Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations

Gianmarco Brocchi after Christ, Colliander, Tao

December 15, 2015

We consider the cubic one-dimensional defocusing nonlinear Schrödinger equation (NLS):

$$\begin{cases} -iu_t + \Delta u = |u|^2 u \\ u(0,x) = u_0(x) \qquad u_0 \in H^s_x(\mathbb{R}). \end{cases}$$
(NLS)

We consider solutions in the space $C^0([0,T],H^s(\mathbb{R}))$ that are fixed points of the Duhamel map:

$$u(t) = U(t)u_0 + i \int_0^t U(t-s)|u|^2 u(s) \,\mathrm{d}s,$$

with $U(t) = e^{-it\Delta}$ defined as $U(t)u_0 := \mathcal{F}^{-1}(e^{it\xi^2}\widehat{u_0})$, where \mathcal{F} is the Fourier Transform.

1 Well-posedness

We will say that our Initial Value Problem is

locally well-posed in H^s if for every ball B_R of radius R > 0 exists a time T = T(R) > 0 such that the solution operator

$$S: B_R = \{u_0 \in H^s : ||u_0||_{H^s} < R\} \to C^0([0, T), H^s(\mathbb{R}))$$

is uniformly continuous.

globally well-posed if T can be arbitrarily large independent of R.

1.1 Previous result

Theorem 1 (Tsutsumi, 1987). *The defocusing* (NLS) *is globally well-posed in* $H^s(\mathbb{R})$ *for* $s \ge 0$.

The main result of this talk is:

Theorem 2. The cubic one-dimensional defocusing (NLS) is not locally well-posed in $H^s(\mathbb{R})$ for s < 0.

2 Symmetries

Let u(t, x) be a solution of (NLS), then are solutions as well:

Symmetry		Invariant norm
Scaling	$u^{\lambda}(t,x) = -rac{1}{\lambda}u\left(rac{t}{\lambda^2},rac{x}{\lambda} ight)$	$\dot{H}_x^{-1/2}$
Galilean	$G_v(u)(t,x) = e^{itv^2} e^{ixv} u(t,x+2vt)$	L_x^2
$H^{s}(\mathbb{R}) := \left\{ u \in \mathcal{S}'(\mathbb{R}) (1 + \xi ^2)^{s/2} \widehat{u}(\xi) \in L^2(\mathbb{R}) \right\}$		

2.1 Free Schrödinger and pseudo-conformal transformation

Consider the Free Schrödinger Equation for forward time

$$\begin{cases} -iu_t + \Delta u = 0 \quad t > 0\\ u(0, x) = u_0(x). \end{cases}$$
(FSE)

Let u(t, x) be a solution of (FSE). We introduce the *pseudo-conformal* transformation by setting:

$$v(s,y) := pc(u) = s^{-1/2} \exp\left(iy^2/4s\right) u\left(\frac{1}{s} - 1, \frac{y}{s}\right).$$

This transformation is associated to the following change of variables:

$$(y,s) = \left(\frac{x}{1+t}, \frac{1}{1+t}\right), (x,t) = \left(\frac{y}{s}, \frac{1}{s} - 1\right).$$

The transformed v(s, y) := pc(u) solves the backwards Free Schrödinger for time :

$$\begin{cases} iv_s + \triangle v = 0 \quad s \in (0, 1] \\ v(1, y) = v_1(y). \end{cases}$$
(bFSE)

We now can solve this problem for any time s < 1, and in particular the solution extends continuously to s = 0:

$$v(s,y) \xrightarrow{s \to 0^+} v(0,y) =: \varphi(y).$$

Using the inverse transformation $u = pc^{-1}(v)$ we see that:

$$u(t,x) \stackrel{t \to +\infty}{\approx} (1+t)^{-1/2} \exp\left(-ix^2/4(1+t)\right) \varphi\left(\frac{x}{1+t}\right).$$

