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We are interested in finding a solution to a (also nonlinear) differential equation
Flu] =0 (1)

where F' is a functional on some space of function V. Using variational methods, if F'
could be represented as a differential of another functional A, this means

A'=F

we can now look at critical points of A for a solution of our problem (1).
Here, instead of looking for critical points of A that are minimals, we look for critical
points that are saddle points.

1 Mountain Pass Theorem and generalizations

To be more clear; we start from a finite dimensional case.
Let V' be a finite vector space with a norm || - ||, and f: V — R a function.

Definition 1. A function f is said to be coercive if lim f(x) = +o0 as ||z| — +o0.

Notation 1. In the following, we will indicate the sublevel of f with
{f <c} ={x eV such that f(z) <c}.

On a finite dimensional space, the coercivity of f has implication on the topology of
sublevels, in fact:

Proposition 1. Let V be a finite dimensional normed vector space and f € C1(V).
If f is coercive the sublevels {f < ¢} are precompact.

Proof. We want to show that for all ¢ € R the closed set {f < ¢} is compact in V.
Let {vi,...,v,} be a unit basis of V, and B, = {x eV :|z|| <r}. Given ¢ € R, by

coercivity of f, there exist ¥ = min{reR: f(rv;) >cfori=1,... ,n}._It follows that
the sublevel {f < ¢} € By, so its closure is contained in the closed ball Br. This shows
that the closure of {f < ¢} is bounded, so it is compact in V. O

Now, we can deduce the existence of a critical point for f with some topological
hypothesis on a sublevel {f < c}.



Notation 2. Given two open sets A, B ¢ V', we indicate with I' the family of differential
paths from A to B, that is

['={y:[0,1] =V, 7(0) € A, 7(1) € B}.

Notation 3. If V' is endowed with a dot product {-,-) we can identify the linear appli-
cation df, as the dot product with an element of V' depending from the point z, that we
call Vf(x). We mean that

df.(v) =(Vf(x),v) VoeV.

Theorem 1 (Mountain Pass). Let V' be a finite dimensional vector space endowed with
a dot product {-,-y and let f: V — R be a smooth ! function. Suppose that f is coercive
and that the sublevel {f < ¢} is disconnected, i.e. there exist A, B <V such that

{f<c}=AuUB, AnB=.

Then

¢ e

s a critical value for f.

Proof. We argue by contradiction. Assume c is not a critical value for f, so Vf(x) # 0
for every x in {f = ¢}. Moreover, the sublevel {f = ¢} is compact, because the coercivity
of f. The vector field V f is continuous differentiable and it is never zero on a compact
set, so V f will be bounded away from zero? on {c — € < f < ¢ + ¢} for some ¢ > 0.

The the Cauchy problem:

0
%qb(u,t) = —Vf(qb(u, t))

&(u,0) =u

defines a flow ®(u,t) = vy(u) that moves the sublevel {f < c+ €} into the sublevel
{f < c—¢€} in a finite time. In fact, suppose f(u) — f(1¢(u)) < 2¢, then

t

o) = £(la) = = | < F()ds = [ IV )7 ds > 167

0
thus, starting from win {¢ — € < f < ¢ + €}, the image ¢;(u) remains in {¢ — € < f < ¢ + €}
only for t < 2¢/§%. For larger t, the flow 1y moves down u in the sublevel {f < ¢ — €}.
In the same way, every point of a path v(s) is moved down in the sublevel {f < ¢ — €}
by the flow v, while v(0) and (1) remain in A and B respectively. So, the new path
7 = 14(7y) belongs to I' yet, but

c<max f(x) <c—e<c
TEY

and this is absurd. Then exists a critical point z at level c. O

IFor our scope, it is enough take f € C%(V), to have Lipschitz continuity for the gradient and so
generate a flow.
e [Vf(@)|y=0>0



1.1 On Hilbert Space

Now we want to generalize this result to an infinite dimensional vector space.

In order to bounded away from zero the gradient V f on a open set containing the preim-
ages {f = c}, in the last proof we exploited the compactness of the sublevel of f. But, in
an infinite dimensional space, coercivity is not enough to have compact sublevel:

Counterexample 1. The norm || - || on a co-dimensional vector space H is coercive, but
its sublevels o
B,={xeH: |z| <r}

are never closed in the strong topology of H.

In order to have our implication, we will use a new assumption on f, due to Richard
Palais and Stephen Smale.

Definition 2 (Palais-Smale condition). A smooth function f: H — R on a Hilbert space
H satisfies Palais-Smale condition if any sequence {u,,}, . in H such that:

(i) flum) <c asm — ©
(i) Vf(um) — 0 in H
is a precompact sequence.

