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1 Controlling rough paths (part II)

after M. Gubinelli [1]
A summary written by Gianmarco Brocchi

Abstract

We study the problem of existence, uniqueness and continuity of
solutions of differential equations driven by irregular paths with Hölder
exponent greater than 1

3 (e.g. samples of Brownian motion). We will
also show how this setting relates to known stochastic integrals.

1.1 Introduction

Consider an interval J ⊆ R and a γ-Hölder path X in Cγ(J, V ) taking values
in a finite dimensional vector space V . Let ϕ be a function in C(V, V ⊗ V ?).
We are interested in studying the controlled differential equation

dY µ
t = ϕ(Yt)

µ
ν dX

ν
t Yt0 = y, t0 ∈ J (1)

where µ, ν are vector indices1. A solution to (1) is, formally, a continuous
path Y ∈ Cγ(J, V ) such that

Y µ
t = y +

ˆ t

t0

ϕ(Yu)
µ
ν dX

ν
u (2)

for every t ∈ J . When γ > 1
2

appropriate conditions on ϕ allow one to
consider the integral in (2) as a Young integral. When 1

2
≥ γ > 1

3
the

integral must be understood as integral of a weakly-controlled path, as in
part I of [1].
In the latter case, given a rough path (X,X2), the solution of the differential
equation (1) is a weakly-controlled path in Dγ,2γX (J, V ).

To prove these results we show that the solution map

Y 7→ G(Y )t = Yt0 +

ˆ t

t0

ϕ(Yu)
µ
ν dX

ν
u (3)

is locally a strict contraction on a subset of the Banach space Cγ(J, V )
of Hölder continuous functions on J with values in a finite vector space

1We will use Einstein notation omitting summation over repeated indices.
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V . Therefore (3) has an unique fixed-point. Moreover, the Itô map Y =
F (y, ϕ,X) which sends the data of the differential equation to the solution
is Lipschitz continuous (on compact intervals J) in each argument.

The following table summarizes the sufficient hypotheses and our main
results in the two cases. The parameter δ is assumed to be in (0, 1).

γ > 1/2 1/2 ≥ γ > 1/3

Integral in (2) Young integral Integral based on (X,X2)

Solution Y ∈ Cγ Y ∈ Dγ,2γX

Conditions for

Existence

ϕ ∈ Cδ(V, V ⊗ V ?),

(1 + δ)γ > 1

ϕ ∈ Cδ(V, V ),

(2 + δ)γ > 1

Stronger condition for

Uniqueness
ϕ ∈ C1,δ(V, V ⊗ V ?) ϕ ∈ C2,δ(V, V )

1.2 Preliminaries

We indicate with ΩC the set of bounded functions on R2. For this set of
functions we can introduce the norm:

‖A‖γ := sup
s,t∈R2

|Ast|
|t− s|γ

.

The space ΩCγ is the subspace of ΩC such that ‖A‖γ <∞.
For a path X on I ⊂ R, the map (δX)st := Xt −Xs maps Cγ to ΩCγ.
Lemma 1. Let I = [a, b] and γ, η ∈ R. If γ < η then

‖ · ‖γ,I ≤ |b− a|η−γ‖ · ‖η,I
i.e. the inclusion ΩCη(I) ↪→ ΩCγ(I) is continuous.

Lemma 2. Let I, J be two adjacent intervals on R and let X be a path in
Cγ(I, V ) and in Cγ(J, V ). If NX ∈ Cγ1,γ2(I ∪ J, V ), with γ1 + γ2 = γ, then

‖X‖γ,I∪J ≤ 2(‖X‖γ,I + ‖X‖γ,J) + ‖NX‖γ1,γ2,I∪J
and X ∈ Cγ(I ∪ J, V ).
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1.3 Existence and uniqueness when γ > 1
2

Proposition 3 (Existence). If γ > 1/2 and ϕ ∈ Cδ(V, V ⊗ V ?), δ ∈ (0, 1)
with (1 + δ)γ > 1, there exists a path Y ∈ Cγ(J, V ) that is a solution of the
differential equation (1). (The integral in (2) must be understood as Young
integral.)

Sketch of the proof. Start with an interval I = [t0, t0 + T ] ⊆ J for T > 0. Under
the condition (1+δ)γ > 1, G maps Cγ(I, V ) to itself. Using decomposition of path
in Cγ we can fix a compact, convex subset QI which is invariant under G. It can
be shown that the map G is continuous on QI so, by the Leray-Schauder-Tychnoff
theorem, there exists a fixed-point for G in QI . We conclude by covering J with a
collection of intervals I of small length and patching together local solutions using
Lemma 2.

Proposition 4 (Uniqueness). If γ > 1/2, ϕ ∈ C1,δ(V, V⊗V ?), δ ∈ (0, 1) with
(1 + δ)γ > 1, there exists a unique solution Y in Cγ(J, V ) of the differential
equation (1). The Itô map F (y, ϕ,X) is Lipschitz continuous in the following
sense:

‖F (y, ϕ,X)− F (ỹ, ϕ̃, X̃)‖γ,J ≤M(‖X − X̃‖γ,J + ‖ϕ− ϕ̃‖1,δ + |y − ỹ|)

with a constant M depending only on ‖X‖γ,J , ‖X̃‖γ,J , ‖ϕ‖1,δ, ‖ϕ̃‖1,δ and J .

Idea of the proof. For T < 1 we can fix an invariant compact set QI as in the
previous Proposition. For T small enough G can be shown to be locally a strict
contraction on QI , this means we can take α = α(T ) < 1 such that

‖G(Y )−G(Ỹ )‖γ,I ≤ α‖Y − Ỹ ‖γ,I

when Y, Ỹ ∈ QI and X = X̃ . As a strict contraction G has a unique fixed-point
on QI . Uniqueness for the whole J follows by a covering argument.

