Sphere Packings and Optimal Configurations

Summer School^{*}, Kopp

September 29 – October 4, 2019

Organizers:

Danylo Radchenko (Max Planck Institute für Mathematik) Henry Cohn (Microsoft Research and MIT) Felipe Gonçalves (Universität Bonn) Christoph Thiele (Universität Bonn)

^{*}supported by Hausdorff Center for Mathematics, Bonn

Contents

1	\mathbf{Th}	e Bourgain–Milman theorem	3
	Constantin Bilz, Gianmarco Brocchi, University of Birmingham		3
	1.1	Introduction	3
	1.2	The proof of Bourgain–Milman	4
	1.3	An alternative proof via Hörmander's theorem	5

1 The Bourgain–Milman theorem

A summary written by Constantin Bilz and Gianmarco Brocchi after Bourgain–Milman [2] and Nazarov [5]

Abstract

We present the Bourgain–Milman theorem on Mahler's conjecture. We explain both the original proof [2] based on the geometry of normed spaces and Nazarov's proof [5] based on Hörmander's theorem.

1.1 Introduction

Let $K \subset \mathbb{R}^n$ be a convex centrally symmetric bounded open and absorbing set and let $K^\circ = \{x \in \mathbb{R}^n : |\langle x, y \rangle| \le 1 \text{ for all } y \in K\}$ be the *polar set* of K. Let vol denote *n*-dimensional volume and let B_n be the *n*-dimensional euclidean ball.

Consider the affine invariant quantity vol $K \cdot \text{vol } K^{\circ}$. It holds that

$$\frac{4^n}{(n!)^2} \le \operatorname{vol} K \cdot \operatorname{vol} K^\circ \le (\operatorname{vol} B_n)^2.$$

The upper bound is sharp and was obtained by Santaló [7], improving on the upper bound 4^n established earlier by Mahler [4]. The lower bound was also proved by Mahler and he conjectured that it can be improved to

$$\operatorname{vol} C_n \cdot \operatorname{vol} C_n^\circ = \frac{4^n}{n!} \le \operatorname{vol} K \cdot \operatorname{vol} K^\circ \tag{1}$$

so that the symmetric hypercube C_n would be minimising. He proved this for n = 2. Partial progress towards (1) in higher dimensions has been made by several authors, see e.g. [1] and the citations in [2]. We will present two proofs of the following

Theorem 1 (Bourgain–Milman). There exists a constant c > 0 independent of the dimension d such that

$$\operatorname{vol} K \cdot \operatorname{vol} K^{\circ} \ge c^n \operatorname{vol} C_n \cdot \operatorname{vol} C_n^{\circ}.$$

$$\tag{2}$$

We remark that the largest known constant for which Theorem 1 holds is $c = \frac{\pi}{4}$ and this is due to Kuperberg [3].

1.2 The proof of Bourgain–Milman

Let μ_{n-1} be the normalized surface measure on the euclidean unit sphere S^{n-1} . We denote the norm on \mathbb{R}^n with unit ball K by $\|\cdot\|_K$. We write E(K) for the normed space $(\mathbb{R}^n, \|\cdot\|_K)$ and we write

$$M_K = \int_{S^{n-1}} \|x\|_K d\mu_{n-1}(x), \qquad d_K = \frac{\sup_{x \in S^{n-1}} \|x\|_K}{\inf_{x \in S^{n-1}} \|x\|_K}.$$

The (multiplicative) Banach-Mazur distance between $(\mathbb{R}^n, |\cdot|_2)$ and E(K) is

$$d_{E(K)} = \inf\{d_{u(K)} \mid u : \mathbb{R}^n \to \mathbb{R}^n \text{ linear isomorphism}\}.$$

The proof is based on an analysis of the linear structure of the convex body K starting with the following result.

