform used in
[1] to study the defocusing Davey-Stewartson II equation. New bounds on
0~! and on pointwise multiplication are needed to apply Inverse-Scattering
methods in this settings.



1.2 New bounds on fractional integrals

In the following, M f is the Hardy-Littlewood maximal function.
Theorem 2. Let a € (0,d), and p € (1,2]. For any f € LP(RY) we have:
a) [(=2)75 f(2)] S A OMF(0) + A M f(z) for any A > 0;

) [(=A)5 £(2) San (MFO)T (217@))

In order to apply the result to the Scattering transform, we rewrite point b)
using e®¢ f(y) as function of y in place of f. Then

) 1(=8)78 (/) ()] Sua (MF©) " (MF@) "

We are mainly interested in the case d = 2, a = 1.

Corollary 3. For q € L*(C) we have

) 157 e P @) < (i) (Mala))
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We use Theorem 2 to show L2-boundness for a class of pseudo-differential
operators (PDOs) with non-smooth symbols.

Theorem 4. Let o € [0,d), and a(z, &) be a symbol on R x R such that
i) a € Lis(R? x RY), and

i) (-0 3a(r,€)| g € 11

L
then the pseudo-differential operator

ol D@ = [ el 7€) o

is bounded on L?. We have the following bounds:
la(z, D) fll2 Saa l(—A¢)Za(z,€)

20| f| 2

d a d+a

la(z, D) f ()] Saa (Mf(2))7][(~A¢)2alz, )|

CfllzT for ace € R

d+a



1.3 Estimates on pointwise multiplier

By the Sobolev embedding H"(R?) < LP"(R%), with p* = 24 We embed
the dual space L&) (R%) — H"(R%). To show the continuity of the map

H"(RY) — H™"(RY)
U~ qu

it is enough to prove that it maps continuously L? into its dual. This follows
from the embeddings above and Holder’s inequality:

v S llallpllull e (2)

It gives ¢ € LP, with p = d/2r. In our case (C = R?) from (2) we have

lqull - S llgulley < llgllpllu

lqull g2y S Nall [l e gy

We can improve the above estimate, trading regularity with integrability, by
putting ¢ in a negative homogeneous Besov space. The norm of By is

1.f]

where Py is the Littlewood-Paley projector. We have the following theorem.

gor = 1251 Pef Lz

Theorem 5. Let r € [0,1) and max{2, %l} <p< %. Then

lqullzr-ray S Nlall g an 1l v gy

P,00

. d_op
Note: The space By, has the same scaling of L%, but negative regularity:.

Sketch of the proof. Write

qu = Z Py, ((Pk’2Q)(Pk3u)) )
(k’1,k2,k’3)€«4

where Py is the frequency projector to Ay = {2771 < [¢] < 2771}, and
A= {(1{31, ]{52,1{73) € Zg : Akl N (Ak2 + Ak3) # O}

Estimate ||qu|| ;- using Bernstein inequalities and Littlewood-Paley trichotomy.

[]



1.4 A O-problem

In order to prove Theorem 1, we have to show that, for ¢ € L?(C), L, is
invertible from Hz(C) to H~2(C). We recall two known bounds on §~:

Lemma 6. i) Let p € (1,2), and 1/p* =1/p—1/2. For h € L? we have
10~ Al o+ <p [Pl 2o (3)

ii) Let 1 <p; <2< pyand f € LP* N LP?, then
107" Flloo Sprpe 1o + N1 fll 2

The inverse operator L;l is well defined from L3 to L*.

Lemma 7. Let ¢ € L*(C). Then Lyu = f has an unique solution for f € Ls.
In particular, the operator L,: L* — L3 is invertible.

Idea. By the previous result, 07': Ls — L4 continuously. We write
L,=0(I+0"(q7))=:00B.

Then it is enough to show the existence of an unique solution to Bu = 97 f

4 . .. . . .
for f € Ls. In other words, if B: L* — L* is invertible, the unique solution
to Lyu = f is given by u = B~ f.

Proof. Since the operator 9~1(¢~) is compact from L* to itself, the operator
B := (I4+071(q")) is Fredholm, in particular B is injective iff is surjective. We
prove that B is injective. Let u € L* such that Bu = 0, i.e. Ou = —qu. Write
q = qn + qs, Where g, has small L?-norm to be determined. We can choose
v € L* such that (!) holds! in the following

O(uv) = (Ou)v + udv O (Ou + g, 1)V © (—qsu)v

where () holds since du = —qu. Then, using bound (3) on 97!, we have

luvlles < ello(u)]l g = ellasavll g < ellgsllzzlluvlls < 5 lluvlzs

where in the last inequality we chose ¢ with ||¢s|[zz < (2¢)7!. This shows

that, if B(ur) =0, uv = 0, so ker(B) = {0}. O
!Choose v as solution of the equation
ov = qngl/
u



The same result holds when we consider L;l on Sobolev spaces.
Lemma 8. For q € L*(C) the operator L,: Hz — H™2 is invertible and

17 Fll s < C@Ily

We now study the dependence of L;l and C(q) on g.

