Decoupling and Polynomial Methods in Analysis

Summer School[∗] , Kopp Jul 21th – Jul 26th 2013

Organizers:

Shaoming Guo (Indinana University at Bloomington) Diogo Oliveira e Silva, Universität Bonn Christoph Thiele, Universität Bonn

[∗] supported by Hausdorff Center for Mathematics, Bonn

Contents

1 Behaviour of the Schrödinger evolution for initial data near $H^\frac{1}{4}$ 4

after L. Carleson $\lceil 1 \rceil$ and after B. Dahlberg, and C. Kenig $\lceil 2 \rceil$ A summary written by Gianmarco Brocchi

Abstract

We study pointwise convergence of solutions of the Schrödinger equation on $\mathbb R$ as $t \to 0$. For initial data in the Sobolev space $H^s(\mathbb R)$, Carleson showed that we have almost everywhere convergence when $s\geq \frac{1}{4}$ $\frac{1}{4}$. Dahlberg and Kenig proved that this result is also sharp.

1.1 Introduction

We consider the initial value problem for the Schrödinger equation in \mathbb{R} :

$$
\begin{cases}\ni\partial_t\Psi(x,t) + \Delta\Psi(x,t) = 0\\ \Psi(x,0) = f(x)\end{cases}
$$

The solution to this problem is given by

$$
e^{it\Delta}f(x) = \int_{\mathbb{R}} e^{ix\xi + it\xi^2} \hat{f}(\xi) \frac{d\xi}{2\pi}.
$$

The operator $e^{it\Delta}$ is bounded on L^2 , so it is continuous; in particular $\lim_{t\to 0} e^{it\Delta} f = f$ in L^2 , or equivalently

$$
\lim_{t \to 0} \|e^{it\Delta} f - f\|_{L^2} = 0.
$$

But what can we say about the pointwise limit of $e^{it\Delta} f(x)$ as $t \to 0$? For which class of initial data does it hold that

$$
\lim_{t \to 0} e^{it\Delta} f(x) = f(x) \quad \text{ for almost every } x \in \mathbb{R}?
$$

In the 1980's Lennart Carleson gave an answer when the initial data f is compactly supported and α -Hölder continuous with $\alpha > \frac{1}{4}$. Here we state and prove this result for f belonging to the Sobolev space $H^s(\mathbb{R})$ with $s \geq \frac{1}{4}$ $\frac{1}{4}$.

Theorem 1 (Carleson). If $f \in H^s(\mathbb{R})$ with $s \geq \frac{1}{4}$ $rac{1}{4}$ then

$$
\lim_{t \to 0} e^{it\Delta} f(x) = f(x) \quad \text{for almost every } x \in \mathbb{R}.
$$

The key of the proof is the bound of the maximal Schrödinger operator for some $p > 1$

$$
\left\| \sup_{t>0} \left| e^{it\Delta} f \right| \right\|_{L^p} \le C \|f\|_{H^s(\mathbb{R})}.
$$

One year later, Dahlberg and Kenig proved that the above result is sharp. They proved the following

Theorem 2 (Dahlberg & Kenig). Let $s \in [0, \frac{1}{4}]$ $\frac{1}{4}$). There exists a function $f \in H^s(\mathbb{R})$ and a set E with positive measure such that, for every $x \in E$

$$
\limsup_{t \to 0} |e^{it\Delta} f(x)| = +\infty.
$$

1.2 Positive result

In order to prove Theorem 1, we will use an a priori estimate for the maximal operator $\sup_{t>0} |e^{it\Delta} f|$.

Proposition 3 (A priori estimate). Let $f \in \mathcal{S}(\mathbb{R})$ Schwartz function. Then there exists a constant $C > 0$ such that

$$
\left\| \sup_{t>0} |e^{it\Delta} f| \right\|_{L^{4}(\mathbb{R})} \leq C \|f\|_{H^{\frac{1}{4}}(\mathbb{R})}.
$$
 (1)

Proof. First we aim to prove a local estimate, namely

$$
\left\|\sup_{t>0}\lvert e^{it\Delta}f\rvert\right\|_{L^4([-R,R])}\leq C\|f\|_{H^{\frac{1}{4}}(\mathbb{R})}
$$

where the constant C is independent of R . The estimate (1) will follow by taking the limit as $R \to \infty$. We split the proof in steps.

