The Bourgain–Milman (via Hörmander's) theorem

Gianmarco Brocchi, after Fedor Nazarov

September 25, 2019

Reduce the problem to prove a lower bound for $\operatorname{vol} K \cdot \operatorname{vol} K^{\circ}$ to constructing an analytic function on \mathbb{C}^n with good decay property.

By the Paley–Wiener theorem, given any $g \in L^2(K^\circ)$ its Fourier transform $f(w) = \int_{K^\circ} g(v) e^{-i\langle w,v\rangle} dv$ extends to an entire function on \mathbb{C}^n . Applying Cauchy–Schwarz $|f(0)|^2 \leq ||g||_{L^2(K^\circ)}^2$ vol K° , and Plancherel $||f||_{L^2(\mathbb{R}^n)}^2 = (2\pi)^n ||g||_{L^2(K^\circ)}^2$ we have the lower bound

vol
$$K^{\circ} \ge (2\pi)^n \frac{|f(0)|^2}{\|f\|_{L^2(\mathbb{R}^n)}^2}$$

We want an entire function which $L^2(\mathbb{R}^n)$ -norm is not too large compared with its value at the origin. We look for such a function in a Bergman space with Hörmander type weight, i.e. $L^2(\mathbb{C}^n, e^{-\varphi})$ where φ is plurisubharmonic.

Let T_K be the (horizontal) tube domain $\{x + iy : x \in \mathbb{R}^n, y \in K\}$ and consider the Bergman space $A^2(T_K) = \{$ analytic functions on $T_K\} \cap L^2(T_K)$.

This is a Hilbert space with reproducing kernel, i.e. for any $f \in A^2(T_K)$ the evaluation at a point z can be written as $f(z) = \int_{T_K} \mathcal{K}(z, w) f(w) dw$ where \mathcal{K} is

$$\mathcal{K}(z,w) = \int_{\mathbb{R}^n} \frac{e^{i\langle z - \bar{w}, v \rangle}}{\int_K e^{-2\langle x, v \rangle} \mathrm{d}x} \frac{\mathrm{d}v}{(2\pi)^n}$$

An application of Cauchy–Schwarz gives

$$|f(0)|^{2} = \left| \int_{T_{K}} \mathcal{K}(0, w) f(w) \mathrm{d}w \right|^{2} \le \int |\mathcal{K}(0, w)|^{2} \int |f(w)|^{2} = \mathcal{K}(0, 0) ||f||^{2}_{A^{2}(T_{K})}$$

from which the lower bound follows

$$\frac{|f(0)|^2}{\|f\|_{A^2(T_K)}^2} \le \mathcal{K}(0,0) = \int_{\mathbb{R}^n} \frac{1}{\int_K e^{-2\langle x,v\rangle} \mathrm{d}x} \frac{\mathrm{d}v}{(2\pi)^n} \le \frac{n!}{\pi^n} \frac{\mathrm{vol}\, K^\circ}{\mathrm{vol}\, K}.$$

and the upper one using the convexity of $x \mapsto e^{-\langle x,v \rangle}$ and optimising in v. Remark 1. Let $||y||_{K^{\circ}} = \inf\{\lambda > 0 \colon \lambda K^{\circ} \ni y\}$ be the Minkowski functional of K° . By convexity of $x \mapsto e^{-\langle x,v \rangle}$

$$\int_{K} e^{-2\langle x,y\rangle} \mathrm{d}x \ge 2^{-n} \operatorname{vol} K e^{\|-y\|_{K^{q}}}$$

Up to affine linear transformations, we can assume that K contains the ball B(0,r). By the John's ellipsoid theorem $K \subset B(0,R)$ with $R/r \leq \sqrt{n}$. For any $t \in K^{\circ}$, the Hermitian product $z \mapsto \langle z, t \rangle$ maps T_K in the strip $S = \{\zeta \in \mathbb{C} : |\Im(\zeta)| < 1\}$, while the conformal map

$$\phi(\zeta) = \frac{4}{\pi} \frac{e^{\frac{\pi}{2}\zeta} - 1}{e^{\frac{\pi}{2}\zeta} + 1}$$

maps the strip S to the disk $D(0, \frac{4}{\pi})$. Consider the set

$$K_{\mathbb{C}} := \{ z \in \mathbb{C}^n : |\langle z, t \rangle| \le 1, \forall t \in K^{\circ} \} \subset T_K.$$

