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1 Estimates for a ∂̄-problem

Sections 2, 3 up to Lemma 3.7 from [1]

A summary written by Gianmarco Brocchi
after Adrian Nachman, Idan Regev, and Daniel Tataru [1]

Abstract

We study solvability of the inhomogeneous problem Lqu = f ,
where Lqu := ∂̄u+ qū, and q ∈ L2. The authors prove new pointwise
bounds for fractional integrals and pseudo-differential operators with
non-smooth symbols, as well as new estimates for pointwise multiplier
in negative Besov spaces.

1.1 Introduction

Consider the problem
∂̄u+ qū = f. (1)

Indicate with Lq the operator ∂̄+ q ·̄ . We want to study the inverse operator
L−1
q , particularly the dependence on q of the operator norm ‖L−1

q ‖.
Let s ∈ [0, 1). The operator ∂̄ : Ḣs(C) → Ḣs−1(C), as well as the multi-

plication by q for q ∈ L1/s(C). When s = 1
2
, q ∈ L2 and we have

Lq : Ḣ
1
2 (C)→ Ḣ−

1
2 (C).

Our aim is to prove the following theorem.

Theorem 1. Given q ∈ L2, for every f ∈ Ḣ−
1
2 there exists an unique

solution u = L−1
q f to the problem (1), obeying the following bound:

‖u‖
Ḣ

1
2
. ‖L−1

q ‖ ‖f‖Ḣ− 1
2
.

Moreover, the operator norm only depends on the L2-norm of q:

‖L−1
q ‖ . C(‖q‖2).

Solutions of equation (1) are related to the Scattering Transform used in
[1] to study the defocusing Davey-Stewartson II equation. New bounds on
∂̄−1 and on pointwise multiplication are needed to apply Inverse-Scattering
methods in this settings.
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1.2 New bounds on fractional integrals

In the following, Mf is the Hardy-Littlewood maximal function.

Theorem 2. Let α ∈ (0, d), and p ∈ (1, 2]. For any f ∈ Lp(Rd) we have:

a) |(−∆)−
α
2 f(x)| .d,α λ

d−αMf̂(0) + λ−αMf(x) for any λ > 0;

b) |(−∆)−
α
2 f(x)| .d,α

(
Mf̂(0)

)α
d
(
Mf(x)

)1−α
d

.

In order to apply the result to the Scattering transform, we rewrite point b)
using eiyξf(y) as function of y in place of f . Then

b) |(−∆)−
α
2

(
eiyξf(y)

)
(x)| .d,α

(
Mf̂(ξ)

)α
d
(
Mf(x)

)1−α
d
.

We are mainly interested in the case d = 2, α = 1.

Corollary 3. For q ∈ L2(C) we have

b’) |∂̄−1(e−i(zk+zk)q(z))(x)| .
(
Mq̂(k)

) 1
2
(
Mq(x)

) 1
2

c) ‖∂̄−1(e−i(zk+zk)q(z))‖L4 . ‖q‖
1
2

L2

(
Mq̂(k)

) 1
2
.

We use Theorem 2 to show L2-boundness for a class of pseudo-differential
operators (PDOs) with non-smooth symbols.

Theorem 4. Let α ∈ [0, d), and a(x, ξ) be a symbol on Rd × Rd such that

i) a ∈ L
2d
d−α (Rd × Rd), and

ii) ‖(−∆ξ)
α
2 a(x, ξ)‖

L
2d
d+α
ξ

∈ L
2d
d−α
x

then the pseudo-differential operator

a(x,D)f(x) :=

ˆ
Rd
eixξa(x, ξ)f̂(ξ)

dξ

(2π)d

is bounded on L2. We have the following bounds:

‖a(x,D)f‖L2 .α,d ‖(−∆ξ)
α
2 a(x, ξ)‖

L
2d
d−α
x L

2d
d+α
ξ

‖f‖L2

|a(x,D)f(x)| .α,d (Mf(x))
α
d ‖(−∆ξ)