Step 1 We would like to get rid of the supremum. Fix $x \in \mathbb{R}$. There exists a time $t(x) > 0$ such that

$$
|e^{it(x)\Delta}f(x)| \ge \frac{1}{2} \sup_{t>0} |e^{it\Delta}f(x)|.
$$

Step 2 Then we use *duality*. There exists a function $w \in L^{\frac{4}{3}} \cong (L^4)'$, with $||w||_{\frac{4}{3}} = 1$, with supp $(w) \subset [-R, R]$, such that

$$
||e^{it\Delta}f||_{L^4([-R,R])} = \int_{\mathbb{R}} e^{it(x)\Delta} f(x)w(x)dx.
$$

Step 3 Expand the integral, use $Fubini¹$ and Cauchy-Schwarz.

$$
\int_{\mathbb{R}} e^{it(x)\Delta} f(x)w(x) = \iint_{\mathbb{R}^2} \hat{f}(\xi) e^{2\pi i (x\xi - 2\pi t(x)\xi^2)} d\xi w(x) dx
$$
\n
$$
= \int_{\mathbb{R}} \hat{f}(\xi) |\xi|^{\frac{1}{4}} \int_{\mathbb{R}} e^{2\pi i (x\xi - 2\pi t(x)\xi^2)} \frac{w(x)}{|\xi|^{\frac{1}{4}}} dx d\xi
$$
\n
$$
\leq \left(\int_{\mathbb{R}} |\hat{f}(\xi)|^2 |\xi|^{\frac{1}{2}} d\xi \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}} \left| \int_{\mathbb{R}} e^{2\pi i (x\xi - 2\pi t(x)\xi^2)} \frac{w(x)}{|\xi|^{\frac{1}{4}}} dx \right|^2 d\xi \right)^{\frac{1}{2}} = I \cdot II.
$$

Step 4 We bound the two factors separately.

$$
I \le \left(\int_{\mathbb{R}} |\hat{f}(\xi)|^2 (1+|\xi|^2)^{\frac{1}{4}} d\xi\right)^{\frac{1}{2}} = \|f\|_{H^{\frac{1}{4}}(\mathbb{R})}
$$

.

 \Box

For II, a careful estimate of the oscillatory integral inside leads to

$$
II2 \le C \int_{\mathbb{R}^2} \frac{w(x)w(y)}{|x-y|^{\frac{1}{2}}} dx dy.
$$

Use Hölder and Hardy-Littlewood-Sobolev inequalities to conclude

$$
\mathrm{II}^2 \leq C \|w\|_{L^\frac{4}{3}} \left\| \int_\mathbb{R} \frac{w(y)}{|x-y|^\frac{1}{2}} dy \right\|_{L^4} \leq C \|w\|_{L^\frac{4}{3}(\mathbb{R})}^2.
$$

To sum up:

$$
\bigg\|\sup_{t>0} |e^{it\Delta}f|\ \bigg\|_{L^4([-R,R])}\leq 2\,\big\|e^{it(\,\cdot\,)\Delta}f\big\|_{L^4([-R,R])}\leq C\|w\|_{L^\frac43(\mathbb{R})}\|f\|_{H^\frac14(\mathbb{R})}.
$$

By taking the limit as $R \to \infty$, we conclude.

Idea of the proof of Theorem 1. By density of Schwartz functions $\mathcal{S}(\mathbb{R})$ in the Sobolev space $H^{\frac{1}{4}}(\mathbb{R})$, the bound (1) holds true for functions in $H^{\frac{1}{4}}(\mathbb{R})$, and also in any $H^s(\mathbb{R})$ for $s \geq \frac{1}{4}$ $\frac{1}{4}$, since they are all contained in $H^{\frac{1}{4}}$.

¹The function $w \in L^{\frac{4}{3}}([-R, R]) \subset L^1([-R, R])$. In particular w is integrable and we can use Fubini.

Thus the maximal function $\sup_{t>0} |e^{it\Delta} f|$ is bounded from $H^s(\mathbb{R})$ to $L^4(\mathbb{R})$ for $s \geq \frac{1}{4}$ $\frac{1}{4}$. This bound implies pointwise almost everywhere convergence for the family of operators $\{e^{it\Delta}\}_{t\in[0,1]},$ in particular we have

$$
\lim_{t \to t_0} e^{it\Delta} f(x) = e^{it_0 \Delta} f(x) \qquad \text{for almost every } x \in \mathbb{R},
$$

and when $t_0 = 0$, when we get back $f(x)$.

1.3 Negative result

In his work, Carleson already proved that the convergence to $f \in H^s(\mathbb{R})$ might fail for $s < \frac{1}{8}$. For the proof of the Theorem 2 Björn Dahlberg and Carlos Kenig exploited a theorem by Nikišin, published the same year in [3]. We recall first some notations from [4].

Let (X, μ) and (Y, ν) two σ -finite measure spaces. Let $L^0(Y, \nu)$ the space of a.e. finite real-values measurable functions on Y endowed with the metric of the convergence in measure.

We say that $T: L^p(X, \mu) \to L^0(Y, \nu)$ is linearizable² if for each $f_0 \in L^p(X)$ there exist a *linear* operator H_{f_0} such that

- 1. $|H_{f_0}f_0|=|Tf_0| \nu$ a.e. and
- 2. $|H_{f_0}f| \leq |Tf|$ *ν* a.e. for all $f \in L^p(X)$.

Remark 4. For an operator T being linearizable means that there is a family ${H_{f_0}}_{f_0\in L^p(X)}$ of linear operators such that T majorizes each one of them and coincides in absolute value with H_{f_0} in f_0 .

Example 5. Given a sequence of operators $(T_n)_n: L^p(X, \mu) \to L^0(Y, \nu)$. The truncated maximal operator of the family T_N^* is linearizable.

