Brascamp–Lieb inequalities

September 2021

Organizers:

Christoph Thiele, Universität Bonn Pavel Zorin-Kranich, Universität Bonn

Contents

1	The	e Kempf–Ness theorem	3
	after	r Böhm and Lafuente [BL]	3
	Giar	nmarco Brocchi, University of Birmingham	3
	1.1	Introduction	3
	1.2	Kempf–Ness theorem	4
	1.3	Proof of the theorem	4
	1.4	Abelian case	5
	1.5	Real reductive groups	6
		1.5.1 Separation of closed orbits $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	6
	~		_
Α	Con	nplex Kempf–Ness	7

A Complex Kempf–Ness

1 The Kempf–Ness theorem

After Böhm and Lafuente [BL]

A summary written by Gianmarco Brocchi

Abstract

The Brascamp-Lieb constant is related to the length of minimal vectors in the sense of the Kempf-Ness theorem. We present the real version of the theorem and main ideas of the proof.

1.1 Introduction

Given a collection of surjective maps $\pi_j \colon \mathbb{R}^d \to \mathbb{R}^{d_j}$ and numbers $s_j > 0$ for $j \in \{1, \ldots, m\}$, with m, d and $d_j \in \mathbb{N}$, with $d_j < d$, we consider the Brascamp-Lieb inequality:

$$\int_{\mathbb{R}^d} \prod_j |f_j(\pi_j x)|^{s_j} dx \le \mathsf{BL}(\{\pi_j, s_j\}) \prod_{j=1}^m \left(\int_{\mathbb{R}^{d_j}} f_j(y) dy \right)^{s_j}.$$
 (1)

The inequality (1) is maximised by Gaussian. Let g_j be a Gaussian on \mathbb{R}^{d_j} . By plugging g_j into (1) we obtain

$$\mathsf{BL}(\{\pi_j, s_j\}) \ge \frac{\int_{\mathbb{R}^d} \prod_j |g_j(\pi_j x)|^{s_j} dx}{\prod_{j=1}^m \left(\int_{\mathbb{R}^{d_j}} g_j(y) dy\right)^{s_j}} = \left(\frac{\det(\sum_j s_j \pi_j^* A_j^* A_j \pi_j)}{\prod_{j=1}^m \det(A_j^* A_j)^{s_j}}\right)^{-1/2}$$

So the optimal constant $\mathsf{BL}(\{\pi_j, s_j\})$ is achieved by taking the supremum over all matrices $A_j \in \mathsf{GL}(d_j)$. In [Gr], the right hand side of the expression above is written by using the Hilbert–Schmidt norm, so that

$$\mathsf{BL}(\{\pi_j, s_j\})^{-1} = \inf_{\substack{A_j \in \mathsf{SL}(d_j) \\ A \in \mathsf{SL}(d)}} \prod_{j=1}^m \left(d_j^{-1/2} \|A_j \pi_j A^*\|_{\mathrm{HS}} \right)^{s_j d_j}.$$
 (2)

Equation (2) gives a way to approximate Brascamp-Lieb constant by minimising a "distance function" under the action of the group $G \subset \mathsf{GL}(d_1) \otimes \cdots \otimes \mathsf{GL}(d_m) \otimes \mathsf{GL}(d)$ on the vector space $(V, \langle \cdot, \cdot \rangle)$ where the projections π_j live. The quantity $\mathsf{BL}(\{\pi_j, s_j\})^{-1}$ is the length of the minimal vector in a given orbit.

A classical theorem by George Kempf and Linda Ness relates closed orbits and minimal vectors.

1.2 Kempf–Ness theorem

Definition 1. Let G be a group acting on a vector space V endowed with inner product $\langle \cdot, \cdot \rangle$, and let $d: V \to \mathbb{R}_+$ be a given function. For $v \in V$, a minimal vector \overline{v} in the orbit $G \cdot v$ is a vector that minimises $d(\cdot)$.

Let \mathcal{M} be the set of minimal vectors in V.

Remark 2 (Closed orbits intersect \mathscr{M}). If the orbit $G \cdot v$ is closed (as a set), the intersection with closed balls $B_R(0) \coloneqq \{w : d(w) \leq R\}$ for R large enough is not empty and is compact. In particular, $d(\cdot)$ has a minimum on $G \cdot v \cap B_R(0)$, so $G \cdot v$ contains a minimal vector.

The converse, for real reductive Lie groups, is the (real version of the) Kempf–Ness theorem. We briefly introduce reductive Lie groups.

Let G be a Lie group and let \mathfrak{g} be the Lie algebra of G. We will consider the symmetric part of the algebra given by the Cartan decomposition.

Remark 3 (Cartan decomposition). Let $G \subset GL(d)$ be a Lie group and let \mathfrak{g} be its Lie algebra. Then \mathfrak{g} can be decomposed in symmetric and antisymmetric part: $\mathfrak{g} = \mathfrak{s} \oplus \mathfrak{a}$, where $\mathfrak{s} = \mathfrak{g} \cap Sym(V)$. If $[\cdot, \cdot]$ is the Poisson bracket: [a, b] = ab - ba, then $[\mathfrak{s}, \mathfrak{s}] \subset \mathfrak{a}$ and $[\mathfrak{s}, \mathfrak{a}] \subset \mathfrak{s}$.