α
2 a(x, ·)‖

L
2d
d+α
ξ

‖f‖1−α
d

L2 for a.e. x ∈ Rd.
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1.3 Estimates on pointwise multiplier

By the Sobolev embedding Ḣr(Rd) ↪→ Lp
∗
(Rd), with p∗ = 2d

d−2r
. We embed

the dual space L(p∗)′(Rd) ↪→ Ḣ−r(Rd). To show the continuity of the map

Ḣr(Rd)→ Ḣ−r(Rd)

u 7→ qu

it is enough to prove that it maps continuously Lp
∗

into its dual. This follows
from the embeddings above and Hölder’s inequality:

‖qu‖Ḣ−r . ‖qu‖(p∗)′ ≤ ‖q‖p‖u‖p∗ . ‖q‖p‖u‖Ḣr . (2)

It gives q ∈ Lp, with p = d/2r. In our case (C ∼= R2) from (2) we have

‖qu‖Ḣ−r(R2) . ‖q‖L 1
r
‖u‖Ḣr(R2).

We can improve the above estimate, trading regularity with integrability, by
putting q in a negative homogeneous Besov space. The norm of Ḃs,p

q is

‖f‖Ḃs,pq =
∥∥2sk‖Pkf‖Lp

∥∥
`q

where Pk is the Littlewood-Paley projector. We have the following theorem.

Theorem 5. Let r ∈ [0, 1) and max
{

2, d
r

}
≤ p < d

2r
. Then

‖qu‖Ḣ−r(Rd) . ‖q‖
Ḃ
d
p−2r

p,∞
‖u‖Ḣr(Rd).

Note: The space Ḃ
d
p
−2r

p,q has the same scaling of L
d
2r , but negative regularity.

Sketch of the proof. Write

qu =
∑

(k1,k2,k3)∈A

Pk1 ((Pk2q)(Pk3u)) ,

where Pk is the frequency projector to Ak = {2j−1 < |ξ| < 2j+1}, and

A = {(k1, k2, k3) ∈ Z3 : Ak1 ∩ (Ak2 + Ak3) 6= 0}.

Estimate ‖qu‖Ḣ−r using Bernstein inequalities and Littlewood-Paley trichotomy.
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1.4 A ∂̄-problem

In order to prove Theorem 1, we have to show that, for q ∈ L2(C), Lq is

invertible from Ḣ
1
2 (C) to Ḣ−

1
2 (C). We recall two known bounds on ∂̄−1:

Lemma 6. i) Let p ∈ (1, 2), and 1/p∗ = 1/p− 1/2. For h ∈ Lp we have

‖∂̄−1h‖Lp∗ .p ‖h‖Lp (3)

ii) Let 1 < p1 < 2 < p2 and f ∈ Lp1 ∩ Lp2, then

‖∂̄−1f‖∞ .p1,p2 ‖f‖Lp1 + ‖f‖Lp2 .

The inverse operator L−1
q is well defined from L

4
3 to L4.

Lemma 7. Let q ∈ L2(C). Then Lqu = f has an unique solution for f ∈ L 4
3 .

In particular, the operator Lq : L4 → L
4
3 is invertible.

Idea. By the previous result, ∂̄−1 : L
4
3 → L4 continuously. We write

Lq = ∂̄(I + ∂̄−1(q ·̄ )) =: ∂̄ ◦ B.

Then it is enough to show the existence of an unique solution to Bu = ∂̄−1f
for f ∈ L 4

3 . In other words, if B : L4 → L4 is invertible, the unique solution
to Lqu = f is given by u = B−1∂̄−1f .

