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We are interested in finding a solution to a (also nonlinear) differential equation

F rus “ 0 (1)

where F is a functional on some space of function V . Using variational methods, if F
could be represented as a differential of another functional A, this means

A1 “ F

we can now look at critical points of A for a solution of our problem (1).
Here, instead of looking for critical points of A that are minimals, we look for critical
points that are saddle points.

1 Mountain Pass Theorem and generalizations

To be more clear; we start from a finite dimensional case.
Let V be a finite vector space with a norm ‖ ¨ ‖, and f : V Ñ R a function.

Definition 1. A function f is said to be coercive if lim fpxq “ `8 as ‖x‖Ñ `8.

Notation 1. In the following, we will indicate the sublevel of f with

tf ă cu “ tx P V such that fpxq ă cu .

On a finite dimensional space, the coercivity of f has implication on the topology of
sublevels, in fact:

Proposition 1. Let V be a finite dimensional normed vector space and f P C1pV q.
If f is coercive the sublevels tf ă cu are precompact.

Proof. We want to show that for all c P R the closed set tf ă cu is compact in V .
Let tv1, . . . , vnu be a unit basis of V , and Br “ tx P V : ‖x‖ ă ru. Given c P R, by
coercivity of f , there exist r̄ “ min tr P R : fprviq ą c for i “ 1, . . . , nu. It follows that
the sublevel tf ă cu Ď Br̄, so its closure is contained in the closed ball B r̄. This shows
that the closure of tf ă cu is bounded, so it is compact in V .

Now, we can deduce the existence of a critical point for f with some topological
hypothesis on a sublevel tf ă cu.
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Notation 2. Given two open sets A,B Ă V , we indicate with Γ the family of differential
paths from A to B, that is

Γ “ tγ : r0, 1s Ñ V, γp0q P A, γp1q P Bu .

Notation 3. If V is endowed with a dot product x¨ , ¨y we can identify the linear appli-
cation dfx as the dot product with an element of V depending from the point x, that we
call ∇fpxq. We mean that

dfxpvq “ x∇fpxq , vy @ v P V.

Theorem 1 (Mountain Pass). Let V be a finite dimensional vector space endowed with
a dot product x¨ , ¨y and let f : V Ñ R be a smooth 1 function. Suppose that f is coercive
and that the sublevel tf ă cu is disconnected, i.e. there exist A,B Ă V such that

tf ă cu “ AYB, AXB “ H.

Then
c “ inf

γPΓ
max
xPγ

fpxq

is a critical value for f .

Proof. We argue by contradiction. Assume c is not a critical value for f , so ∇fpxq ‰ 0
for every x in tf “ cu. Moreover, the sublevel tf “ cu is compact, because the coercivity
of f . The vector field ∇f is continuous differentiable and it is never zero on a compact
set, so ∇f will be bounded away from zero2 on tc´ ε ď f ď c` εu for some ε ą 0.
The the Cauchy problem:

$

&

%

B

Bt
φpu, tq “ ´∇fpφpu, tqq

φpu, 0q “ u

defines a flow Φpu, tq “ ψtpuq that moves the sublevel tf ď c` εu into the sublevel
tf ď c´ εu in a finite time. In fact, suppose fpuq ´ fpψtpuqq ă 2ε, then

fpuq ´ fpψtpuqq “ ´

ż t

0

d

ds
fpψspuqq ds “

ż t

0

‖∇fpψspuqq‖2 ds ě tδ2,

thus, starting from u in tc´ ε ď f ď c` εu, the image ψtpuq remains in tc´ ε ď f ď c` εu
only for t ă 2ε{δ2. For larger t, the flow ψt moves down u in the sublevel tf ă c´ εu.
In the same way, every point of a path γpsq is moved down in the sublevel tf ă c´ εu
by the flow ψt, while γp0q and γp1q remain in A and B respectively. So, the new path
γ̃ “ ψtpγq belongs to Γ yet, but

c ă max
xPγ̃

fpxq ă c´ ε ă c

and this is absurd. Then exists a critical point x at level c.

1For our scope, it is enough take f P C2pV q, to have Lipschitz continuity for the gradient and so
generate a flow.