1.4 Existence and uniqueness when 1
2 ≥ γ > 1

3

Proposition 5 (Existence). If γ > 1/3, ϕ ∈ C1,δ(V, V ), δ ∈ (0, 1) with
(2 + δ)γ > 1, there exists a weakly-controlled path Y in Dγ,2γX (J, V ) solution
of the differential equation (1). (The integral in (2) must be understood as
based on the pair (X,X2).)
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Sketch of the proof. The path ϕ(Y ) belongs toDγ,(1+δ)γX (J, V ),. Integration against
X makes sense for (2+δ)γ > 1. We claim, similarly to Proposition 3, that G maps
Dγ,2γX (I, V ) to itself. Using the following decomposition for Z = G(Y );

δZµ = Z ′νδX
ν +RµZ = ϕ(Y )µνδX

ν + ∂κϕ(Y )µνY
′κ
ρ X2,νρ +QµZ

we can bound the norm ‖Z‖∗,I = ‖Z‖DX(γ,2γ,I). One can fix a time T∗ < 1 such
that for all T < T∗ the set Q′I is invariant under G.

Then there exists a solution in Dγ,2γX (I, V ) for any I ⊆ J small enough. Consider
a covering of J with suitable intervals I1, . . . , In; patching together local solutions
we get a global one Y defined on ∪iIi = J . Again, one can use Lemma 2 iteratively
to prove that Y belongs to Dγ,2γX (J, V ).

Proposition 6 (Uniqueness). If γ > 1/3, ϕ ∈ C2,δ(V, V ), δ ∈ (0, 1) with
(2 + δ)γ > 1, there exists a unique solution Y ∈ Dγ,2γX (J, V ) of the differ-
ential equation (1), where the integral in (2) is based on the couple (X,X2).
Moreover, the Itô map F (y, ϕ,X,X2) is Lipschitz continuous.

Idea of the proof. As in Proposition 4 we decompose J in smaller intervals in order
to bound

εZ,I = ‖ϕ(Y )− ϕ̃(Ỹ )‖∞,I + ‖ϕ(Y )− ϕ̃(Ỹ )‖γ,I + ‖RZ −RZ̃‖2γ,I .

For I small enough we can find an invariant domain for G. Choosing T < 1 small
enough there exists an α < 1 such that

‖G(Y )−G(Ỹ )‖∗,I ≤ α ‖Y − Ỹ ‖∗,I .

Thus G is a strict contraction in Dγ,2γX (I, V ) and has a unique fixed-point. Patch-
ing together local solutions we get a global one defined on J , that belongs to
Dγ,2γX (J, V ).

1.5 Some probability

Let (Ω,F ,P) be a probability space and letX be a standard Brownian motion
defined on it taking values in V = Rn. For a fixed γ < 1

2
and a bounded

interval I, the process X is almost surely locally γ-Hölder continuous, thus
we can choose a version of X in Cγ(I, V ).

Via stochastic integration we can define

W µν
Itô,st :=

ˆ t

s

(Xµ
u −Xµ

s ) d̂Xν
u
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in the sense of the Itô integral (indicated by the hat in d̂Xν
u) with respect to

the filtration Ft = σ(Xs ; s ≤ t). For any s, u, t ∈ R we have:

W µν
Itô,st −W

µν
Itô,su −W

µν
Itô,ut = (Xµ

u −Xµ
s )(Xν

t −Xν
u) (4)

and thus we can consider a continuous version X2
Itô of the process (s, t) 7→

WItô,st such that (4) holds almost surely for all s, u, t ∈ R.
Using a variation of an argument introduced in [2],[3] to control Hölder-like
seminorms of continuous stochastic processes with a corresponding integral
norm, it is possible to show that X2

Itô belongs to ΩC2γ(I, V ⊗ V ).
On the other hand, the Stratonovich integral is given by

X2,µν
Strat.,st :=

ˆ t

s

(Xµ
u −Xµ

s ) ◦ d̂Xν
u .

From stochastic integration we know that

X2,µν
Strat.,st = X2,µν

Itô,st +
gµν

2
(t− s) , where gµν =

{
1 if µ = ν

0 otherwise.

Also in this case we can choose a continuous version of X2
Strat.,st in ΩC2γ such

that (4) holds.
We have introduced the following integrals so far:

Itô integral Integral based on (X,X2
Itô)

δIµItô,st =

ˆ t

s

ϕ(Xu)
µ
ν d̂X

ν
u δIµrough,st =

ˆ t

s

ϕ(Xu)
µ
ν dX

ν
u

Stratonovich integral Integral based on (X,X2
Strat.)

δIµStrat.,st =

ˆ t

s

ϕ(Xu)
µ
ν ◦ d̂Xν

u δJµst =

ˆ t

s

ϕ(Xu)
µ
ν dX

ν
u

The connection between them is pointed out by following theorem:

Theorem 7. Let ϕ ∈ C1,δ(V, V ⊗ V ?) with (1 + δ)γ > 1 and γ < 1
2
. Then

each stochastic integral in the left column of the table has a continuous version
which almost surely coincides with the integral on the right. Moreover, by the
relationship between Itô and Stratonovich integration:

δIµItô +
gκν

2

ˆ t

s

∂κϕ(Xu)
µ
ν du = δIµStrat. ,

7



we have that

δIµrough,st +
gκν

2

ˆ t

s

∂κϕ(Xu)
µ
ν du = δJµst.
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