Definition 4. A Lie group G is called reductive if can be written as $G = K \cdot \exp(\mathfrak{s})$, where K is a maximal compact subgroup of G.

We will be interested in subgroups of $GL(d, \mathbb{R})$.

Theorem 5 (Real Kempf–Ness Theorem). Let $G \subset \mathsf{GL}(d, \mathbb{R})$ be a reductive Lie group with a maximal subgroup $K = G \cap O(\mathbb{R}^d)$. For $v \in V$ the orbit $G \cdot v$ contains a minimal vector if and only if is closed. Moreover $G \cdot v \cap \mathcal{M} = K \cdot v$.

1.3 Proof of the theorem

The proof is based on two main facts:

- 1. If the orbit $G \cdot v$ is not closed, the elements in the closure can be reached with a one-parameter subgroup. This is proved by contradiction: assuming that all such orbits are separated leads to an absurd.
- 2. If the distance function $d(\cdot)$ is strictly convex, its critical points are minima and there are not such points on non-closed orbits.

We start by considering the simpler case of abelian groups.

1.4 Abelian case

Let T be a abelian, non compact, connected Lie group¹ and let \mathfrak{t} be its Lie algebra. Let $K \subset T$ be a maximal, compact subgroup. In the complex case, one can think of K as the elements of T with modulus 1.

Representation

The elements in T can be written as $\exp(t\alpha) \in T$ for $\alpha \in \mathfrak{t}$ and $t \in \mathbb{R}$. In particular, there is (v_1, \ldots, v_N) basis of V which diagonalises the action of T. Then for $\lambda \in \mathfrak{t}$ we have

$$e^{\lambda} \cdot v = (e^{\langle \lambda, \alpha_1 \rangle} v_1, \dots, e^{\langle \lambda, \alpha_N \rangle} v_N), \quad \text{for} \quad \alpha_1, \dots, \alpha_N \in \mathfrak{t}.$$

For an abelian group T, the representation of its action is enough to show that, given any $\bar{v} \in \overline{T \cdot v} \setminus T \cdot v$, there is a one-parameter semigroup intersecting the orbit $T \cdot \bar{v}$.

Lemma 6 (Hilbert–Mumford for abelian groups). For any $\bar{v} \in \overline{T \cdot v} \setminus T \cdot v$ there exists $g \in T$ and $\alpha \in \mathfrak{t}$ such that $\lim_{s\to\infty} \exp(s\alpha) \cdot v = g \cdot \bar{v}$.

Convexity of the distance function

For $\alpha \in \mathfrak{s}$ and $t \in \mathbb{R}$, consider the distance function

$$d(t) \coloneqq d_{\alpha,v}(t) \coloneqq \|\exp(t\alpha) \cdot v\|^2.$$

This is the square of the distance to the origin along the curve $\exp(t\alpha) \cdot v$ in G. The function d(t) is convex, so its critical points are minima.

Lemma 7 (Convexity). For $A \in \mathfrak{s}$ and $v \in V$ the function $d_{\alpha,v}(t)$ is convex, in particular $d''(t) = 4 ||A \cdot \exp(tA) \cdot v||^2$.

Let $\alpha \in \mathfrak{s}$ and assume that $\lim_{t\to\infty} \exp(t\alpha) \cdot v = \overline{v}$ exists. Then, by convexity of d(t), we have that

$$\left\|e^{t\alpha} \cdot v\right\| > \left\|\bar{v}\right\|, \quad \forall t \in \mathbb{R}$$

Thus the function d(t) cannot achieve its minimum on a non-closed orbit.

¹the notation comes from T being an algebraic torus in the complex case.

1.5 Real reductive groups

For general real reductive groups, one can write G = KTK, where K is compact and T is abelian. It is enough to show that the limit of the oneparameter subgroup exists.

Lemma 8 (Hilbert–Mumford for real reductive groups). Let G be a real reductive group and let $v \in V$. If the orbit $G \cdot v$ is not closed then there exists $\alpha \in \mathfrak{s}$ such that $\lim_{s\to\infty} \exp(s\alpha) \cdot v$ exists.

Idea of the proof. Let $\mathfrak{t} \subset \mathfrak{s}$ be the maximal abelian subalgebra. Since G = KTK, with $T = \exp(\mathfrak{t})$, it is enough to show that given $\overline{v} \in \overline{G \cdot v} \setminus G \cdot v$ there exists $g \in G$, $k \in K$ and $\alpha \in \mathfrak{t}$ such that $\lim_{s \to \infty} \exp(s\alpha) \cdot (k \cdot v) = g \cdot \overline{v}$.