This means that {u,,},,y has a convergent subsequence.

Remark 1. We want to stress item (ii): the Vf — 0 as element in H. Equivalently
IVflly —0nR.

If f satisfies P.S., we have again the implication:
Vf#0 onA = Vf#0 onanopenset A, 2 A

We can now state the Mountain Pass Theorem for Hilbert infinite dimensional vector
space.

Theorem 2 (Mountain Pass, Hilbert co-dimension). Let H be an Hilbert space and
f: H —> R a smooth functional satisfying P.S. condition. If a sublevel {f < a} is not
connected, then

f(u) = ¢ =inf sup f(x)

vel' zey

1s a critical value for f.

Remark 2. Again, the weaker condition f € C?(H) it is enough to have Vf € C1(H), so
that V f is Lipschitz continuous and we can use the flow generated by V f.



1.2 On Banach Space

We try to generalize again the result on a Banach space V.

Here, in general, we can no longer identify df € V* as the inner product with a vector
field Vf in a canonical way, so we have to adapt a bit the Palais-Smale condition and to
use a different, locally Lipschitz, vector field.

Definition 3 (Palais-Smale condition for Banach space). A functional f € C*(V) on a
Banach space V' satisfies Palais-Smale condition if any sequence {u,},, .y such that:

(i) flum) <c asm — o
(i) df, — 0 in V*

is a precompact sequence.

This means that df — 0 in the dual space V*, or, equivalently, || df||,,» — 0 in R.

Definition 4 (Pseudo-gradient vector field). Given a function f: V. — R, a pseudo-
gradient vector field for f is a vector field defined on the complement of critical points

X: V\Crit(f) - V
such that for every u € V' the two conditions hold:
(&) [X(u)lly <2min{[[dfully., 1}
(b) dfu(X(u)) > [[dfully. min{[[dfully., 1}
Remark 3. The meaning of the bound above is the following:

[dfully. min{jfdfully. 1} <dfu(X(w), by (b)
and by (a): dfu(X(u)) < [[dful

X()lly < l[dful

v+ 2min {|[df,]

V* V*71}7

so when df, # 0, this leads to

min {|| dfully-, 1} < [| X (u)]l,, < 2min {||df,]|

veo 1

Note 1. The number 2 is not really important, for example other sources use

1
S min {][d,|

veo 1) < [X ()], < min{[[dfu|

veo 1}

What really matters it is that X turns out to be a locally Lipschitz vector field.

A remarkable result on a Banach space V, but also for only C! functional on Hilbert
space, is the following:

Lemma 1. Any f € CY(V) admits a pseudo-gradient vector field.



Proof. Consider V = V\Crit(f) and a vector field w: V — V. We take a cover {W (u)}, ¢
made up by neighbourhoods W (u) of u such that (a) and (b) holds for the field w for
every « € W(u). The space Visa (complete) metric space, so it is paracompact, and for
every cover {W(u)} there is a locally finite refinement {W;}, ; such that W; < W (w;).
We consider a Lipschitz partition of unity {;},.; subordinate to the cover {W;}
To sum up, we have the new pseudo-gradient field:

o) = Y pilww(u,).

el

€l

]

Remark 4. Considering a cut-off function n: V' — R that is zero in a neighbourhood of
Crit(f). We can extend the pseudo-gradient field X to a globally defined vector field

X VoV
u— n(u) X(u).

Given a vector field v, we can also consider the bounded vector field:

w(w) =) —— o wu) = () (7)) )
Lt o)

where ¢: R — R is a bounded Lipschitz function, i.e. 0 < ¢ < 1. This two fields are
globally defined and bounded on V', thus the flow generated by them is complete.

Moreover, we never use the fact that I' was a family of curves, but only that I" contains
invariant sets respect to the flow. This leads to the following

Definition 5 (Invariant set). Given a flow ®: V' x R — V, a family I" of subsets of V is
positively invariant for @ if

O(v,t)el’, Vyel,Vt=0.

Theorem 3 (Minimax principle). Let f be a C' functional satisfy P.S. on a Banach
space V. Suppose I' is a positive invariant set for the flow ®: V x R — V generated by
a pseudo-gradient vector field related to f. Then if

¢ = inf sup f(u)
vyel' uey

is finite, then c is a critical value for f.
Example 1. Changing the family I" we obtain classical inf and sup on V:

o If we take I' = {V'} as the whole set V', then

inf sup f(u) = sup f(u).

VeV ueV ueV
o If we take I' = {{u} : u € V'} as the set of all point in V, then

inf sup f(u) = 12‘1if(u)

ueV ueu



1.3 On Hilbert Manifolds
An Hilbert manifold M is a manifold modeled on an Hilbert space H. More precisely

Definition 6. An Hilbert manifold M is an Hausdorff topological space with a countable
base endowed with differentiable atlas where the charts take values in a fixed separable
Hilbert space.