Proof. Since the operator ∂̄−1(q ·̄ ) is compact from L4 to itself, the operator
B := (I+ ∂̄−1(q ·̄ )) is Fredholm, in particular B is injective iff is surjective.We
prove that B is injective. Let u ∈ L4 such that Bu = 0, i.e. ∂̄u = −qū. Write
q = qn + qs, where qs has small L2-norm to be determined. We can choose
ν ∈ L∞ such that (!) holds1 in the following

∂̄(uν) = (∂̄u)ν + u∂̄ν
(!)
= (∂̄u+ qnū)ν

(∗)
= (−qsū)ν

where (∗) holds since ∂̄u = −qū. Then, using bound (3) on ∂̄−1, we have

‖uν‖L4 ≤ c‖∂̄(uν)‖
L

4
3

= c‖qsūν‖L 4
3
≤ c‖qs‖L2‖uν‖L4 ≤ 1

2
‖uν‖L4

where in the last inequality we chose qs with ‖qs‖L2 ≤ (2c)−1. This shows
that, if B(uν) = 0, uν = 0, so ker(B) = {0}.

1Choose ν as solution of the equation

∂̄ν = qn
ū

u
ν.
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The same result holds when we consider L−1
q on Sobolev spaces.

Lemma 8. For q ∈ L2(C) the operator Lq : Ḣ
1
2 → Ḣ−

1
2 is invertible and

‖L−1
q f‖

Ḣ
1
2
≤ C(q)‖f‖

Ḣ−
1
2
.

We now study the dependence of L−1
q and C(q) on q.

Lemma 9. The constant C(q) has a local Lipschitz dependence on q. Given
q0 ∈ L2, there exists ε > 0 such that for every q1, q2 ∈ B(q0, ε).

‖L−1
q1
− L−1

q2
‖ . C(q0)2‖q1 − q2‖L2

|C(q1)− C(q2)| . C(q0)2‖q1 − q2‖L2 .

It remains to prove that the bound on C(q) is uniform for q in a bounded
set in L2. Denote with

C(R) := sup{C(q) : ‖q‖2 ≤ R}, C : R+ → [0,∞].

The previous lemma, taking q0 = 0, showed that C(R) is finite for small R.
We shall prove that it is finite for all R > 0. Argue by contradiction: let

R0 := inf{R ∈ R+ : C(R) = +∞}.

Then limR→R0 C(R) = +∞, and there exists a sequence {qn}n∈N ⊂ BR0

such that ‖qn‖2 → R0, with ‖L−1
qn ‖

n→∞−→ +∞. If we were able to extract a
convergent subsequence {qnk} we would have

qnk
L2

→ q, and ‖L−1
qk
‖ k→∞−→ ‖L−1

q ‖ < +∞

leading to a contradiction, since R0 was minimal. Unfortunately, we cannot
hope to extract a subsequence converging in L2.

Symmetries: obstruction to compactness Translations and dilations
are symmetries of the problem that preserve the L2-norm. Indicate with
S(λ, y)q(x) = λq(λ(x− y)). One has

C(q) = C(S(λ, y)q).

To prove finiteness of C(R), it would suffices to show compactness up to
symmetries of {qn} in a weaker topology.
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Definition 10. The sequence {qn} is compact up to symmetries if there exists
a sequence {(λn, yn)}n∈N such that {S(λn, yn)qn} is compact.

Using Theorem 5, we can extend the result of Lemma 9 to a larger space:

the Besov space Ḃ
− 1

3
,3

∞ .

Lemma 11. Given q0 ∈ L2, there exists ε = ε(C(q0)) > 0 such that for
q1, q2 ∈ {q : ‖q − q0‖

B
− 1

3 ,3∞
< ε} we have

‖L−1
q1
− L−1

q2
‖ . C(q0)2‖q1 − q2‖

B
− 1

3 ,3∞

|C(q1)− C(q2)| . C(q0)2‖q1 − q2‖
B
− 1

3 ,3∞
.

Using profile decomposition we can split {qn} in different pieces driven
by different symmetries and conclude the proof.
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Extras

Why is ν bounded? Consider the case ν 6= 1, otherwise both ν and 1/ν
are clearly in L∞. Then ν := e∂̄

−1(qn
ū
u

), with qn ∈ Lp1 ∩ Lp2 . Then

‖e∂̄−1(qn
ū
u

)‖∞ ∼=

∥∥∥∥∥∑
k≥0

(∂̄−1(qn))k

k!

∥∥∥∥∥
∞

≤
∑
k≥0

‖∂̄−1qn‖k∞
k!