2i.e. ‖∇fpxq‖V ě δ ą 0
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1.1 On Hilbert Space

Now we want to generalize this result to an infinite dimensional vector space.
In order to bounded away from zero the gradient ∇f on a open set containing the preim-
ages tf “ cu, in the last proof we exploited the compactness of the sublevel of f . But, in
an infinite dimensional space, coercivity is not enough to have compact sublevel:

Counterexample 1. The norm ‖ ¨ ‖ on a 8-dimensional vector space H is coercive, but
its sublevels

Br “ tx P H : ‖x‖ ď ru

are never closed in the strong topology of H.

In order to have our implication, we will use a new assumption on f , due to Richard
Palais and Stephen Smale.

Definition 2 (Palais-Smale condition). A smooth function f : H Ñ R on a Hilbert space
H satisfies Palais-Smale condition if any sequence tumumPN in H such that:

(i) fpumq ď c as mÑ 8

(ii) ∇fpumq Ñ 0 in H

is a precompact sequence.

This means that tumumPN has a convergent subsequence.

Remark 1. We want to stress item (ii): the ∇f Ñ 0 as element in H. Equivalently
‖∇f‖H Ñ 0 in R.

If f satisfies P.S., we have again the implication:

∇f ‰ 0 on A ñ ∇f ‰ 0 on an open set Aε Ľ A

We can now state the Mountain Pass Theorem for Hilbert infinite dimensional vector
space.

Theorem 2 (Mountain Pass, Hilbert 8-dimension). Let H be an Hilbert space and
f : H Ñ R a smooth functional satisfying P.S. condition. If a sublevel tf ă au is not
connected, then

fpuq “ c “ inf
γPΓ

sup
xPγ

fpxq

is a critical value for f .

Remark 2. Again, the weaker condition f P C2pHq it is enough to have ∇f P C1pHq, so
that ∇f is Lipschitz continuous and we can use the flow generated by ∇f .
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1.2 On Banach Space

We try to generalize again the result on a Banach space V .
Here, in general, we can no longer identify df P V ‹ as the inner product with a vector
field ∇f in a canonical way, so we have to adapt a bit the Palais-Smale condition and to
use a different, locally Lipschitz, vector field.

Definition 3 (Palais-Smale condition for Banach space). A functional f P C2pV q on a
Banach space V satisfies Palais-Smale condition if any sequence tumumPN such that:

(i) fpumq ď c as mÑ 8

(ii) dfum Ñ 0 in V ‹

is a precompact sequence.

This means that df Ñ 0 in the dual space V ‹, or, equivalently, ‖ df‖V ‹ Ñ 0 in R.

Definition 4 (Pseudo-gradient vector field). Given a function f : V Ñ R, a pseudo-
gradient vector field for f is a vector field defined on the complement of critical points

X : V zCritpfq Ñ V

such that for every u P V the two conditions hold:

(a) ‖Xpuq‖V ă 2 min t‖ dfu‖V ‹ , 1u

(b) dfupXpuqq ą ‖ dfu‖V ‹ min t‖ dfu‖V ‹ , 1u

Remark 3. The meaning of the bound above is the following:

‖ dfu‖V ‹ min t‖ dfu‖V ‹ , 1u ă dfupXpuqq, by (b)

and by (a): dfupXpuqq ď ‖ dfu‖V ‹ ‖Xpuq‖V ď ‖ dfu‖V ‹ 2 min t‖ dfu‖V ‹ , 1u ,

so when dfu ‰ 0, this leads to

min t‖ dfu‖V ‹ , 1u ă ‖Xpuq‖V ă 2 min t‖ dfu‖V ‹ , 1u

Note 1. The number 2 is not really important, for example other sources use

1

2
min t‖ dfu‖V ‹ , 1u ă ‖Xpuq‖V ă min t‖ dfu‖V ‹ , 1u .

What really matters it is that X turns out to be a locally Lipschitz vector field.

A remarkable result on a Banach space V , but also for only C1 functional on Hilbert
space, is the following:

Lemma 1. Any f P C1pV q admits a pseudo-gradient vector field.

4



Proof. Consider Ṽ “ V zCritpfq and a vector field w : Ṽ Ñ V . We take a cover tW puquuPṼ
made up by neighbourhoods W puq of u such that (a) and (b) holds for the field w for
every x P W puq. The space Ṽ is a (complete) metric space, so it is paracompact, and for
every cover tW puqu there is a locally finite refinement tWiuiPI such that Wi Ă W puiq.
We consider a Lipschitz partition of unity tϕiuiPI subordinate to the cover tWiuiPI .
To sum up, we have the new pseudo-gradient field:

vpuq “
ÿ

iPI

ϕipuqwpuiq.