See Klingenberg [Kl1i12] for further details.
Example 2. An Hilbert vector space is an Hilbert manifold with the only chart (id, H).
Example 3. An open subset U ¢ H has a natural Hilbert manifold structure.

If H is a vector space, for every p € H the tangent space T, H =~ H, thus we can endow
an Hilbert space with a Riemann metric g. This metric is simply the inner product of H
on every tangent space:

gp(u,v) :=(u,vyy VpeH, Yu,veT,H.

1.4 On Finsler Manifolds

In order to generalize again, we consider a Banach manifold M, that is a manifold in
which the charts have their image in a Banach space V.
We take a Banach vector bundle F' over M. A Finsler structure on F' is a map

[ F—R
such that:

o ||-Il,=1"1 g : F. — Ris an admissible norm for the Banach space 7' (u) = F,,

e taking ug € M, the trivialisation on a neighbourhood U of uy
x: 7 N U) - U x F,

the || -], is a norm on £, for every u e U.

Consider a manifold M with a Finsler structure on the tangent bundle T'M. The map

[-]I: TM —R

induces a Finsler structure on the co-tangent bundle 7*M. In fact, given ¢ € T* M, there
exist u € M such that ¢ € (T*M), = (T, M)*, so
I T M — R
o= el = llelly

where || - |7 is the norm induced on the dual space (T,,M)* by the norm || - ||, on T,M =V,

namely
lelly, = sup [e(v)].

veTy,
[lvll, <1
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Finally, the map || - || induces a distance on M:

dt

()

d(u,v) = imeO %y(t)

vyel

where I' = {y: [0,1] = M, v(0) = u,y(1) = v}. A sort of “infimum length” among paths
connecting u and v. We will say that M is complete if M is complete regard to this metric.
There is an analogous of pseudo-gradient vector field also on a M Finsler manifold:

Definition 7 (Pseudo-gradient vector field on manifolds). Given a function f: M — R,
a pseudo-gradient vector field for f is a vector field

v: M\Crit(f) - TM
such that for every u € M = M\Crit(f) the two conditions hold:
() [[o(w)l, < 2min{] £}, 1}
(b) dfu(v(w)) >min {||dfull; 1} [[dfull}
Finsler manifolds are paracompact sets, so
Lemma 2. Any functional f € C1(M) admits a pseudo-gradient vector field
v: M — TM.

Theorem 4 (Minimax principle). Let f be a C' functional satisfy P.S. on a Finsler
manifold M. Suppose I is a positive invariant set for the flow ®: M xR — M generated
by a pseudo-gradient vector field v related to f. Then if

¢ = inf sup f(u)

~yel' uey

18 finite, then c is a critical value for f.

2 Closed geodesics on sphere

It’s time to apply the theory above on the manifold of closed curves on a manifold M in
order to show the existence of a closed geodesic. This space is sometimes indicated with
AM (see for example [K1i12, KB10]), but here, to specify the use of Sobolev regularity
for our maps, we will use the notation:

H'(S' M) = {u: S* - M, |Ju||; < 0}.

More precisely, consider a manifold S and a Riemann manifold (M,g). The space
H'(S, M) is made up by all absolutely continuous maps u: S — M such that the quantity

| suertatey e as
S
is finite. We can also indicate gy«)(-,-) with || - Hi(t) or with (-, ), -

7



On this manifold we will consider the energy functional

1 .
Bu) = | il at.

Critical points of this functional will be geodesics on our Riemann manifold (M, g).
First, a more precise definition:

Definition 8 (Geodesic). Let (M, g) be a Riemann manifold and V be the Levi-Civita
connection related to g on M. A curve ¢ on a manifold M is a geodesic on M if its vector

field is parallel along o, that is
Va(t)a(t) = (.

2.1 A theorem by Birkhoff

We now consider the 2-sphere S? in R? with a generic Riemann metric g. For example
the one given by the restriction of the inner product in R* on every tangent space T},52.
Our energy functional F on the Riemann manifold (52, g) is

Bu) - % L " g (i(8), i(8)) .

We indicate with M the oo-dimensional manifold H'(S!, 5?), then:
1. The set Crit(E) in M are closed geodesics on S?;

2. There exists a closed non-trivial geodesic on S2.

We begin by specifying what we mean by the tangent space of M.

Tangent space Given a point u € M, the tangent space T,,M is the space of derivation
of the germs space Cj}(u), and because u is a curve, we can see at T,,M as a vector field
along u(t), so

T.M = {pe H' (S",R®) | p(9) € T,,9)S*} .