Note that $K_{\mathbb{C}}$ contains $\frac{1}{\sqrt{2}}(K+iK)$. It is enough to construct an analytic function inside $K_{\mathbb{C}}$. For this purpose we will use the Hörmander's theorem.

Definition 1. A function $\varphi \colon \Omega \subset \mathbb{C}^n \to \mathbb{R}$ is strictly plurisubharmonic if there exists $\tau > 0$ such that

$$\langle H(z)w,w\rangle \ge \tau |w|^2, \quad \forall w \in \mathbb{C}^n, \forall z \in \Omega$$

where *H* is the Hermitian matrix $H = \left(\frac{\partial^2 \varphi}{\partial z_i \partial \bar{z_j}}\right)_{i,j=1}^n$.

Theorem 1 (Hörmander). Let $\Omega \subset \mathbb{C}^n$ be an open, pseudoconvex domain, and let $\varphi \colon \Omega \to \mathbb{R}$ be strictly plurisubharmonic for a $\tau > 0$. For any (0, 1)form ω on Ω with $\bar{\partial}\omega = 0$, there exists a solution h of $\bar{\partial}h = \omega$ in Ω satisfying

$$\int_{\Omega} |h|^2 e^{-\varphi} \mathrm{d}z \leq \tau^{-1} \int_{\Omega} |\omega|^2 e^{-\varphi} \mathrm{d}z.$$

We take the plurisubharmonic function φ on a shrunk version of $K_{\mathbb{C}}$:

$$\varphi(z) = \frac{|\Im(z)|^2}{R^2} + \log \sup_{t \in K^\circ} |\phi(\langle z, t \rangle)|^{2n}.$$

The first term enforces the strict plurisubharmonicity on any ball of radius $\delta < R$ with $\tau = \delta^2/R^2$. The second term ensures that the function h promised by the theorem will vanish at 0, as soon as $\int |\omega|^2 e^{-\varphi}$ is finite. Indeed, since $\phi(0) = 0$ and $\phi'(0) = 1$, using Taylor we see that $|\phi(\zeta)| \sim |\zeta|$ near the origin, and so $e^{-\varphi} \sim |z|^{-2n}$ which is not locally integrable at 0. Also note that $\varphi(z) \leq 2n \log(4/\pi) + 1$ for $z \in K_{\mathbb{C}}$.

Fix a small δ and let g be a cut-off function on $\delta K_{\mathbb{C}}$. Applying the Hörmander theorem to $-\bar{\partial}g$ produces h such that $\bar{\partial}(h+g) = 0$. Call f = h+g this holomorphic extension of g. Then f(0) = 1 and

$$\begin{aligned} \|f\|_{A^{2}(T_{K})}^{2} &\leq 2(\|h\|_{L^{2}(T_{K})}^{2} + \|g\|_{L^{2}(T_{K})}^{2}) \\ &\leq 2(\|e^{\varphi}\|_{L^{\infty}}R^{2}\delta^{-2}\|\bar{\partial}g\|_{L^{2}(e^{-\varphi})}^{2} + \|g\|_{L^{2}}^{2}) \end{aligned}$$

One can choose g appropriately so that as $\delta \to 0 ||f||_{A^2(T_K)}^2 \leq \left(\frac{4}{\pi}\right)^{2n} e^{o(n)} (\operatorname{vol} K)^2$. Then

$$\left(\frac{\pi}{4}\right)^{2n} \frac{e^{-o(n)}}{\operatorname{vol}(K)^2} \le \mathcal{K}(0,0) \le \frac{n!}{\pi^n} \frac{\operatorname{vol} K^\circ}{\operatorname{vol} K}$$

