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1 The Bourgain—-Milman theorem

A summary written by Constantin Bilz and Gianmarco Brocchi
after Bourgain—Milman [2] and Nazarov [5]

Abstract

We present the Bourgain-Milman theorem on Mahler’s conjecture.
We explain both the original proof [2] based on the geometry of normed
spaces and Nazarov’s proof [5] based on Hérmander’s theorem.

1.1 Introduction

Let K C R™ be a convex centrally symmetric bounded open and absorbing
set and let K° = {x € R": |(z,y)| < 1forall y € K} be the polar set of
K. Let vol denote n-dimensional volume and let B,, be the n-dimensional
euclidean ball.

Consider the affine invariant quantity vol K - vol K°. It holds that

4n
—— <volK -vol K° < (vol B,)?.
(nl)?
The upper bound is sharp and was obtained by Santalé [7], improving on the

upper bound 4" established earlier by Mahler [4]. The lower bound was also
proved by Mahler and he conjectured that it can be improved to

n

4
vol Gy, - vol € = — < vol K - vol K* (1)
n!

so that the symmetric hypercube C),, would be minimising. He proved this
for n = 2. Partial progress towards (1) in higher dimensions has been made
by several authors, see e.g. [1] and the citations in [2]. We will present two
proofs of the following

Theorem 1 (Bourgain-Milman). There exists a constant ¢ > 0 independent
of the dimension d such that

vol K - vol K° > " vol C,, - vol C;. (2)

We remark that the largest known constant for which Theorem 1 holds
is ¢ = 7 and this is due to Kuperberg [3].



1.2 The proof of Bourgain—Milman

Let u,_1 be the normalized surface measure on the euclidean unit sphere
Sm1. We denote the norm on R™ with unit ball K by |[|-||x. We write E(K)
for the normed space (R",||-||x) and we write

_ supego ]k
infxesn_1 H.’IHK

A@z/ Il dpns(2),  dc
Snfl

The (multiplicative) Banach—Mazur distance between (R™, |-|o) and E(K) is
dpk)y = inf{du) | v : R"™ — R" linear isomorphism}.

The proof is based on an analysis of the linear structure of the convex body
K starting with the following result.

Proposition 2. Let A € (0,1). There ezists a subspace F' of E(K) such that
dim F > An  and |z||x > c(1 — \)Mgilx| for any x € F.

Proof sketch. We apply the isoperimetric inequality on S™~! to the geodesic
7 /4-neighbourhood A4 of the set A = {||z||xe < 2Mkgo}. For any k < n
we hence find a k-dimensional subspace F' that has a large intersection with
Az /s, namely

VOln,Q Sn—Q /ﬂ—/4 . on—
(A NF)y>1 - ———=— =2 ¢ dt.
pe—1(Agys N E) > ol 51 ), o

If7~1—k/nand x € FNS™ ! then this implies

,L[/k71<A7T/4 N F) >1-— ,ukfl(Bﬁ/4—T('x))

where B.(z) C F'NS™ ! is the ball with respect to geodesic distance. Then
we have F'N S"™1 C A, /5_,. This implies the proposition. O

We will combine this with an upper bound on Mg.. Such a bound is pro-
vided by the following result which is well-known in the geometry of Banach
spaces.

Proposition 3. There is a linear isomorphism u : R™ — R"™ such that

Mu(K) . Mu(K)O < C(l + 10g dE(K))Q.
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We can now prove the following “subspace of quotient” result.

Lemma 4. Let A\ € (0,1). Then there exists a subspace F' of R" and a
quotient space G of F' such that

dimG > A and dg < C(1— N1+ logdprx))>.

Proof sketch. We apply Proposition 2 twice. First, we find a subspace F' of
E(K) with dim F' > VAn and by duality

2] e < C(1 — VA Mgo|x| for any z € F*.

Here F* denotes the dual space of F'. Secondly, we find a subspace G of F*
such that dim G > An and

Ko > (1= VAN Mg x| for any z € G.