Proposition 2. Let $\lambda \in (0,1)$. There exists a subspace F of E(K) such that

$$\dim F \ge \lambda n \quad and \quad \|x\|_K \ge c(1-\lambda)M_{K^\circ}^{-1}|x| \quad for \ any \ x \in F.$$

Proof sketch. We apply the isoperimetric inequality on S^{n-1} to the geodesic $\pi/4$ -neighbourhood $A_{\pi/4}$ of the set $A = \{ \|x\|_{K^{\circ}} \leq 2M_{K^{\circ}} \}$. For any k < n we hence find a k-dimensional subspace F that has a large intersection with $A_{\pi/4}$, namely

$$\mu_{k-1}(A_{\pi/4} \cap F) \ge 1 - \frac{\operatorname{vol}_{n-2} S^{n-2}}{\operatorname{vol}_{n-1} S^{n-1}} \int_0^{\pi/4} \sin^{n-2} t \, dt.$$

If $\tau \sim 1 - k/n$ and $x \in F \cap S^{n-1}$, then this implies

$$\mu_{k-1}(A_{\pi/4} \cap F) > 1 - \mu_{k-1}(B_{\pi/4-\tau}(x))$$

where $B_{\epsilon}(x) \subset F \cap S^{n-1}$ is the ball with respect to geodesic distance. Then we have $F \cap S^{n-1} \subset A_{\pi/2-\tau}$. This implies the proposition.

We will combine this with an upper bound on $M_{K^{\circ}}$. Such a bound is provided by the following result which is well-known in the geometry of Banach spaces.

Proposition 3. There is a linear isomorphism $u : \mathbb{R}^n \to \mathbb{R}^n$ such that

$$M_{u(K)} \cdot M_{u(K)^{\circ}} \le C(1 + \log d_{E(K)})^2.$$

We can now prove the following "subspace of quotient" result.

Lemma 4. Let $\lambda \in (0,1)$. Then there exists a subspace F of \mathbb{R}^n and a quotient space G of F such that

dim
$$G \ge \lambda n$$
 and $d_G \le C(1-\lambda)^{-2}(1+\log d_{E(K)})^2$

Proof sketch. We apply Proposition 2 twice. First, we find a subspace F of E(K) with dim $F \ge \sqrt{\lambda}n$ and by duality

$$||x||_{K^{\circ}} \le C(1-\sqrt{\lambda})^{-1}M_{K^{\circ}}|x| \quad \text{for any } x \in F^*.$$

Here F^* denotes the dual space of F. Secondly, we find a subspace G of F^* such that dim $G \ge \lambda n$ and

$$||x||_{K^{\circ}} \ge c(1-\sqrt{\lambda})M_K^{-1}|x| \quad \text{for any } x \in G.$$

Now we replace K by the u(K) from Proposition 3 and use the definition of d_G to complete the proof.

Sketch of proof of Theorem 1. Fix an integer N. For $n \leq N$ let $C_n(t)$ be the class of convex bodies K in \mathbb{R}^n for which $d_{E(K)} \leq t$. We write

$$\sigma(t) = \inf_{\substack{n \le N \\ K \in \mathcal{C}_n(t)}} \left(\frac{\operatorname{vol}_n K \cdot \operatorname{vol}_n K^\circ}{(\operatorname{vol}_n B_n)^2} \right)^{1/n}.$$

Using Lemma 4 we will show in the talk that

$$\sigma(t) \ge c^{\frac{1}{\log t}} \sigma(C(\log t)^6)$$

with constants independent of N. This inequality implies a uniform lower bound for $\sigma(t)$ which proves the theorem.

1.3 An alternative proof via Hörmander's theorem

We can prove (2) constructing an analytic function on \mathbb{C}^n with good decay property. By the Paley–Wiener theorem, given any $g \in L^2(K^\circ)$ its Fourier transform $f(w) = \int_{K^\circ} g(v) e^{-i\langle w, v \rangle} dv$ extends to an entire function on \mathbb{C}^n . Applying Cauchy–Schwarz $|f(0)|^2 \leq ||g||^2_{L^2(K^\circ)}$ vol K° , and Plancherel $||f||^2_{L^2(\mathbb{R}^n)} = (2\pi)^n ||g||^2_{L^2(K^\circ)}$ we have the lower bound

vol
$$K^{\circ} \ge (2\pi)^n \frac{|f(0)|^2}{\|f\|_{L^2(\mathbb{R}^n)}^2}.$$

We want an entire function which $L^2(\mathbb{R}^n)$ -norm is not too large compared with its value at the origin. We look for such a function in a Bergman space with Hörmander type weight, i.e. $L^2(\mathbb{C}^n, e^{-\varphi})$ where φ is plurisubharmonic.