.p1,p2

∑
k≥0

(‖qn‖p1 + ‖qn‖p2)k

k!

that is finite and it equals e‖qn‖p1+‖qn‖p2 .

The embedding L2 ↪→ Ḃ
−1

3
,3

∞ If

Ḃ
1
3
, 3
2

1 (R2) ↪→ L2(R2) (4)

then by duality

L2 ↪→ Ḃ
− 1

3
,3

∞ .

Checking (4) is straightforward, using the following embedding:

Lemma 12. If q ≤ r, then Ḃs,p
q ↪→ Ḃs,p

r .

Proof. This follows from the inclusion `q ↪→ `r for q ≤ r.

Note that L2 ∼= Ḃ0,2
2 . By Lemma 12, one has

‖f‖L2 =

(∑
k∈Z

‖Pkf‖2
L2

) 1
2

≤
∑
k

‖Pkf‖L2

≤
∑
k

22k( 2
3
− 1

2)‖Pkf‖L 3
2

=: ‖f‖
Ḃ

1
3 ,

3
2

1

where in the last inequality we used Bernstein’s inequality:

‖P 2
k f‖Lq(Rd) ≤ 2kd( 1

p
− 1
q

)‖Pkf‖Lp(Rd).

Proof of Lemma 9. Write the equation Lqu = f as

∂̄u+ q0ū+ (q − q0)ū = f, so that u = L−1
q0

((q0 − q)ū+ f) .
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Estimate

‖u‖
Ḣ

1
2
≤ ‖L−1

q0
((q0 − q)ū)‖

Ḣ
1
2

+ ‖L−1
q0
f‖

Ḣ
1
2

. C(q0)‖(q0 − q)ū‖Ḣ− 1
2

+ C(q0)‖f‖
Ḣ−

1
2

. C(q0)‖q0 − q‖L2‖u‖
Ḣ

1
2

+ C(q0)‖f‖
Ḣ−

1
2

If ‖q0 − q‖L2 � C(q0)−1, then

‖u‖
Ḣ

1
2
. 2C(q0)‖f‖

Ḣ−
1
2
.

Under the above condition, we also have

‖L−1
q f − L−1

q0
f‖

Ḣ
1
2

= ‖L−1
q0

((q0 − q)ū)‖
Ḣ

1
2

(as above) . C(q0)‖q0 − q‖L2‖u‖
Ḣ

1
2

. C(q0)2‖q0 − q‖L2‖f‖
Ḣ−

1
2
.

This implies that, for ε > 0 small enough, for q1, q2 in a ball B(q0, ε)

‖L−1
q1
− L−1

q2
‖
Ḣ−

1
2→Ḣ

1
2
≤ C(q0)2‖q2 − q1‖L2 .

Proof of Theorem 2. Use Littlewood-Paley decomposition and write

(−∆)−
α
2 f(x) =

∑
j∈Z

ˆ
Rd

eixξ

|ξ|α
ψj(ξ)f̂(ξ)

dξ

(2π)d

where
supp(ψj) ⊆ Aj := {ξ : 2j−1 < |ξ| < 2j+1}. (5)

Fix j0 ∈ Z and split the sum
∑

=

j0∑
j=−∞

+
+∞∑

j=j0+1

= I + II. For the first

term

I .
j0∑

j=−∞

2(1−j)α
ˆ
Rd
eixξψj(ξ)f̂(ξ)dξ

.d,α

j0∑
j=−∞

2j(d−α)

ˆ
{|ξ|<2j+1}

|f̂(ξ)|dξ .d,α 2j0(d−α)Mf̂(0).
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For the second term, denote with f∨ the inverse Fourier transform, then

II ∼
+∞∑

j=j0+1

((ψj(ξ)
|ξ|α

)∨
∗ f
)

(x) = (Kj ∗ f)(x)

Split again the sum in j and bound by 2−jαMf(x). Then the sum is bounded

II .
+∞∑

j=j0+1

2−jαMf(x) . 2−j0αMf(x).

The first statement follows by taking λ = 2−j0 , while the second by optimising
over λ.
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