We are ready to state the theorem.

Theorem 6 (Nikišin). Let $1 \leq p < \infty$, and let $T: L^p(X, \mu) \to L^0(Y, \nu)$ linearizable and continuous in measure at 0. Then for every $\epsilon > 0$ there exists a set $E_{\epsilon} \subset Y$ with $|E_{\epsilon}| \geq |Y| - \epsilon$ such that

$$
|\{y \in E_{\epsilon} : Tf(y) > \lambda\}| \le C_{\epsilon} \left(\frac{\|f\|_{L^p}}{\lambda}\right)^q,
$$

for all $\lambda > 0$, $f \in L^p(X)$, and $q = \min\{p, 2\}$.

 2 or *hyperlinear* in Nikišin's terminology

To show that pointwise convergence a.e. fails, it is enough to show that it fails on an finite interval $I \subset \mathbb{R}$. Aiming to a contradiction, assume that we have convergence a.e. for every $f \in H^s(\mathbb{R})$ with $s < \frac{1}{4}$, then

$$
\limsup_{t \to 0} |e^{it\Delta} f(x)| < +\infty \quad \text{ for almost every } x \in I.
$$

Consider an even function $f \in C_c^{\infty}(\mathbb{R})$ supported in $I = [-1, 1]$. For $0 < t < 1$ we rescale and modulate f

$$
f_t(x) = f\left(\frac{x}{t}\right) e^{2ix/t^2},
$$

such that its Sobolev norm is

$$
||f_t||_{H^s}^2 \le Ct^{1-4s}.
$$

Then let $t(x) = t^2 x$ for $x > 0$. Moreover, we have that

$$
|e^{it(x)\Delta}f_t| = \left|\frac{1}{\sqrt{x}}\int_{\mathbb{R}}f(y)e^{iy^2/x}dy\right| =: g(x).
$$

Notice that g is a continuous function independent of t .

We can view $e^{it\Delta}$ as an operator acting on the Fourier side and mapping to measurable functions:

$$
e^{it\Delta} \colon L^2(\mathbb{R}, \langle \xi \rangle^s d\xi) \to L^0(I)
$$

$$
\hat{f} \mapsto \mathcal{F}^{-1}(e^{it\xi^2} \hat{f})
$$

By our previous assumption, this is a bounded operator from a (weighted) L^2 to measurable functions on an interval. We apply Theorem 6 with $p=2$, $X = \mathbb{R}$ with the measure $\mu = (1 + |\xi|^2)^{s/2} d\xi$, so that $L^2(\mathbb{R}, \mu) = H^s(\mathbb{R})$, and $Tf = \sup_{0 < t < 1} \left| e^{it\Delta} f \right|.$

Then there exists a closed set $E \subset [-1,1]$ with positive Lebesgue measure³, and $C > 0$, such that

$$
\left| \{ y \in E \, : \, \sup_{0 < t < 1} |e^{it\Delta} f(y)| > \lambda \} \right| \le C \left(\frac{\|\hat{f}\|_{L^2(\mathbb{R}, \langle \xi \rangle^s)}}{\lambda} \right)^2 \quad \text{for all } \lambda > 0. \tag{2}
$$

³actually, the set E is an arbitrarily large subset of $[-1, 1]$

The restriction $g \restriction E$ is continuous. Let $\lambda_0 := \min_{x \in E} g(x)$. Using (2) we have that

$$
|E| = |\{x \in E : g(x) > \lambda_0\}| = |\{x \in E : |e^{it(x)\Delta} f_t| > \lambda_0\}|
$$

$$
\leq |\{x \in E : \sup_{t \in [0,1]} |e^{it(x)\Delta} f_t| > \lambda_0\}| \leq \frac{C}{\lambda_0^2} \|f_t\|_{H^s(\mathbb{R})}^2 \lesssim t^{1-4s}.
$$

This is a contradiction as long $s < \frac{1}{4}$, since one has

$$
0 < |E| \lesssim t^{1-4s} \to 0 \quad \text{as } t \to 0.
$$

References

- [1] Lennart Carleson, Some analytic problems related to statistical mechanics. Euclidean harmonic analysis. Springer, Berlin, Heidelberg, 1980. 5-45.
- [2] Dahlberg, Björn EJ, and Carlos E. Kenig. A note on the almost everywhere behavior of solutions to the Schrödinger equation. Harmonic analysis. Springer, Berlin, Heidelberg, 1982. 205–209.
- [3] Nikišin, Evgenii Mikhailovich, A resonance theorem and series in eigenfunctions of the Laplacian. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 36.4 (1972), 795–813
- [4] Miguel De Guzmán, *Real Variable Methods In Fourier-Analysis* North Holland (1981): Section 2.4, 29–30.
- [5] Eceizabarrena, Daniel. The Pointwise Convergence of the Solution to the Schrödinger Equation. Final Master's dissertation. Madrid, 27 June 2016. 1–12.

Gianmarco Brocchi, University of Birmingham email: gianmarcobrocchi@gmail.com