Let T_K be the (horizontal) tube domain $\{x + iy : x \in \mathbb{R}^n, y \in K\}$ and consider the Bergman space $A^2(T_K) = \{$ analytic functions on $T_K \} \cap L^2(T_K)$.

This is a Hilbert space with reproducing kernel

$$\mathcal{K}(z,w) = \int_{\mathbb{R}^n} \frac{e^{i\langle z - \bar{w}, v \rangle}}{\int_K e^{-2\langle x, v \rangle} \mathrm{d}x} \frac{\mathrm{d}v}{(2\pi)^n}.$$

An application of Cauchy–Schwarz gives

$$|f(0)|^{2} = \left| \int_{T_{K}} \mathcal{K}(0, w) f(w) \mathrm{d}w \right|^{2} \le \int |\mathcal{K}(0, w)|^{2} \int |f(w)|^{2} = \mathcal{K}(0, 0) ||f||^{2}_{A^{2}(T_{K})}$$

from which we have the lower bound for $\mathcal{K}(0,0)$

$$\frac{|f(0)|^2}{\|f\|_{A^2(T_K)}^2} \le \mathcal{K}(0,0) = \int_{\mathbb{R}^n} \frac{1}{\int_K e^{-2\langle x,v\rangle} \mathrm{d}x} \frac{\mathrm{d}v}{(2\pi)^n} \le \frac{n!}{\pi^n} \frac{\mathrm{vol}\, K^\circ}{\mathrm{vol}\, K}$$

and the upper one by using the convexity of $x \mapsto e^{-\langle x, v \rangle}$ and optimising in v.

Up to affine linear transformations, we can assume that K contains the ball B(0,r). By the John's ellipsoid theorem, $K \subset B(0,R)$ with $R/r \leq \sqrt{n}$. For any $t \in K^{\circ}$, the Hermitian product $z \mapsto \langle z, t \rangle$ maps T_K in the strip $S = \{\zeta \in \mathbb{C} : |\Im(\zeta)| < 1\}$, while the conformal map

$$\phi(\zeta) = \frac{4}{\pi} \frac{e^{\frac{\pi}{2}\zeta} - 1}{e^{\frac{\pi}{2}\zeta} + 1}$$

maps the strip S to the disk $D(0, \frac{4}{\pi})$. Consider the set

$$K_{\mathbb{C}} := \{ z \in \mathbb{C}^n : |\langle z, t \rangle| \le 1, \forall t \in K^{\circ} \} \subset T_K.$$

Note that $K_{\mathbb{C}}$ contains $\frac{1}{\sqrt{2}}(K+iK)$. It is enough to construct an analytic function inside $K_{\mathbb{C}}$. For this purpose we will use the Hörmander's theorem.

Definition 5. A function $\varphi \colon \Omega \subset \mathbb{C}^n \to \mathbb{R}$ is strictly plurisubharmonic if there exists $\tau > 0$ such that

$$\langle H(z)w,w\rangle \geq \tau |w|^2, \quad \forall w \in \mathbb{C}^n, \forall z \in \Omega$$

where H is the Hermitian matrix $H = \left(\frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j}\right)_{i,j=1}^n$.

Theorem 6 (Hörmander). Let $\Omega \subset \mathbb{C}^n$ be an open, pseudoconvex domain, and let $\varphi \colon \Omega \to \mathbb{R}$ be strictly plurisubharmonic for a $\tau > 0$. For any (0, 1)form ω on Ω with $\overline{\partial}\omega = 0$, there exists a solution h of $\overline{\partial}h = \omega$ in Ω satisfying

$$\int_{\Omega} |h|^2 e^{-\varphi} \mathrm{d}z \le \tau^{-1} \int_{\Omega} |\omega|^2 e^{-\varphi} \mathrm{d}z.$$

