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1.3 An alternative proof via Hörmander’s theorem . . . . . . . . 5

2



1 The Bourgain–Milman theorem

A summary written by Constantin Bilz and Gianmarco Brocchi
after Bourgain–Milman [2] and Nazarov [5]

Abstract

We present the Bourgain–Milman theorem on Mahler’s conjecture.
We explain both the original proof [2] based on the geometry of normed
spaces and Nazarov’s proof [5] based on Hörmander’s theorem.

1.1 Introduction

Let K ⊂ Rn be a convex centrally symmetric bounded open and absorbing
set and let K◦ = {x ∈ Rn : |〈x, y〉| ≤ 1 for all y ∈ K} be the polar set of
K. Let vol denote n-dimensional volume and let Bn be the n-dimensional
euclidean ball.

Consider the affine invariant quantity volK · volK◦. It holds that

4n

(n!)2
≤ volK · volK◦ ≤ (volBn)2.

The upper bound is sharp and was obtained by Santaló [7], improving on the
upper bound 4n established earlier by Mahler [4]. The lower bound was also
proved by Mahler and he conjectured that it can be improved to

volCn · volC◦n =
4n

n!
≤ volK · volK◦ (1)

so that the symmetric hypercube Cn would be minimising. He proved this
for n = 2. Partial progress towards (1) in higher dimensions has been made
by several authors, see e.g. [1] and the citations in [2]. We will present two
proofs of the following

Theorem 1 (Bourgain–Milman). There exists a constant c > 0 independent
of the dimension d such that

volK · volK◦ ≥ cn volCn · volC◦n. (2)

We remark that the largest known constant for which Theorem 1 holds
is c = π

4
and this is due to Kuperberg [3].
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1.2 The proof of Bourgain–Milman

Let µn−1 be the normalized surface measure on the euclidean unit sphere
Sn−1. We denote the norm on Rn with unit ball K by ‖·‖K . We write E(K)
for the normed space (Rn, ‖·‖K) and we write

MK =

ˆ
Sn−1

‖x‖K dµn−1(x), dK =
supx∈Sn−1 ‖x‖K
infx∈Sn−1 ‖x‖K

.

The (multiplicative) Banach–Mazur distance between (Rn, |·|2) and E(K) is

dE(K) = inf{du(K) | u : Rn → Rn linear isomorphism}.

The proof is based on an analysis of the linear structure of the convex body
K starting with the following result.

Proposition 2. Let λ ∈ (0, 1). There exists a subspace F of E(K) such that

dimF ≥ λn and ‖x‖K ≥ c(1− λ)M−1
K◦ |x| for any x ∈ F .

Proof sketch. We apply the isoperimetric inequality on Sn−1 to the geodesic
π/4-neighbourhood Aπ/4 of the set A = {‖x‖K◦ ≤ 2MK◦}. For any k < n
we hence find a k-dimensional subspace F that has a large intersection with
Aπ/4, namely

µk−1(Aπ/4 ∩ F ) ≥ 1− voln−2 S
n−2

voln−1 Sn−1

ˆ π/4

0

sinn−2 t dt.

If τ ∼ 1− k/n and x ∈ F ∩ Sn−1, then this implies

µk−1(Aπ/4 ∩ F ) > 1− µk−1(Bπ/4−τ (x))

where Bε(x) ⊂ F ∩ Sn−1 is the ball with respect to geodesic distance. Then
we have F ∩ Sn−1 ⊂ Aπ/2−τ . This implies the proposition.

We will combine this with an upper bound on MK◦ . Such a bound is pro-
vided by the following result which is well-known in the geometry of Banach
spaces.

Proposition 3. There is a linear isomorphism u : Rn → Rn such that

Mu(K) ·Mu(K)◦ ≤ C(1 + log dE(K))
2.
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We can now prove the following “subspace of quotient” result.

Lemma 4. Let λ ∈ (0, 1). Then there exists a subspace F of Rn and a
quotient space G of F such that

dimG ≥ λn and dG ≤ C(1− λ)−2(1 + log dE(K))
2.

Proof sketch. We apply Proposition 2 twice. First, we find a subspace F of
E(K) with dimF ≥

√
λn and by duality

‖x‖K◦ ≤ C(1−
√
λ)−1MK◦|x| for any x ∈ F ∗.

Here F ∗ denotes the dual space of F . Secondly, we find a subspace G of F ∗

such that dimG ≥ λn and

‖x‖K◦ ≥ c(1−
√
λ)M−1

K |x| for any x ∈ G.

Now we replace K by the u(K) from Proposition 3 and use the definition of
dG to complete the proof.

Sketch of proof of Theorem 1. Fix an integer N . For n ≤ N let Cn(t) be the
class of convex bodies K in Rn for which dE(K) ≤ t. We write

σ(t) = inf
n≤N

K∈Cn(t)

(volnK · volnK
◦

(volnBn)2

)1/n

.

Using Lemma 4 we will show in the talk that

σ(t) ≥ c
1

log tσ(C(log t)6)

with constants independent of N . This inequality implies a uniform lower
bound for σ(t) which proves the theorem.