After removing the exponential with a "tensor power trick", obtain

$$\left(\frac{\pi}{4}\right)^{2n} \le \frac{n!}{\pi^n} \operatorname{vol} K^\circ \operatorname{vol} K.$$

which gives the value $c = \left(\frac{\pi}{4}\right)^3$ if one multiplies by the Mahler volume of the hypercube C_n in \mathbb{R}^n :

$$\operatorname{vol} C_n^\circ \operatorname{vol} C_n = \frac{4^n}{n!}$$

A The John ellipsoid

Following §2.4 in the lecture notes "Dyadic analysis and weights" by Tuomas Hytönen, 2017.

Theorem 2 (John ellipsoid theorem). Let $K \subset \mathbb{R}^d$ be a compact convex symmetric set. Then there exists a closed ellipsoid E centered at the origin such that $E \subset K \subset \sqrt{dE}$.

Lemma 3. Let $K \subset \mathbb{R}^d$ be a compact non-empty set. Among all closed ellipsoid $E \subset K$ centered at the origin there is one of maximal measure.

Idea of the proof. The ellipsoid E is the image of a unit ball B via a matrix $A \in \operatorname{Mat}(\mathbb{R}^d) \cong \mathbb{R}^{d \times d}$. The condition $AB \subset K$ forces the set of such matrices to be *compact*. The function $|E| = \det(A)$ is continuous, and so it has a maximum on a compact set.

Let $B \subset \mathbb{R}^d$ the unit ball. Given a point $p = (p_1, \vec{0})$, there is an ellipsoid E in the convex hull of $B \cup \{p, -p\}$.

Lemma 4. Let $K \subset \mathbb{R}^d$ be a convex, symmetric body. Suppose that the unit ball B is the maximum ellipsoid among all origin-centered ellipsoid $E \subset K$. Then $K \subset \sqrt{dB}$.

Idea of the proof. Take a point $p \in K$, then $-p \in K$. There is an ellipsoid E in the K, which contains the convex hull of $B \cup \{p, -p\}$. The family of such ellipsoids is given by E_t for $t \in (0, 1)$. Since $B = E_1$ has the maximal measure among the ellipsoid, $\frac{d}{dt}|E_t|^2|_{t=1} \geq 0$ and by scaling property

$$\frac{\mathrm{d}}{\mathrm{d}t}|E_t|^2|_{t=1} = |B|^2(d-|p|^2) \ge 0$$

which gives $|p| \leq \sqrt{d}|B|$.

References

- Bambah, R. P. "Polar Reciprocal Convex Bodies." Math. Proc. Camb. Philos. Soc. 51, no. 2 (1955): 377–78.
- [2] Bourgain, Jean, and Vitaly D. Milman. "New volume ratio properties for convex symmetric bodies in \mathbb{R}^n ." *Invent. Math.* 88, no. 2 (1987): 319–340.
- [3] Kuperberg, Greg. "From the Mahler conjecture to Gauss linking integrals." Geom. Funct. Anal. 18, no. 3 (2008): 870–892.
- [4] Mahler, Kurt. "Ein Ubertragungsprinzip für konvexe Körper." Casopis Pěst. Mat. Fys. 68, no. 3–4 (1939): 93–102.

- [5] Nazarov, Fedor. "The Hörmander Proof of the Bourgain–Milman Theorem." In *Geometric Aspects of Functional Analysis*, pp. 335–343. Springer, Berlin, Heidelberg, 2012.
- [6] Nazarov, Fedor, Fedor Petrov, Dmitry Ryabogin, and Artem Zvavitch.
 "A remark on the Mahler conjecture: local minimality of the unit cube." Duke Math. J. 154, no. 3 (2010): 419–430.
- [7] Santaló, Luis A. "Un invariante afin para los cuerpos convexos del espacio de n dimensiones." *Portugaliae Math.* 8, no. 4 (1949): 155–161.

GIANMARCO BROCCHI, UNIVERSITY OF BIRMINGHAM *email:* G.Brocchi@pgr.bham.ac.uk