Suppose by contradiction that the two orbits $\overline{G \cdot v}$ and $\overline{T \cdot k \cdot v}$ are disjoint for all $k \in K$. Assume we can separate any of these closed orbits with a function f_k . Exploiting the compactness of K, we can extract finitely many functions for the job and construct a single function f which separates $\overline{TK \cdot v}$ and $\overline{G \cdot v}$. Since $K \cdot v \subset G \cdot v$, we can then separate the orbits $\overline{TK \cdot v}$ and $K \cdot v$. But this implies that $v \notin K(\overline{TK \cdot v})$ and so $v \notin \overline{G \cdot v}$, which is absurd.

We discuss separation of orbits in the next subsection.

1.5.1 Separation of closed orbits

Consider a subset of coordinate indices $I \subset \{1, \ldots, N\}$ and let U_I be the subset of vectors whose non-zero coordinates belongs to $I: U_I = \{v \in V : v_i \neq 0 \text{ if and only if } i \in I\}.$

Lemma 9. The orbit $T \cdot v$ is closed if and only if there is a convex combination $\{\theta_i\}$ of $\{\alpha_i\}$ such that $\sum_i \theta_i \alpha_i = 0$.

Given a closed orbit \mathcal{O}_1 , consider the corresponding $\theta \coloneqq \{\theta_i\}$ given by the above lemma. Define the function $f_{\theta} \colon V \to \mathbb{R}$ as

$$f_{\theta}(v) \coloneqq \begin{cases} \prod_{i=1}^{N} v_{i}^{\theta_{i}} & \text{if } i \in I \\ 0 & \text{otherwise} \end{cases}$$

The function f_{θ} is continuous. Moreover, by using the representation of the action of T, we see that f_{θ} is also T-invariant, indeed

$$f_{\theta}(\exp(\lambda) \cdot v) = \prod_{i=1}^{N} (e^{\langle \lambda, \alpha_i \rangle} v_i)^{\theta_i} = e^{\langle \lambda, \sum_i \alpha_i \theta_i \rangle} f_{\theta}(v) = f_{\theta}(v).$$

Intuitively, if two closed orbits are distinct, there must exist a zero combination of α_i for one orbit that is not zero for the other one. In other words, there exists θ such that the map f_{θ} separates the two orbits.

Lemma 10. Let $\mathcal{O}_1, \mathcal{O}_2$ be two distinct, closed *T*-orbits. Then there exists $\theta = \{\theta_i\}$ such that $f_{\theta}(\mathcal{O}_1) \neq f_{\theta}(\mathcal{O}_2)$.

References

- [KN] Kempf, G. and Ness, L., *The length of vectors in representation spaces*. Algebraic geometry. Springer, Berlin, Heidelberg, 1979. 233–243.
- [BL] Böhm, C. and Lafuente, R. A., *Real geometric invariant theory.* arXiv:1701.00643 (2017).
- [Gr] Gressman, P. T., L^p-improving estimates for Radon-like operators and the Kakeya-Brascamp-Lieb inequality. Advances in Mathematics, 387, (2021), 107831.

GIANMARCO BROCCHI, UNIVERSITY OF BIRMINGHAM *email:* gianmarcobrocchi@gmail.com

A Complex Kempf–Ness

We briefly present the ideas from the original proof in as they provide intuition for the real case.

Let $\rho_v(g) \coloneqq ||g \cdot v||^2$ be the length of the vector v along the orbit $G \cdot v$. We want to show that if the orbit $G \cdot v$ is not closed, then $\inf_{g \in G} \rho_v(g)$ is not attained.

Remark 11. Let K be a subgroup of G which preserves the norm $\|\cdot\|$. Then the function ρ_v is invariant under the (right) action of the stabiliser of v in G, and under the (left) action of K.

Thus, for $k \in K$ and $s \in Stab(v)$ in G we have

$$\rho_v(k \cdot g \cdot s) = \rho_v(g).$$

As the function ρ_v is constant under the action of K and Stab(v), we quotient by these subgroups. Then, by the universal construction, if π is the

projection from $T \to T/K$, there exists a unique map $q_v: T/K \to \mathbb{R}$ such that $\rho_v = q_v \circ \pi$. We quotient again by the image of Stab(v) in T/K and so we obtain another map $\tilde{q}_v: (T/K)/\pi(Stab(v)) \to \mathbb{R}$. Moreover, if ρ_v is a finite sum of $e^{A(\cdot)}$ where $A(\cdot)$ is an affine function, then q_v and \tilde{q}_v have the same form. This allows to infer property of ρ_v from the map \tilde{q}_v where we have quotient out subspaces where ρ_v is constant.

Now consider a non-closed orbit $T \cdot v$. Then there exists a one-parameter semigroup $e^{s\alpha}$, with $\alpha \in \mathfrak{t}$ the Lie algebra of T, which leads outside the orbit $T \cdot v$. Assume that the limit as s goes to infinity of $e^{s\alpha} \cdot v$ exists and equals $\bar{v} \in \overline{T \cdot v} \setminus T \cdot v$.

Then, by convexity, the function \tilde{q}_v (and so q_v and ρ_v) cannot attain its minimum on the orbit.