We take the plurisubharmonic function φ on a shrunk version of $K_{\mathbb{C}}$:

$$\varphi(z) = \frac{|\Im(z)|^2}{R^2} + \log \sup_{t \in K^\circ} |\phi(\langle z, t \rangle)|^{2n}.$$

The first term enforces the strict plurisubharmonicity on any ball of radius $\delta < R$ with $\tau = \delta^2/R^2$. The second term ensures that the function h promised by the theorem will vanish at 0, as soon as $\int |\omega|^2 e^{-\varphi}$ is finite. Indeed, since $\phi(0) = 0$ and $\phi'(0) = 1$, using Taylor we see that $|\phi(\zeta)| \sim |\zeta|$ near the origin, and so $e^{-\varphi} \sim |z|^{-2n}$ which is not locally integrable at 0. Also note that $\varphi(z) \leq 2n \log(4/\pi) + 1$ for $z \in K_{\mathbb{C}}$.

Fix a small δ and let g be a cut-off function on $\delta K_{\mathbb{C}}$. Applying the Hörmander theorem to $-\bar{\partial}g$ produces h such that $\bar{\partial}(h+g) = 0$. Call f = h+g this holomorphic extension of g. Then f(0) = 1 and

$$\begin{aligned} \|f\|_{A^{2}(T_{K})}^{2} &\leq 2(\|h\|_{L^{2}(T_{K})}^{2} + \|g\|_{L^{2}(T_{K})}^{2}) \\ &\leq 2(\|e^{\varphi}\|_{L^{\infty}}R^{2}\delta^{-2}\|\bar{\partial}g\|_{L^{2}(e^{-\varphi})}^{2} + \|g\|_{L^{2}}^{2}). \end{aligned}$$

One can choose g appropriately so that $||f||^2_{A^2(T_K)} \leq \left(\frac{4}{\pi}\right)^{2n} e^{o(n)} (\operatorname{vol} K)^2$ as $\delta \to 0$. This gives the lower bound

$$\left(\frac{\pi}{4}\right)^{2n} \frac{e^{-o(n)}}{(\operatorname{vol} K)^2} \le \mathcal{K}(0,0) \le \frac{n!}{\pi^n} \frac{\operatorname{vol} K^\circ}{\operatorname{vol} K}.$$

One can remove the exponential factor with a "tensor power trick" to obtain

$$\left(\frac{\pi}{4}\right)^{2n} \le \frac{n!}{\pi^n} \operatorname{vol} K^\circ \operatorname{vol} K$$

which gives the value $c = \left(\frac{\pi}{4}\right)^3$ in (2).

References

- Bambah, R. P. "Polar Reciprocal Convex Bodies." Math. Proc. Camb. Philos. Soc. 51, no. 2 (1955): 377–78.
- [2] Bourgain, Jean, and Vitaly D. Milman. "New volume ratio properties for convex symmetric bodies in \mathbb{R}^n ." *Invent. Math.* 88, no. 2 (1987): 319–340.
- [3] Kuperberg, Greg. "From the Mahler conjecture to Gauss linking integrals." *Geom. Funct. Anal.* 18, no. 3 (2008): 870–892.
- [4] Mahler, Kurt. "Ein Übertragungsprinzip für konvexe Körper." Časopis Pěst. Mat. Fys. 68, no. 3–4 (1939): 93–102.
- [5] Nazarov, Fedor. "The Hörmander Proof of the Bourgain–Milman Theorem." In *Geometric Aspects of Functional Analysis*, pp. 335–343. Springer, Berlin, Heidelberg, 2012.
- [6] Nazarov, Fedor, Fedor Petrov, Dmitry Ryabogin, and Artem Zvavitch.
 "A remark on the Mahler conjecture: local minimality of the unit cube." Duke Math. J. 154, no. 3 (2010): 419–430.
- [7] Santaló, Luis A. "Un invariante afin para los cuerpos convexos del espacio de n dimensiones." *Portugaliae Math.* 8, no. 4 (1949): 155–161.

CONSTANTIN BILZ, UNIVERSITY OF BIRMINGHAM *email:* CXB1008@student.bham.ac.uk

GIANMARCO BROCCHI, UNIVERSITY OF BIRMINGHAM *email:* G.Brocchi@pgr.bham.ac.uk