Remark 4. Considering a cut-off function η : V Ñ R that is zero in a neighbourhood of
Crit(f). We can extend the pseudo-gradient field X to a globally defined vector field

X̃ : V Ñ V

u ÞÑ ηpuqXpuq.

Given a vector field v, we can also consider the bounded vector field:

wpuq “ ηpuq
vpuq

b

1` ‖vpuq‖2
or wpuq “ ηpuqϕpfpuqq vpuq

where ϕ : R Ñ R is a bounded Lipschitz function, i.e. 0 ď ϕ ď 1. This two fields are
globally defined and bounded on V , thus the flow generated by them is complete.

Moreover, we never use the fact that Γ was a family of curves, but only that Γ contains
invariant sets respect to the flow. This leads to the following

Definition 5 (Invariant set). Given a flow Φ: V ˆRÑ V , a family Γ of subsets of V is
positively invariant for Φ if

Φpγ, tq P Γ, @ γ P Γ, @ t ě 0.

Theorem 3 (Minimax principle). Let f be a C1 functional satisfy P.S. on a Banach
space V . Suppose Γ is a positive invariant set for the flow Φ: V ˆ R Ñ V generated by
a pseudo-gradient vector field related to f . Then if

c “ inf
γPΓ

sup
uPγ

fpuq

is finite, then c is a critical value for f .

Example 1. Changing the family Γ we obtain classical inf and sup on V :

• If we take Γ “ tV u as the whole set V , then

inf
V PV

sup
uPV

fpuq “ sup
uPV

fpuq.

• If we take Γ “ ttuu : u P V u as the set of all point in V , then

inf
uPV

sup
uPu

fpuq “ inf
uPV

fpuq.
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1.3 On Hilbert Manifolds

An Hilbert manifold M is a manifold modeled on an Hilbert space H. More precisely

Definition 6. An Hilbert manifold M is an Hausdorff topological space with a countable
base endowed with differentiable atlas where the charts take values in a fixed separable
Hilbert space.

See Klingenberg [Kli12] for further details.

Example 2. An Hilbert vector space is an Hilbert manifold with the only chart pid, Hq.

Example 3. An open subset U Ă H has a natural Hilbert manifold structure.

If H is a vector space, for every p P H the tangent space TpH – H, thus we can endow
an Hilbert space with a Riemann metric g. This metric is simply the inner product of H
on every tangent space:

gppu, vq :“ xu , vyH @p P H, @u, v P TpH.

1.4 On Finsler Manifolds

In order to generalize again, we consider a Banach manifold M , that is a manifold in
which the charts have their image in a Banach space V .
We take a Banach vector bundle F over M . A Finsler structure on F is a map

‖ ¨ ‖ : F Ñ R

such that:

• ‖ ¨ ‖u “ ‖ ¨ ‖ æFu
: Fu Ñ R is an admissible norm for the Banach space π´1puq “ Fu,

• taking u0 PM , the trivialisation on a neighbourhood U of u0

χ : π´1
pUq Ñ U ˆ Fu0

the ‖ ¨ ‖u is a norm on Fu0 for every u P U .

Consider a manifold M with a Finsler structure on the tangent bundle TM . The map

‖ ¨ ‖ : TM Ñ R

induces a Finsler structure on the co-tangent bundle T ‹M . In fact, given ϕ P T ‹M , there
exist u PM such that ϕ P pT ‹Mqu “ pTuMq

‹, so

‖ ¨ ‖‹ : T ‹M Ñ R
ϕ ÞÑ ‖ϕ‖‹ “ ‖ϕ‖‹u

where ‖ ¨ ‖‹u is the norm induced on the dual space pTuMq
‹ by the norm ‖ ¨ ‖u on TuM – V ,

namely
‖ϕ‖‹u “ sup

vPTuM
‖v‖uď1

|ϕpvq| .
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Finally, the map ‖ ¨ ‖ induces a distance on M :

dpu, vq “ inf
γPΓ

ż 1

0

∥∥∥∥ d

dt
γptq

∥∥∥∥
γptq

dt

where Γ “ tγ : r0, 1s ÑM , γp0q “ u, γp1q “ vu. A sort of “infimum length” among paths
connecting u and v. We will say that M is complete if M is complete regard to this metric.