1.3 An alternative proof via Hörmander’s theorem

We can prove (2) constructing an analytic function on Cn with good de-
cay property. By the Paley–Wiener theorem, given any g ∈ L2(K◦) its
Fourier transform f(w) =

´
K◦
g(v)e−i〈w,v〉dv extends to an entire function on
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Cn. Applying Cauchy–Schwarz |f(0)|2 ≤ ‖g‖2
L2(K◦) volK◦, and Plancherel

‖f‖2
L2(Rn) = (2π)n‖g‖2

L2(K◦) we have the lower bound

volK◦ ≥ (2π)n
|f(0)|2

‖f‖2
L2(Rn)

.

We want an entire function which L2(Rn)-norm is not too large compared
with its value at the origin. We look for such a function in a Bergman space
with Hörmander type weight, i.e. L2(Cn, e−ϕ) where ϕ is plurisubharmonic.

Let TK be the (horizontal) tube domain {x + iy : x ∈ Rn, y ∈ K} and
consider the Bergman space A2(TK) = {analytic functions on TK}∩L2(TK).

This is a Hilbert space with reproducing kernel

K(z, w) =

ˆ
Rn

ei〈z−w̄,v〉´
K
e−2〈x,v〉dx

dv

(2π)n
.

An application of Cauchy–Schwarz gives

|f(0)|2 =

∣∣∣∣ˆ
TK

K(0, w)f(w)dw

∣∣∣∣2 ≤ ˆ |K(0, w)|2
ˆ
|f(w)|2 = K(0, 0)‖f‖2

A2(TK)

from which we have the lower bound for K(0, 0)

|f(0)|2

‖f‖2
A2(TK)

≤ K(0, 0) =

ˆ
Rn

1´
K
e−2〈x,v〉dx

dv

(2π)n
≤ n!

πn
volK◦

volK

and the upper one by using the convexity of x 7→ e−〈x,v〉 and optimising in v.
Up to affine linear transformations, we can assume that K contains the

ball B(0, r). By the John’s ellipsoid theorem, K ⊂ B(0, R) with R/r ≤
√
n.

For any t ∈ K◦, the Hermitian product z 7→ 〈z, t〉 maps TK in the strip
S = {ζ ∈ C : |=(ζ)| < 1}, while the conformal map

φ(ζ) =
4

π

e
π
2
ζ − 1

e
π
2
ζ + 1

maps the strip S to the disk D(0, 4
π
). Consider the set

KC := {z ∈ Cn : |〈z, t〉| ≤ 1,∀t ∈ K◦} ⊂ TK .

Note that KC contains 1√
2
(K + iK). It is enough to construct an analytic

function inside KC. For this purpose we will use the Hörmander’s theorem.
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Definition 5. A function ϕ : Ω ⊂ Cn → R is strictly plurisubharmonic if
there exists τ > 0 such that

〈H(z)w,w〉 ≥ τ |w|2, ∀w ∈ Cn , ∀z ∈ Ω

where H is the Hermitian matrix H =

(
∂2ϕ

∂zi∂z̄j

)n

i,j=1

.

Theorem 6 (Hörmander). Let Ω ⊂ Cn be an open, pseudoconvex domain,
and let ϕ : Ω → R be strictly plurisubharmonic for a τ > 0. For any (0, 1)-
form ω on Ω with ∂̄ω = 0, there exists a solution h of ∂̄h = ω in Ω satisfyingˆ

Ω

|h|2e−ϕdz ≤ τ−1

ˆ
Ω

|ω|2e−ϕdz.

We take the plurisubharmonic function ϕ on a shrunk version of KC:

ϕ(z) =
|=(z)|2

R2
+ log sup

t∈K◦
|φ(〈z, t〉)|2n.

The first term enforces the strict plurisubharmonicity on any ball of radius
δ < R with τ = δ2/R2. The second term ensures that the function h promised
by the theorem will vanish at 0, as soon as

´
|ω|2e−ϕ is finite. Indeed, since

φ(0) = 0 and φ′(0) = 1, using Taylor we see that |φ(ζ)| ∼ |ζ| near the origin,
and so e−ϕ ∼ |z|−2n which is not locally integrable at 0. Also note that
ϕ(z) ≤ 2n log(4/π) + 1 for z ∈ KC.

Fix a small δ and let g be a cut-off function on δKC. Applying the
Hörmander theorem to −∂̄g produces h such that ∂̄(h+g) = 0. Call f = h+g
this holomorphic extension of g. Then f(0) = 1 and

‖f‖2
A2(TK) ≤ 2(‖h‖2

L2(TK) + ‖g‖2
L2(TK))

≤ 2(‖eϕ‖L∞R2δ−2‖∂̄g‖2
L2(e−ϕ) + ‖g‖2

L2).

One can choose g appropriately so that ‖f‖2
A2(TK) ≤

(
4
π

)2n
eo(n)(volK)2 as

δ → 0. This gives the lower bound(π
4

)2n e−o(n)

(volK)2
≤ K(0, 0) ≤ n!

πn
volK◦

volK
.

One can remove the exponential factor with a “tensor power trick” to obtain(π
4

)2n

≤ n!

πn
volK◦ volK

which gives the value c =
(
π
4

)3
in (2).
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[5] Nazarov, Fedor. “The Hörmander Proof of the Bourgain–Milman The-
orem.” In Geometric Aspects of Functional Analysis, pp. 335–343.
Springer, Berlin, Heidelberg, 2012.

[6] Nazarov, Fedor, Fedor Petrov, Dmitry Ryabogin, and Artem Zvavitch.
“A remark on the Mahler conjecture: local minimality of the unit cube.”
Duke Math. J. 154, no. 3 (2010): 419–430.
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