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1 The Kempf–Ness theorem
After Böhm and Lafuente [BL]

A summary written by Gianmarco Brocchi

Abstract
The Brascamp–Lieb constant is related to the length of minimal

vectors in the sense of the Kempf–Ness theorem. We present the real
version of the theorem and main ideas of the proof.

1.1 Introduction

Given a collection of surjective maps πj : Rd → Rdj and numbers sj > 0
for j ∈ {1, . . . ,m}, with m, d and dj ∈ N, with dj < d, we consider the
Brascamp–Lieb inequality:

ˆ
Rd

∏
j

|fj(πjx)|sjdx ≤ BL({πj, sj})
m∏
j=1

(ˆ
Rdj

fj(y)dy

)sj
. (1)

The inequality (1) is maximised by Gaussian. Let gj be a Gaussian on Rdj .
By plugging gj into (1) we obtain

BL({πj, sj}) ≥
´
Rd

∏
j|gj(πjx)|sjdx∏m

j=1

(´
Rdj gj(y)dy

)sj =

(
det(

∑
j sjπ

∗
jA
∗
jAjπj)∏m

j=1 det(A∗jAj)
sj

)−1/2
.

So the optimal constant BL({πj, sj}) is achieved by taking the supremum
over all matrices Aj ∈ GL(dj). In [Gr], the right hand side of the expression
above is written by using the Hilbert–Schmidt norm, so that

BL({πj, sj})−1 = inf
Aj∈SL(dj)
A∈SL(d)

m∏
j=1

(
d
−1/2
j ‖AjπjA∗‖HS

)sjdj
. (2)

Equation (2) gives a way to approximate Brascamp–Lieb constant by
minimising a “distance function” under the action of the group G ⊂ GL(d1)⊗
· · · ⊗ GL(dm)⊗ GL(d) on the vector space (V, 〈·, ·〉) where the projections πj
live. The quantity BL({πj, sj})−1 is the length of the minimal vector in a
given orbit.

A classical theorem by George Kempf and Linda Ness relates closed orbits
and minimal vectors.
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1.2 Kempf–Ness theorem

Definition 1. Let G be a group acting on a vector space V endowed with
inner product 〈·, ·〉, and let d : V → R+ be a given function. For v ∈ V , a
minimal vector v̄ in the orbit G · v is a vector that minimises d(·).

Let M be the set of minimal vectors in V .

Remark 2 (Closed orbits intersect M ). If the orbit G · v is closed (as a
set), the intersection with closed balls BR(0) := {w : d(w) ≤ R} for R large
enough is not empty and is compact. In particular, d(·) has a minimum on
G · v ∩BR(0), so G · v contains a minimal vector.

The converse, for real reductive Lie groups, is the (real version of the)
Kempf–Ness theorem. We briefly introduce reductive Lie groups.

Let G be a Lie group and let g be the Lie algebra of G. We will consider
the symmetric part of the algebra given by the Cartan decomposition.

Remark 3 (Cartan decomposition). Let G ⊂ GL(d) be a Lie group and
let g be its Lie algebra. Then g can be decomposed in symmetric and anti-
symmetric part: g = s ⊕ a, where s = g ∩ Sym(V ). If [·, ·] is the Poisson
bracket: [a, b] = ab− ba, then [s, s] ⊂ a and [s, a] ⊂ s.

Definition 4. A Lie group G is called reductive if can be written as G =
K · exp(s), where K is a maximal compact subgroup of G.

We will be interested in subgroups of GL(d,R).

Theorem 5 (Real Kempf–Ness Theorem). Let G ⊂ GL(d,R) be a reductive
Lie group with a maximal subgroup K = G∩O(Rd). For v ∈ V the orbit G ·v
contains a minimal vector if and only if is closed. Moreover G·v∩M = K ·v.

1.3 Proof of the theorem

The proof is based on two main facts:

1. If the orbit G·v is not closed, the elements in the closure can be reached
with a one-parameter subgroup. This is proved by contradiction: as-
suming that all such orbits are separated leads to an absurd.

2. If the distance function d(·) is strictly convex, its critical points are
minima and there are not such points on non-closed orbits.

We start by considering the simpler case of abelian groups.
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1.4 Abelian case

Let T be a abelian, non compact, connected Lie group1 and let t be its Lie
algebra. Let K ⊂ T be a maximal, compact subgroup. In the complex case,
one can think of K as the elements of T with modulus 1.

Representation

The elements in T can be written as exp(tα) ∈ T for α ∈ t and t ∈ R. In
particular, there is (v1, . . . , vN) basis of V which diagonalises the action of
T . Then for λ ∈ t we have

eλ · v = (e〈λ,α1〉v1, . . . , e
〈λ,αN 〉vN), for α1, . . . , αN ∈ t.

For an abelian group T , the representation of its action is enough to show
that, given any v̄ ∈ T · v \ T · v, there is a one-parameter semigroup inter-
secting the orbit T · v̄.