There is an analogous of pseudo-gradient vector field also on a M Finsler manifold:

Definition 7 (Pseudo-gradient vector field on manifolds). Given a function f : M Ñ R,
a pseudo-gradient vector field for f is a vector field

v : MzCritpfq Ñ TM

such that for every u P M̃ “MzCritpfq the two conditions hold:

(a) ‖vpuq‖u ă 2 min t‖ dfu‖‹u , 1u

(b) dfupvpuqq ą min t‖ dfu‖‹u , 1u ‖ dfu‖‹u
Finsler manifolds are paracompact sets, so

Lemma 2. Any functional f P C1pMq admits a pseudo-gradient vector field

v : M̃ Ñ TM.

Theorem 4 (Minimax principle). Let f be a C1 functional satisfy P.S. on a Finsler
manifold M . Suppose Γ is a positive invariant set for the flow Φ: M ˆRÑM generated
by a pseudo-gradient vector field v related to f . Then if

c “ inf
γPΓ

sup
uPγ

fpuq

is finite, then c is a critical value for f .

2 Closed geodesics on sphere

It’s time to apply the theory above on the manifold of closed curves on a manifold M in
order to show the existence of a closed geodesic. This space is sometimes indicated with
ΛM (see for example [Kli12, KB10]), but here, to specify the use of Sobolev regularity
for our maps, we will use the notation:

H1
pS1,Mq :“

 

u : S1
ÑM, ‖u‖H1 ă 8

(

.

More precisely, consider a manifold S and a Riemann manifold pM, gq. The space
H1pS,Mq is made up by all absolutely continuous maps u : S ÑM such that the quantity

ż

S

guptqp 9uptq, 9uptqq dt

is finite. We can also indicate guptqp¨ , ¨q with ‖ ¨ ‖2
uptq or with x¨ , ¨yuptq.
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On this manifold we will consider the energy functional

Epuq “
1

2

ż

S

‖ 9u‖2
uptq dt.

Critical points of this functional will be geodesics on our Riemann manifold pM, gq.
First, a more precise definition:

Definition 8 (Geodesic). Let pM, gq be a Riemann manifold and ∇ be the Levi–Civita
connection related to g on M . A curve σ on a manifold M is a geodesic on M if its vector
field is parallel along σ, that is

∇ 9σptq 9σptq ” 0.

2.1 A theorem by Birkhoff

We now consider the 2-sphere S2 in R3 with a generic Riemann metric g. For example
the one given by the restriction of the inner product in R3 on every tangent space TpS

2.
Our energy functional E on the Riemann manifold pS2, gq is

Epuq “
1

2

ż 2π

0

guptqp 9uptq, 9uptqq dt.

We indicate with M the 8-dimensional manifold H1pS1, S2q, then:

1. The set CritpEq in M are closed geodesics on S2;

2. There exists a closed non-trivial geodesic on S2.

We begin by specifying what we mean by the tangent space of M .

Tangent space Given a point u PM , the tangent space TuM is the space of derivation
of the germs space C8Mpuq, and because u is a curve, we can see at TuM as a vector field
along uptq, so

TuM “
 

ϕ P H1
pS1,R3

q | ϕpϑq P TupϑqS
2
(

.

Critical points Since E : M Ñ R, the Fréchet differential dE in the point u in the
direction ϕ is

dEu : TuM Ñ TEpuqR – R
ϕ ÞÑ dEupϕq.

By definition, taking a curve γ in M , γptq “ upϑ, tq such that γp0q “ upϑ, 0q “ upϑq and
9γp0q “ ϕ, then

dEupϕq “
d

dt
Epupϑ, tqqæt“0 “

ż 2π

0

B2u

BtBϑ
¨
Bu

Bϑ
dϑ “

ż 2π

0

B2u

BϑBt
¨
Bu

Bϑ
dϑ “

ż 2π

0

9ϕ 9u dϑ.

Now if u is a critical point for E, integrating by parts,

dEupϕq “ 0 “ ´

ż 2π

0

:uϕ dϑ,

since ϕ 9u vanishes, because both ϕ and u are periodic. Thus, for a critical point u, the
function :u is orthogonal to ϕ for every ϕ P TuM . This means that the tangent component
of :u is zero and ∇ 9u 9u ” 0, so u is a geodesic.
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Existence of a closed geodesic To apply the Minimax principle (Theorem 4) we
need:

(i) a functional E satisfying the Palais-Smale condition on M ;

(ii) a class of invariant sets for the gradient flow generated by E;

(iii) the quantity inf
σPΓ

sup
uPσ

Epuq “ c being greater than 0.

