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1 Behaviour of the Schrodinger evolution for
initial data near H1

after L. Carleson [1] and after B. Dahlberg, and C. Kenig [2]
A summary written by Gianmarco Brocchi

Abstract
We study pointwise convergence of solutions of the Schrédinger
equation on R as ¢t — 0. For initial data in the Sobolev space H*(R),
Carleson showed that we have almost everywhere convergence when
s> %. Dahlberg and Kenig proved that this result is also sharp.
1.1 Introduction

We consider the initial value problem for the Schrédinger equation in R:

\II(J},O) = f(l’)

The solution to this problem is given by

{i@tllf(x,t) + AT(z,t) =0

, eige? oo O
eztAf(x) :/Rezforzt{ f(é-)ﬁ

The operator e?*? is bounded on L?, so it is continuous; in particular lim,_,g e f = f
in L?, or equivalently

lim|[e®® f — f||2 = 0.

t—0

But what can we say about the pointwise limit of ¢4 f(z) as t — 0 ? For
which class of initial data does it hold that

Pr% "2 f(x) = f(z) for almost every x € R?
—

In the 1980°s Lennart Carleson gave an answer when the initial data f
is compactly supported and a-Hélder continuous with a > i. Here we state
and prove this result for f belonging to the Sobolev space H*(R) with s > i.

Theorem 1 (Carleson). If f € H*(R) with s > % then

Pr% "B f(x) = f(x)  for almost every x € R.
—



The key of the proof is the bound of the maximal Schrodinger operator for
some p > 1

<Clf

Lp
One year later, Dahlberg and Kenig proved that the above result is sharp.
They proved the following

suple’® f|
>0

Theorem 2 (Dahlberg & Kenig). Let s € [O, %) There exists a function
f € H*(R) and a set E with positive measure such that, for every x € E

lim sup |2 f(z)| = +oo.
t—0

1.2 Positive result

In order to prove Theorem 1, we will use an a priori estimate for the maximal
operator sup,.o|e?> f|.

Proposition 3 (A priori estimate). Let f € S(R) Schwartz function. Then
there exists a constant C' > 0 such that

sup|e™® <C 1. 1
el <Ol 0

Proof. First we aim to prove a local estimate, namely

suple® f|
t>0

< C|Ifll

LA([-R,R])

1
H1(R)

where the constant C' is independent of R. The estimate (1) will follow by
taking the limit as R — oo. We split the proof in steps.

Step 1 We would like to get rid of the supremum. Fix x € R. There exists
a time ¢(z) > 0 such that

ORI @)] 2 5 suple 1 ()

~Y

Step 2 Then we use duality. There exists a function w € L3 = (LY, with
Hw||% = 1, with supp(w) C [—R, R], such that

16 o = / N
R
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Step 3 Expand the integral, use Fubini' and Cauchy-Schwarz.

it(z)A 27rz (z€—2mt(2)€2) d
/R Ut / o oo s
:/f(f)\§|4/ 2mi(z§— 27rt(x)§)’w< >d dé-
R

Ik
< ( / |f<s>\zrs|%ds)$ /

Step 4 We bound the two factors separately.

1< ([ifora+i >4df) ST

For II, a careful estimate of the oscillatory integral inside leads to

1125;c7jf w@w) gy
RQ

|z —yl|2

N|=

/ 6271'1(565 27Tt(x)§2)w< >dx d =1-.1II
R

€]

A

Use Holder and Hardy-Littlewood-Sobolev inequalities to conclude

I < Cllw, 5

< Clluly,,,

LA

To sum up:

suple’*® f|
t>0

<2 ],

LA([-R.R]) < Clleoll g @)l

([=R,R])

By taking the limit as R — oo, we conclude. ]

Idea of the proof of Theorem 1. By density of Schwartz functions S(R) in
the Sobolev space H1(R), the bound (1) holds true for functions in H1(R),
and also in any H*(R) for s > }L, since they are all contained in H i

IThe function w € L3 ([—R, R]) C L'([-R, R]). In particular w is integrable and we
can use Fubini.



Thus the maximal function sup,. o|e"* f| is bounded from H*(R) to L*(R)
for s > }l. This bound implies pointwise almost everywhere convergence for
the family of operators {€"“},¢j0,1), in particular we have

tlil? A f(x) = ™A f(x) for almost every z € R,
—o
and when ¢y = 0, when we get back f(x). O

1.3 Negative result

In his work, Carleson already proved that the convergence to f € H*(R)
might fail for s < %. For the proof of the Theorem 2 Bjorn Dahlberg and
Carlos Kenig exploited a theorem by Nikisin, published the same year in [3].
We recall first some notations from [4].

Let (X, ) and (Y, v) two o-finite measure spaces. Let L°(Y,v) the space
of a.e. finite real-values measurable functions on Y endowed with the metric
of the convergence in measure.

We say that T': LP(X, ) — LO(Y,v) is linearizable? if for each fy € LP(X)
there exist a linear operator Hy, such that

1. |Hy fol =T fo| v-a.e. and
2. |Hp, fI <|Tf| v-ae. forall fe LP(X).

Remark 4. For an operator T’ being linearizable means that there is a family
{Hy,} foerr(x) of linear operators such that T magjorizes each one of them and
coincides in absolute value with Hy, in fo.

Example 5. Given a sequence of operators (Ty,),: LP(X, ) — L°(Y,v). The
truncated maximal operator of the family Ty is linearizable.

We are ready to state the theorem.

Theorem 6 (Nikisin). Let 1 < p < oo, and let T: LP(X,u) — L°(Y,v)
linearizable and continuous in measure at 0. Then for every e > 0 there
exists a set E. CY with |E| > |Y| — € such that

e i >n<c (1))

for all A >0, f € LP(X), and ¢ = min{p, 2}.

2or hyperlinear in NikiSin’s terminology



To show that pointwise convergence a.e. fails, it is enough to show that
it fails on an finite interval I C R. Aiming to a contradiction, assume that
we have convergence a.e. for every f € H*(R) with s < i, then

lim sup |2 f(x)| < +00  for almost every x € I.
t—0

Consider an even function f € C®°(R) supported in [ = [—1, 1].

For 0 <t < 1 we rescale and modulate f
ft(x) _ f (%) eQi:v/t27

such that its Sobolev norm is
1 fell7re < CH .

Then let t(x) = t*x for x > 0. Moreover, we have that

@A f) — ‘%/Rf(y)eiyz/xdy‘ =: g(z).

Notice that g is a continuous function independent of ¢.
We can view e® as an operator acting on the Fourier side and mapping to
measurable functions:

e LA(R, (€)% d€) — LO(I)
f e FHe )

By our previous assumption, this is a bounded operator from a (weighted)
L? to measurable functions on an interval. We apply Theorem 6 with p = 2,
X = R with the measure = (14 |£]?)%/2d¢, so that L?(R, ) = H*(R), and
Tf = supge,q|e™® fl.
Then there exists a closed set £ C [—1, 1] with positive Lebesgue measure?,
and C' > 0, such that

~ 2
{yc E : sup | f(y)| > )\}‘ <C <Hf”mw> for all A > 0. (2)
0<t<1

3actually, the set E is an arbitrarily large subset of [—1,1]



The restriction g | F is continuous. Let A\ := mingep g(z). Using (2) we
have that

El={z € F :glx)> N} ={zeE: \eit(mmft\ > Ao}

it(x C —4s
<z e E: sup "2 > A} < 2l il S 67
t€[0,1] 0

This is a contradiction as long s < %, since one has

0<|E| St =0 ast—0.
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