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1 Behaviour of the Schrödinger evolution for

initial data near H
1
4

after L. Carleson [1] and after B. Dahlberg, and C. Kenig [2]
A summary written by Gianmarco Brocchi

Abstract

We study pointwise convergence of solutions of the Schrödinger
equation on R as t→ 0. For initial data in the Sobolev space Hs(R),
Carleson showed that we have almost everywhere convergence when
s ≥ 1

4 . Dahlberg and Kenig proved that this result is also sharp.

1.1 Introduction

We consider the initial value problem for the Schrödinger equation in R:{
i∂tΨ(x, t) + ∆Ψ(x, t) = 0

Ψ(x, 0) = f(x)

The solution to this problem is given by

eit∆f(x) =

ˆ
R
eixξ+itξ

2

f̂(ξ)
dξ

2π
.

The operator eit∆ is bounded on L2, so it is continuous; in particular limt→0 e
it∆f = f

in L2, or equivalently
lim
t→0
‖eit∆f − f‖L2 = 0.

But what can we say about the pointwise limit of eit∆f(x) as t → 0 ? For
which class of initial data does it hold that

lim
t→0

eit∆f(x) = f(x) for almost every x ∈ R?

In the 1980’s Lennart Carleson gave an answer when the initial data f
is compactly supported and α-Hölder continuous with α > 1

4
. Here we state

and prove this result for f belonging to the Sobolev space Hs(R) with s ≥ 1
4
.

Theorem 1 (Carleson). If f ∈ Hs(R) with s ≥ 1
4
then

lim
t→0

eit∆f(x) = f(x) for almost every x ∈ R.
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The key of the proof is the bound of the maximal Schrödinger operator for
some p > 1 ∥∥∥∥ sup

t>0
|eit∆f |

∥∥∥∥
Lp

≤ C‖f‖Hs(R).

One year later, Dahlberg and Kenig proved that the above result is sharp.
They proved the following

Theorem 2 (Dahlberg & Kenig). Let s ∈
[
0, 1

4

)
. There exists a function

f ∈ Hs(R) and a set E with positive measure such that, for every x ∈ E

lim sup
t→0

|eit∆f(x)| = +∞.

1.2 Positive result

In order to prove Theorem 1, we will use an a priori estimate for the maximal
operator supt>0|eit∆f |.

Proposition 3 (A priori estimate). Let f ∈ S(R) Schwartz function. Then
there exists a constant C > 0 such that∥∥∥∥sup

t>0
|eit∆f |

∥∥∥∥
L4(R)

≤ C‖f‖
H

1
4 (R)

. (1)

Proof. First we aim to prove a local estimate, namely∥∥∥∥sup
t>0
|eit∆f |

∥∥∥∥
L4([−R,R])

≤ C‖f‖
H

1
4 (R)

where the constant C is independent of R. The estimate (1) will follow by
taking the limit as R→∞. We split the proof in steps.

Step 1 We would like to get rid of the supremum. Fix x ∈ R. There exists
a time t(x) > 0 such that

|eit(x)∆f(x)| ≥ 1

2
sup
t>0
|eit∆f(x)|.

Step 2 Then we use duality. There exists a function w ∈ L 4
3 ∼= (L4)′, with

‖w‖ 4
3

= 1, with supp(w) ⊂ [−R,R], such that

‖eit∆f‖L4([−R,R]) =

ˆ
R
eit(x)∆f(x)w(x)dx.
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Step 3 Expand the integral, use Fubini1 and Cauchy-Schwarz.

ˆ
R
eit(x)∆f(x)w(x) =

¨
R2

f̂(ξ)e2πi(xξ−2πt(x)ξ2)dξ w(x) dx

=

ˆ
R
f̂(ξ)|ξ|

1
4

ˆ
R
e2πi(xξ−2πt(x)ξ2)w(x)

|ξ| 14
dx dξ

≤
(ˆ

R
|f̂(ξ)|2|ξ|

1
2dξ

) 1
2

ˆ
R

∣∣∣∣∣
ˆ
R
e2πi(xξ−2πt(x)ξ2)w(x)

|ξ| 14
dx

∣∣∣∣∣
2

dξ

 1
2

= I · II.

Step 4 We bound the two factors separately.

I ≤
(ˆ

R
|f̂(ξ)|2(1 + |ξ|2)

1
4dξ

) 1
2

= ‖f‖
H

1
4 (R)

.

For II, a careful estimate of the oscillatory integral inside leads to

II2 ≤ C

ˆ
R2

w(x)w(y)

|x− y| 12
dxdy.

Use Hölder and Hardy-Littlewood-Sobolev inequalities to conclude

II2 ≤ C‖w‖
L

4
3

∥∥∥∥∥
ˆ
R

w(y)

|x− y| 12
dy

∥∥∥∥∥
L4

≤ C‖w‖2

L
4
3 (R)

.

To sum up:∥∥∥∥ sup
t>0
|eit∆f |

∥∥∥∥
L4([−R,R])

≤ 2
∥∥eit( · )∆f∥∥

L4([−R,R])
≤ C‖w‖

L
4
3 (R)
‖f‖

H
1
4 (R)

.