3 Backwards Nonlinear Schrödinger equation

Applying the pc transformation to solutions of (NLS) we obtain a new initial value problem for v(s, y) := pc(u):

$$\begin{cases} iv_s + \Delta v = s^{-1} |v|^2 v & s \in (0, 1] \\ v(1, y) = v_1(y) \end{cases}$$
(bNLS)

Dropping $\partial_{yy} v$, we can explicitly solve the ODE:

$$\begin{cases} iv_s^{[w]} = s^{-1} |v^{[w]}|^2 v^{[w]} \\ v(1, y) = w(y) \end{cases}$$
(ODE)

finding the solution

$$v^{[w]}(s,y) = w(y) \exp(-i|w(y)|^2 \log(s)).$$

We notice that as $s \to 0^+$:

$$|v_s^{[w]}| \sim s^{-1}, \quad |\triangle v^{[w]}| \sim (\log s)^2, \quad \left|s^{-1}|v^{[w]}|^2 v^{[w]}\right| \sim s^{-1},$$

and since $|\log s| \ll s^{-1}$, neglecting the term $\triangle v^{[w]}$ is reasonable and $v^{[w]}$ turns out to be "close" to a solution of (bNLS).

To make this precise we introduce a weighted Sobolev norm:

$$\|v\|_{\mathbf{H}^{k,k}_{y}} := \sum_{\substack{\alpha,\beta \geq 0:\\ \alpha+\beta \leq k}} \left\|y^{\alpha}\partial_{y}^{\beta}v\right\|_{L^{2}_{y}}$$

Consider the ball $B_{\epsilon} = \{ \|u\|_{\mathbf{H}^{k+2,k+2}} < \epsilon \}$, where $\epsilon \ll 1$. Let be $k \in \mathbb{N}, k \ge 5$.

Lemma 1. For all $w \in B_{\epsilon}$ exists $v_1 \in \mathbf{H}^{k,k}$ such that the unique solution $v^{\langle w \rangle}$ to (bNLS) in $\mathbf{H}^{k,k}$ with initial data v_1 satisfies

$$\left\| v^{\langle w \rangle}(s) - v^{[w]}(s) \right\|_{\mathbf{H}^{k,k}} \lesssim \epsilon \, s \, (1 + |\log s|)^C \qquad \text{for all } s \in (0,1]$$

Furthermore, the map from B_{ϵ} *to* $C^{0}((0,1], \mathbf{H}^{k,k})$ *,* $w \mapsto v^{\langle w \rangle}$ *is Lipschitz up to the end time* s = 0.

3.1 Decoherence in L^2

We fix w (e.g. $w(y) = \epsilon e^{-y^2}$, so $w \approx \epsilon$). For $a \in \mathbb{R}$ we can take the initial value aw(y). We have this:

Lemma 2 (decoherence property). *If* $a, a' \lesssim 1$ *and* $a \neq a'$ *, then*

$$\limsup_{s \to 0^+} \left\| v^{[aw]}(s) - v^{[a'w]}(s) \right\|_{L^2_y} \gtrsim \left(|a| + |a'| \right) \|w\|_{L^2_y}.$$

The last two Lemmas together imply

$$\limsup_{s \to 0^+} \left\| v^{\langle aw \rangle}(s) - v^{\langle a'w \rangle}(s) \right\|_{L^2_y} \gtrsim \epsilon.$$

Using the inverse pc we may construct a family of solutions $u^{\langle aw \rangle} = pc^{-1}(v^{\langle aw \rangle})$, and $u^{[aw]} = pc^{-1}(v^{[aw]})$ such that:

a)
$$\|u^{\langle aw \rangle}(0)\|_{H^k} \lesssim \|v^{\langle aw \rangle}(1)\|_{\mathbf{H}^{k,k}} \lesssim \epsilon;$$

b) $\|u^{\langle aw \rangle}(0) - u^{\langle a'w \rangle}(0)\|_{H^k} \lesssim \|v^{\langle aw \rangle}(1) - v^{\langle a'w \rangle}(1)\|_{\mathbf{H}^{k,k}} \lesssim \epsilon |a - a'|;$