Lemma 6 (Hilbert–Mumford for abelian groups). For any v̄ ∈ T · v \ T · v
there exists g ∈ T and α ∈ t such that lims→∞ exp(sα) · v = g · v̄.

Convexity of the distance function

For α ∈ s and t ∈ R, consider the distance function

d(t) := dα,v(t) := ‖exp(tα) · v‖2.

This is the square of the distance to the origin along the curve exp(tα) · v in
G. The function d(t) is convex, so its critical points are minima.

Lemma 7 (Convexity). For A ∈ s and v ∈ V the function dα,v(t) is convex,
in particular d′′(t) = 4‖A · exp(tA) · v‖2.

Let α ∈ s and assume that limt→∞ exp(tα) · v = v̄ exists. Then, by
convexity of d(t), we have that

‖etα · v‖ > ‖v̄‖ , ∀t ∈ R.

Thus the function d(t) cannot achieve its minimum on a non-closed orbit.
1the notation comes from T being an algebraic torus in the complex case.
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1.5 Real reductive groups

For general real reductive groups, one can write G = KTK, where K is
compact and T is abelian. It is enough to show that the limit of the one-
parameter subgroup exists.

Lemma 8 (Hilbert–Mumford for real reductive groups). Let G be a real
reductive group and let v ∈ V . If the orbit G ·v is not closed then there exists
α ∈ s such that lims→∞ exp(sα) · v exists.

Idea of the proof. Let t ⊂ s be the maximal abelian subalgebra. Since G =
KTK, with T = exp(t), it is enough to show that given v̄ ∈ G · v \G ·v there
exists g ∈ G, k ∈ K and α ∈ t such that lims→∞ exp(sα) · (k · v) = g · v̄.

Suppose by contradiction that the two orbitsG · v̄ and T · k · v are disjoint
for all k ∈ K. Assume we can separate any of these closed orbits with a
function fk. Exploiting the compactness of K, we can extract finitely many
functions for the job and construct a single function f which separates TK · v
and G · v̄ . Since K · v̄ ⊂ G · v̄, we can then separate the orbits TK · v and
K · v̄. But this implies that v̄ 6∈ K(TK · v) and so v̄ 6∈ G · v, which is
absurd.

We discuss separation of orbits in the next subsection.

1.5.1 Separation of closed orbits

Consider a subset of coordinate indices I ⊂ {1, . . . , N} and let UI be the sub-
set of vectors whose non-zero coordinates belongs to I: UI = {v ∈ V : vi 6= 0
if and only if i ∈ I}.
Lemma 9. The orbit T ·v is closed if and only if there is a convex combination
{θi} of {αi} such that

∑
i θiαi = 0.

Given a closed orbit O1, consider the corresponding θ := {θi} given by
the above lemma. Define the function fθ : V → R as

fθ(v) :=

{∏N
i=1 v

θi
i if i ∈ I

0 otherwise .

The function fθ is continuous. Moreover, by using the representation of the
action of T , we see that fθ is also T -invariant, indeed

fθ(exp(λ) · v) =
N∏
i=1

(e〈λ,αi〉vi)
θi = e〈λ,

∑
i αiθi〉fθ(v) = fθ(v).
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Intuitively, if two closed orbits are distinct, there must exist a zero com-
bination of αi for one orbit that is not zero for the other one. In other words,
there exists θ such that the map fθ separates the two orbits.

Lemma 10. Let O1,O2 be two distinct, closed T -orbits. Then there exists
θ = {θi} such that fθ(O1) 6= fθ(O2).
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A Complex Kempf–Ness
We briefly present the ideas from the original proof in as they provide intu-
ition for the real case.

Let ρv(g) := ‖g · v‖2 be the length of the vector v along the orbit G · v.
We want to show that if the orbit G · v is not closed, then infg∈G ρv(g) is not
attained.

Remark 11. Let K be a subgroup of G which preserves the norm ‖ · ‖. Then
the function ρv is invariant under the (right) action of the stabiliser of v in
G, and under the (left) action of K.

Thus, for k ∈ K and s ∈ Stab(v) in G we have

ρv(k · g · s) = ρv(g).

As the function ρv is constant under the action of K and Stab(v), we
quotient by these subgroups. Then, by the universal construction, if π is the
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projection from T → T/K, there exists a unique map qv : T/K → R such
that ρv = qv ◦ π. We quotient again by the image of Stab(v) in T/K and
so we obtain another map q̃v : (T/K)/π(Stab(v)) → R. Moreover, if ρv is a
finite sum of eA(·) where A(·) is an affine function, then qv and q̃v have the
same form. This allows to infer property of ρv from the map q̃v where we
have quotient out subspaces where ρv is constant.

Now consider a non-closed orbit T · v. Then there exists a one-parameter
semigroup esα, with α ∈ t the Lie algebra of T , which leads outside the orbit
T · v. Assume that the limit as s goes to infinity of esα · v exists and equals
v̄ ∈ T · v \ T · v.

Then, by convexity, the function q̃v (and so qv and ρv) cannot attain its
minimum on the orbit.
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