Lemma 9. The constant C(q) has a local Lipschitz dependence on q. Given
qo € L?, there exists € > 0 such that for every qi,q € B(qo,¢).

1L, = L < Clao)?lar — el 12
‘C(Ch) - C(CD)\ N C(CZO)QHCH - C]2HL2-

It remains to prove that the bound on C(g) is uniform for ¢ in a bounded
set in L%, Denote with

C(R) :=sup{C(q) : llqll2 < R},  C:Ry —[0,00].

The previous lemma, taking gy = 0, showed that C'(R) is finite for small R.
We shall prove that it is finite for all R > 0. Argue by contradiction: let

Ry :=inf{R e Ry : C(R) = +o0}.

Then limg_,g, C(R) = +o00, and there exists a sequence {¢,}nen C Bgr,
n—oo

such that [|gn||2 — Ro, with [|L '] == +o0. If we were able to extract a
convergent subsequence {g,, } we would have

L? 1 k _
qn, — ¢, and ||qu1|| =% ||Lq1|| < 400

leading to a contradiction, since Ry was minimal. Unfortunately, we cannot
hope to extract a subsequence converging in L?.

Symmetries: obstruction to compactness Translations and dilations

are symmetries of the problem that preserve the L?-norm. Indicate with
S\, y)a(z) = Ag(A(z — y)). One has

Clq) = C(S(\9)q).

To prove finiteness of C(R), it would suffices to show compactness up to
symmetries of {¢,} in a weaker topology.
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Definition 10. The sequence {q,} is compact up to symmetries if there exists
a sequence {(An, Yn) tnen such that {S(An, yn)qn} is compact.

Using Theorem 5, we can extend the result of Lemma 9 to a larger space:

.1
the Besov space Bx? 3

Lemma 11. Given qo € L?, there exists ¢ = ¢(C(qy)) > 0 such that for
¢, 02 €{q : [lg— QOHB_%,:; < €} we have

33

1L, — L' S Clao)*lar — el

1C(q1) — Cla2)| S Clao)?lar — g2l 1

Boo

g

Using profile decomposition we can split {¢,} in different pieces driven
by different symmetries and conclude the proof.
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Extras

Why is v bounded? Con81der the case v # 1, otherwise both v and 1/v
are clearly in L. Then v := ¢? YD) with g, € LP* N LP2. Then

LB e (07X 10~ an| (Nl + Nnllps)*
T I N

k>0 k>0 k>0

e

that is finite and it equals ell#nllp1Hlanllps |

The embedding L? — B3 If

B *(R?) — L(R?) (4)

then by duality
L2 < B,
Checking (4) is straightforward, using the following embedding;:
Lemma 12. If g <r, then Bg’p — Bﬁ’p.
Proof. This follows from the inclusion (¢ < (" for ¢ < r. O]

Note that L? = BY*. By Lemma 12, one has

1fllz2 = <ZHPI€fHL2> < D Pl
k

kEZ
<3 G |Rfl 5 = 111l 5
k

Ba 3

where in the last inequality we used Bernstein’s inequality:
153 | paqray < 2kd(%_%)”Pkf||LP(Rd)-

Proof of Lemma 9. Write the equation Lyu = f as

u+ qoi+ (¢ —qo)u = f, sothat u= L, ((go—q)u+f).



Estimate

lull 43 < 1Lgy (a0 = @@l + 1 Lg Fll 5
S Clo)ll(e0 — @ull -y + C(qo)llfllﬁ_%
S Clao)llgo = allzzllull 3 + Clao) I 1l -4

If |lgo — qllze < C(go)™", then
lull ;3 < 2C(q0) [ fIl -3 -
Under the above condition, we also have

1Ly f = Loy £ll g3 = 1 Lg, (90 — @)l 3
(as above) < Clqo)llgo — gllr2[|ull 3

S Cla0)*llao — all 2l £l -3

This implies that, for € > 0 small enough, for ¢, ¢ in a ball B(qo, €)

120" = Lot ms s < Clao)llaz = anllse.
O
Proof of Theorem 2. Use Littlewood-Paley decomposition and write
A d&
(-4 / of ()
Z 38 \“ (2m)
where | |
supp(¢;) C Aj = {¢ : 2771 < |¢] < 271} (5)

Jo +00
Fix jo € Z and split the sum Z = Z + Z = I+ II. For the first

j=—oc0  j=jo+1
term

r< 3 g / e, (€) F(€)de

]_700

S 3 ) [ 1€e Saa 201 f(0)

Patl {lel<2i+1}
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For the second term, denote with fV the inverse Fourier transform, then

e 3 ((H9) ) = 5

Jj=jo+1 |f‘°‘
Split again the sum in j and bound by 279*M f(z). Then the sum is bounded
+m . .
TS Y 279°Mf(x) S27°°Mf(x).
Jj=jo+1

The first statement follows by taking A = 277 while the second by optimising
over \. n
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