Critical points Since E: M — R, the Fréchet differential dE in the point u in the
direction ¢ is
dE,: T,M — TpwyR =R
p > dE,(p).

By definition, taking a curve v in M, v(t) = u(¥,t) such that v(0) = u(¢J,0) = u()) and
7(0) = ¢, then

TP ou o [PTPu Ou
o Otoy o9 ), ovot v

Now if u is a critical point for F| integrating by parts,

d 2T
AB() = B0, 1)l = a9 - L b dj.

21
dE,(¢) =0 = —J g dv,
0

since ¢ u vanishes, because both ¢ and u are periodic. Thus, for a critical point u, the
function w is orthogonal to ¢ for every ¢ € T, M. This means that the tangent component
of u is zero and Vi = 0, so u is a geodesic.

8



Existence of a closed geodesic To apply the Minimax principle (Theorem 4) we
need:

(i) a functional F satisfying the Palais-Smale condition on M;
(i) a class of invariant sets for the gradient flow generated by F;

(iii) the quantity inf sup E(u) = ¢ being greater than 0.
oel’ ueo
For details of item (i) see [Str00]. For the item (ii), we wish that the class of invariant
sets would contain closed loops on S?. Consider the latitude § and the longitude ¢ as
coordinates (#, ¢) on S?, where 0 € [—g, g] and ¢ € [0, 27].
A map f: S? — S?% induces a curve in H!(S*, S?).
In fact, for any fixed 6, the map =

t— f6,2cty
& e
is a closed loop on S2?. Thus, the map
SO
52

is a “curve” in our manifold H'(S', 5?).

us

This curve joins the two constant loops f (ig, ) =0 (i 2) = constant, the two poles.
So, from every path that fixes poles we can obtain a map on S

a(0) > (0, ).

Let o -
I'= {a: [_E’ 5] — M, o (i§> = constant},

and let
F={ocel';¥(o) = f ~idgsz}

the family of curves in H*(S', 5?) induced by maps on S? with topological degree 1. The
family F in not empty and it is invariant under the action of any diffeomorphism 1) of
M homotopic to identity which fixes constant maps. The diffeomorphisms () = ®(-, )
obtained by the negative flow generated by FE are homotopic to the identity and the
constant loops.

In conclusion, by the Theorem 4, the value

c¢=inf sup E(u)
oeF u=0o(0)

is a critical value for E. The respective critical point will be a closed geodesic on the
sphere. Now we have to check that this geodesic is not a trivial constant loop. We will
show that such critical point has positive energy.



Points with bounded energy We start showing that points in M (that actually are
“curves”) with bounded energy are uniformly %—Hélder continuous.
Take a point uw € M, this is a curve

u: 8t — (8%9)
V- u().

We can see u(t) as a periodic function in R? with values in S?, then

f Y i) dr

s

9 9 1/2
< f ||| dr < |9 — s|1/2 (f ﬂdr) < (|9 — s 2E(u))1/2.

S

lu(s) — u(o)| = \

The difference | — s| is bounded by m, so, if E(u) < ¢, we have that

|lu(s) —u(V)]| < V2me.

Positive energy Recall that a point with small energy E(u) < cis a Hélder continuous
bounded curve in R3. Since u is a loop, if v has small energy o, then u has also a small
diameter, where
diam(u) == sup |Ju(d) —u(d)] < a.
9,0€[0,27]

For small o, we can consider a small neighbourhood of S? containing all u such that their
energy F(u) is smaller than . We can shrink u to a constant loop u(¢yg):

us(p) = (1 — s)u(p) + su(epg), se[0,1].
We can also make a homotopy between () and o(0) = u(¢p). In fact
0.(0) =0((1—7r)0), rel0,1]

brings o(#) in the single point ¢(0) and so in a single loop u. The composition of the two
homotopies is a homotopy, so

0r50,0) =(1—=8)a((1 —7)0,¢0) +so((L —r)b,¢0), s,7€[0,1].

Now we have a homotopy between the corresponding maps f, (6, ¢) = V(o,4(9)), but

idg2 ~ f(6,0) = foo and  fi1 = f(0,¢0) = u(dy) = constant € S*.

This leads to an absurd, because we took o € F and we found an homotopy between
V(o) = f ~id and a constant map, that it is known to have different degree on S2.

2.2 Open Problems

It is proved that every compact manifold has a non-trivial closed geodesic. For example,
by minimising the energy functional £ on a non-trivial homotopy class of loops. It is
conjectured that every compact manifold would have infinitely many closed geodesics,
and this had been proved for several manifolds, but not for higher dimensional spheres
yet.
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