]
Now we replace K by the u(K) from Proposition 3 and use the definition of
dg to complete the proof. O

Sketch of proof of Theorem 1. Fix an integer N. For n < N let C,(t) be the
class of convex bodies K in R" for which dgx) <t. We write

) vol,, K - vol,, K°\1/»
7(t) = ot ( (vol,, B,)? )
KeCn(t) e

Using Lemma 4 we will show in the talk that
o(t) > cesio(C(logt)?)
with constants independent of N. This inequality implies a uniform lower

bound for o(t) which proves the theorem. O

1.3 An alternative proof via Hormander’s theorem

We can prove (2) constructing an analytic function on C" with good de-
cay property. By the Paley—Wiener theorem, given any g € L*(K°) its
Fourier transform f(w) = [, g(v)e **’dv extends to an entire function on



C". Applying Cauchy-Schwarz |f(0)]*> < ||g||? T2(xe) VOLK®, and Plancherel
HfH%%Rn) = (27r)anH%2(Ko) we have the lower bound

_fOF

vol K° > (2m)" .
LQ(Rn

We want an entire function which L?(R™)-norm is not too large compared

with its value at the origin. We look for such a function in a Bergman space

with Hormander type weight, i.e. L?(C", e~%?) where ¢ is plurisubharmonic.
Let Tk be the (horizontal) tube domain {x +iy: = € R",y € K} and

consider the Bergman space A%(Tk) = {analytic functions on Ty} N L?*(Tk).
This is a Hilbert space with reproducing kernel

z(z w,v) dU

An application of Cauchy—SchwarZ gives

| kwws wyial < [I0.0P [17@F = .01 0w,

from which we have the lower bound for (0, 0)

K(z,w) =

F(0)* =

|f( )2 B 1 do n! vol K°
< K(0,0) = o fK e~2@vdy (27)" ~ 7" vol K

T o —

and the upper one by using the convexity of z — e~{** and optimising in v.

Up to affine linear transformations, we can assume that K contains the
ball B(0,r). By the John’s ellipsoid theorem, K C B(0, R) with R/r < \/n.
For any ¢t € K°, the Hermitian product z ~ (z,t) maps Tk in the strip
S={CeC: ()] < 1}, while the conformal map

4e3¢—1

¢(¢) = —

mezl +1
maps the strip S to the disk D(0,2). Consider the set
Ke:={2€C": |(z,t)] <1,Vt € K°} C Tk.

Note that K¢ contains \%(K +iK). It is enough to construct an analytic
function inside K¢. For this purpose we will use the Hormander’s theorem.
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Definition 5. A function ¢: 2 C C* — R is strictly plurisubharmonic if
there exists T > 0 such that

(H(2)w,w) > 7lw|?, Yw e C",¥z €N

2 n

where H 1s the Hermitian matric H = 4 cp_
8zi82j
Theorem 6 (Hormander). Let Q C C" be an open, pseudoconver domain,
and let p: Q@ — R be strictly plurisubharmonic for a T > 0. For any (0,1)-
form w on Q with Ow = 0, there exists a solution h of Oh = w in Q) satisfying

/]h|2e_‘pdz §7_1/|w|26_“’dz.
Q Q

We take the plurisubharmonic function ¢ on a shrunk version of Kc¢:

o(2) = POE L 1og suplof(z, e

teK®°

2,j=1

The first term enforces the strict plurisubharmonicity on any ball of radius
§ < Rwith 7 = §?/R?. The second term ensures that the function s promised
by the theorem will vanish at 0, as soon as [|w|*e™¢ is finite. Indeed, since
¢(0) = 0 and ¢'(0) = 1, using Taylor we see that |¢(()| ~ || near the origin,
and so e™¥ ~ |[z|7>" which is not locally integrable at 0. Also note that
o(z) < 2nlog(4/m) + 1 for z € K.

Fix a small 0 and let g be a cut-off function on dKc. Applying the
Hormander theorem to —dg produces h such that d(h+g) = 0. Call f = h+g
this holomorphic extension of g. Then f(0) =1 and

||f||?42(TK) < 2(||h||%2(TK) + ||9||2L2(TK))
< 2([[e?]| Lo R*072(|0g |72 (o) + 1l91I72)-

One can choose g appropriately so that ||f||?42(TK) < (%)2” e°™(vol K)? as
0 — 0. This gives the lower bound

m\2n e~ n! vol K°
-] —— < K(0,0) < — .
(4) (vol K)2 — (0, )_7'[‘” vol K

One can remove the exponential factor with a “tensor power trick” to obtain

2n |
(f) < ol K°vol K
4 Tn

which gives the value ¢ = (%)3 in (2).
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