By taking the limit as R→∞, we conclude.

Idea of the proof of Theorem 1. By density of Schwartz functions S(R) in

the Sobolev space H
1
4 (R), the bound (1) holds true for functions in H

1
4 (R),

and also in any Hs(R) for s ≥ 1
4
, since they are all contained in H

1
4 .

1The function w ∈ L
4
3 ([−R,R]) ⊂ L1([−R,R]). In particular w is integrable and we

can use Fubini.
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Thus the maximal function supt>0|eit∆f | is bounded from Hs(R) to L4(R)
for s ≥ 1

4
. This bound implies pointwise almost everywhere convergence for

the family of operators {eit∆}t∈[0,1], in particular we have

lim
t→t0

eit∆f(x) = eit0∆f(x) for almost every x ∈ R,

and when t0 = 0, when we get back f(x).

1.3 Negative result

In his work, Carleson already proved that the convergence to f ∈ Hs(R)
might fail for s < 1

8
. For the proof of the Theorem 2 Björn Dahlberg and

Carlos Kenig exploited a theorem by Nikǐsin, published the same year in [3].
We recall first some notations from [4].

Let (X,µ) and (Y, ν) two σ-finite measure spaces. Let L0(Y, ν) the space
of a.e. finite real-values measurable functions on Y endowed with the metric
of the convergence in measure.

We say that T : Lp(X,µ)→ L0(Y, ν) is linearizable2 if for each f0 ∈ Lp(X)
there exist a linear operator Hf0 such that

1. |Hf0f0| = |Tf0| ν- a.e. and

2. |Hf0f | ≤ |Tf | ν- a.e. for all f ∈ Lp(X).

Remark 4. For an operator T being linearizable means that there is a family
{Hf0}f0∈Lp(X) of linear operators such that T majorizes each one of them and
coincides in absolute value with Hf0 in f0.

Example 5. Given a sequence of operators (Tn)n : Lp(X,µ)→ L0(Y, ν). The
truncated maximal operator of the family T ∗N is linearizable.

We are ready to state the theorem.

Theorem 6 (Nikǐsin). Let 1 ≤ p < ∞, and let T : Lp(X,µ) → L0(Y, ν)
linearizable and continuous in measure at 0. Then for every ε > 0 there
exists a set Eε ⊂ Y with |Eε| ≥ |Y | − ε such that

|{y ∈ Eε : Tf(y) > λ}| ≤ Cε

(
‖f‖Lp

λ

)q
,

for all λ > 0, f ∈ Lp(X), and q = min{p, 2}.
2or hyperlinear in Nikǐsin’s terminology
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To show that pointwise convergence a.e. fails, it is enough to show that
it fails on an finite interval I ⊂ R. Aiming to a contradiction, assume that
we have convergence a.e. for every f ∈ Hs(R) with s < 1

4
, then

lim sup
t→0

|eit∆f(x)| < +∞ for almost every x ∈ I.

Consider an even function f ∈ C∞c (R) supported in I = [−1, 1].
For 0 < t < 1 we rescale and modulate f

ft(x) = f
(x
t

)
e2ix/t2 ,

such that its Sobolev norm is

‖ft‖2
Hs ≤ Ct1−4s.

Then let t(x) = t2x for x > 0. Moreover, we have that

|eit(x)∆ft| =
∣∣∣∣ 1√
x

ˆ
R
f(y)eiy

2/xdy

∣∣∣∣ =: g(x).

Notice that g is a continuous function independent of t.
We can view eit∆ as an operator acting on the Fourier side and mapping to
measurable functions:

eit∆ : L2(R, 〈ξ〉s dξ)→ L0(I)

f̂ 7→ F−1(eitξ
2

f̂)

By our previous assumption, this is a bounded operator from a (weighted)
L2 to measurable functions on an interval. We apply Theorem 6 with p = 2,
X = R with the measure µ = (1 + |ξ|2)s/2 dξ, so that L2(R, µ) = Hs(R), and
Tf = sup0<t<1|eit∆f |.
Then there exists a closed set E ⊂ [−1, 1] with positive Lebesgue measure3,
and C > 0, such that∣∣∣∣{y ∈ E : sup

0<t<1
|eit∆f(y)| > λ}

∣∣∣∣ ≤ C

(
‖f̂‖L2(R,〈ξ〉s)

λ

)2

for all λ > 0. (2)

3actually, the set E is an arbitrarily large subset of [−1, 1]
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The restriction g � E is continuous. Let λ0 := minx∈E g(x). Using (2) we
have that

|E| = |{x ∈ E : g(x) > λ0}| = |{x ∈ E : |eit(x)∆ft| > λ0}|

≤ |{x ∈ E : sup
t∈[0,1]

|eit(x)∆ft| > λ0}| ≤
C

λ2
0

‖ft‖2
Hs(R) . t1−4s.

This is a contradiction as long s < 1
4
, since one has

0 < |E| . t1−4s → 0 as t→ 0.
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