For details of item (i) see [Str00]. For the item (ii), we wish that the class of invariant
sets would contain closed loops on S2. Consider the latitude θ and the longitude φ as
coordinates pθ, φq on S2, where θ P

“

´π
2
, π

2

‰

and φ P r0, 2πs.

A map f : S2 Ñ S2 induces a curve in H1pS1, S2q.
In fact, for any fixed θ, the map

t ÞÑ fpθ, 2πtq

is a closed loop on S2. Thus, the map

θ
σ
ÞÑ fpθ, ¨q

is a “curve” in our manifold H1pS1, S2q.

σpθq

S2

This curve joins the two constant loops f
`

˘π
2
, ¨
˘

“ σ
`

˘π
2

˘

“ constant, the two poles.
So, from every path that fixes poles we can obtain a map on S2:

σpθq
Ψ
ÝÑ fpθ, φq.

Let
Γ “

!

σ :
”

´
π

2
,
π

2

ı

ÑM , σ
´

˘
π

2

¯

” constant
)

,

and let
F “ tσ P Γ ; Ψpσq “ f „ idS2u

the family of curves in H1pS1, S2q induced by maps on S2 with topological degree 1. The
family F in not empty and it is invariant under the action of any diffeomorphism ψ of
M homotopic to identity which fixes constant maps. The diffeomorphisms ψtp¨q “ Φp¨, tq
obtained by the negative flow generated by E are homotopic to the identity and the
constant loops.

In conclusion, by the Theorem 4, the value

c “ inf
σPF

sup
u“σpθq

Epuq

is a critical value for E. The respective critical point will be a closed geodesic on the
sphere. Now we have to check that this geodesic is not a trivial constant loop. We will
show that such critical point has positive energy.
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Points with bounded energy We start showing that points in M (that actually are
“curves”) with bounded energy are uniformly 1

2
-Hölder continuous.

Take a point u PM , this is a curve

u : S1
Ñ pS2, gq

ϑ ÞÑ upϑq.

We can see uptq as a periodic function in R3 with values in S2, then

‖upsq ´ upϑq‖ “
∥∥∥∥ż ϑ

s

9uprq dr

∥∥∥∥ ď ż ϑ

s

‖ 9u‖ dr ď |ϑ´ s|1{2
ˆ
ż ϑ

s

9u dr

˙1{2

ď p|ϑ´ s| 2Epuqq1{2 .

The difference |ϑ´ s| is bounded by π, so, if Epuq ď c, we have that

‖upsq ´ upϑq‖ ď
?

2πc.

Positive energy Recall that a point with small energy Epuq ď c is a Hölder continuous
bounded curve in R3. Since u is a loop, if u has small energy α, then u has also a small
diameter, where

diampuq :“ sup
ϑ,θPr0,2πs

‖upϑq ´ upθq‖ ď α.

For small α, we can consider a small neighbourhood of S2 containing all u such that their
energy Epuq is smaller than α. We can shrink u to a constant loop upφ0q:

uspφq “ p1´ squpφq ` s upφ0q , s P r0, 1s.

We can also make a homotopy between σpθq and σp0q “ upφ0q. In fact

σrpθq “ σpp1´ rq θq , r P r0, 1s

brings σpθq in the single point σp0q and so in a single loop u. The composition of the two
homotopies is a homotopy, so

σr,spθ, φq “ p1´ sqσpp1´ rq θ, φq ` s σpp1´ rq θ, φ0q , s, r P r0, 1s.

Now we have a homotopy between the corresponding maps fr,spθ, φq “ Ψpσr,spθqq, but

idS2 „ fpθ, φq “ f0,0 and f1,1 “ fp0, φ0q “ upφ0q ” constant P S2.

This leads to an absurd, because we took σ P F and we found an homotopy between
Ψpσq “ f „ id and a constant map, that it is known to have different degree on S2.

2.2 Open Problems

It is proved that every compact manifold has a non-trivial closed geodesic. For example,
by minimising the energy functional E on a non-trivial homotopy class of loops. It is
conjectured that every compact manifold would have infinitely many closed geodesics,
and this had been proved for several manifolds, but not for higher dimensional spheres
yet.
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