c)
$$\left\| u^{\langle aw \rangle}(t) - u^{[a'w]}(t) \right\|_{H^k} \lesssim \epsilon (1+t)^{-1} (1+|\log(1+t)|)^C;$$

d)
$$\limsup_{t \to +\infty} \left\| u^{\langle aw \rangle}(t) - u^{\langle a'w \rangle}(t) \right\|_{L^2} = \limsup_{s \to 0^+} \left\| v^{\langle aw \rangle}(s) - v^{\langle a'w \rangle}(s) \right\|_{L^2} \gtrsim \epsilon.$$

4 Ill-posedness

To disprove uniform continuity of $S: B_R \subset H^s(\mathbb{R}) \to C^0([0,T), H^s(\mathbb{R}))$, for $s \in (-\frac{1}{2}, 0)$, we will show that for any T > 0 there exists $\epsilon > 0$ such that for any $\delta > 0$ there are two solutions ϕ, ϕ' such that:

- $\phi(0), \phi'(0) \in B_R$,
- $\|\phi(0) \phi'(0)\|_{H^s} \lesssim \delta$,
- $\sup_{[0,T)} \|\phi(t) \phi'(t)\|_{H^s} \gtrsim \epsilon.$

We take $N\gg 1$ and consider:

$$\phi^{\langle a \rangle}(t,x) := G_N\left(u^{\lambda}\right)(t,x) = \frac{1}{\lambda} e^{itN^2} e^{ixN} u^{\langle aw \rangle}\left(\frac{t}{\lambda^2}, \frac{(x+2Nt)}{\lambda}\right).$$

We need a lemma to control the H^s norm of $\phi^{\langle a \rangle}$ by the H^k norm from above and by the L^2 norm from below:

Lemma 3. Let be $k \in \mathbb{N}$, $u \in H^k$, $N \ge 1$, $\lambda \in \mathbb{R}^+$, and let be $\phi^{\langle a \rangle}$ defined as above. Then

i) For s < 0, $k \ge |s|$, whenever $1 \le \lambda N^{1+(s/k)}$, we have:

$$\|\phi\|_{H^s} \lesssim \lambda^{-\frac{1}{2}} N^s \|u\|_{H^k},$$

ii) For every $u \in H^k$ exists a constant $C_u < \infty$ such that when $\lambda N \ge C_u$ we have:

$$\|\phi\|_{H^s} \gtrsim \lambda^{-\frac{1}{2}} N^s \|u\|_{L^2}$$

Taking $a, a' \leq 1$, consider $\phi^{\langle a \rangle}$ and $\phi^{\langle a' \rangle}$. Applying the Lemma and choosing $\lambda = N^{2s}$ these two solutions disprove the uniform continuity of S, in fact:

a)
$$\|\phi^{\langle a \rangle}(0)\|_{H^s} \lesssim \|u^{\langle aw \rangle}(0)\|_{H^k} \lesssim \epsilon$$
;

b)
$$\left\|\phi^{\langle a \rangle}(0) - \phi^{\langle a' \rangle}(0)\right\|_{H^s} \lesssim \epsilon |a - a'|;$$

d)
$$\limsup_{t \to +\infty} \left\| \phi^{\langle a \rangle}(t) - \phi^{\langle a' \rangle}(t) \right\|_{H^s} = \limsup_{t \to +\infty} \left\| u^{\langle aw \rangle}(t) - u^{\langle a'w \rangle}(t) \right\|_{L^2} \gtrsim \epsilon.$$

Thus there exists t_0 such that $\left\| u^{\langle aw \rangle}(t_0) - u^{\langle a'w \rangle}(t_0) \right\|_{L^2} \gtrsim \epsilon$. Let $t = \lambda^2 t_0$. Making N arbitrarily large, $\lambda = N^{2s}$ becomes arbitrarily small, so $t \in [0, T)$ for any time T > 0.