Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations

Gianmarco Brocchi after Christ, Colliander, Tao

December 15, 2015

We consider the cubic one-dimensional defocusing nonlinear Schrödinger equation (NLS):

$$
\begin{cases}\n-iu_t + \Delta u = |u|^2 u \\
u(0, x) = u_0(x) & u_0 \in H_x^s(\mathbb{R}).\n\end{cases}
$$
\n(NLS)

We consider solutions in the space $C^0([0,T],H^s(\mathbb{R}))$ that are fixed points of the Duhamel map:

$$
u(t) = U(t)u_0 + i \int_0^t U(t-s)|u|^2 u(s) ds,
$$

with $U(t) = e^{-it\Delta}$ defined as $U(t)u_0 := \mathcal{F}^{-1}(e^{it\xi^2}\widehat{u_0})$, where $\mathcal F$ is the Fourier Transform.

1 Well-posedness

We will say that our Initial Value Problem is

locally well-posed in H^s if for every ball B_R of radius $R > 0$ exists a time $T = T(R) > 0$ such that the solution operator

$$
S \colon B_R = \{ u_0 \in H^s : ||u_0||_{H^s} < R \} \to C^0([0, T), H^s(\mathbb{R}))
$$

is uniformly continuous.

globally well-posed if T can be arbitrarily large independent of R .

1.1 Previous result

Theorem 1 (Tsutsumi, 1987). *The defocusing* [\(NLS\)](#page-0-0) *is globally well-posed in* $H^s(\mathbb{R})$ *for* $s \geq 0$.

The main result of this talk is:

Theorem 2. The cubic one-dimensional defocusing [\(NLS\)](#page-0-0) is not locally well-posed in $H^s(\mathbb{R})$ *for* $s < 0$ *.*

2 Symmetries

 \overline{a}

Let $u(t, x)$ be a solution of [\(NLS\)](#page-0-0), then are solutions as well:

2.1 Free Schrödinger and pseudo-conformal transformation

Consider the Free Schrödinger Equation for forward time

$$
\begin{cases}\n-iu_t + \Delta u = 0 & t > 0 \\
u(0, x) = u_0(x).\n\end{cases}
$$
\n(FSE)

Let $u(t, x)$ be a solution of [\(FSE\)](#page-1-0). We introduce the *pseudo-conformal* transformation by setting:

$$
v(s, y) := pc(u) = s^{-1/2} exp(iy^2/4s) u\left(\frac{1}{s} - 1, \frac{y}{s}\right).
$$

This transformation is associated to the following change of variables:

$$
(y, s) = \left(\frac{x}{1+t}, \frac{1}{1+t}\right), (x, t) = \left(\frac{y}{s}, \frac{1}{s} - 1\right).
$$

The transformed $v(s, y) := pc(u)$ solves the backwards Free Schrödinger for time :

$$
\begin{cases} iv_s + \triangle v = 0 & s \in (0,1] \\ v(1,y) = v_1(y). \end{cases}
$$
 (bFSE)

We now can solve this problem for any time $s < 1$, and in particular the solution extends continuously to $s = 0$:

$$
v(s,y) \xrightarrow[L^2]{s \to 0^+} v(0,y) =: \varphi(y).
$$

Using the inverse transformation $u = pc^{-1}(v)$ we see that:

$$
u(t,x) \stackrel{t\to +\infty}{\approx} (1+t)^{-1/2} \exp(-ix^2/4(1+t)) \varphi\left(\frac{x}{1+t}\right).
$$

3 Backwards Nonlinear Schrödinger equation

Applying the pc transformation to solutions of [\(NLS\)](#page-0-0) we obtain a new initial value problem for $v(s, y) := \text{pc}(u)$:

$$
\begin{cases} iv_s + \Delta v = s^{-1}|v|^2 v & s \in (0,1] \\ v(1,y) = v_1(y) \end{cases}
$$
 (bNLS)

Dropping $\partial_{yy}v$, we can explicitly solve the ODE:

$$
\begin{cases} iv_s^{[w]} = s^{-1} |v^{[w]}|^2 v^{[w]} \\ v(1, y) = w(y) \end{cases}
$$
 (ODE)

finding the solution

$$
v^{[w]}(s, y) = w(y) \exp(-i|w(y)|^2 \log(s)).
$$

We notice that as $s\to 0^+$:

$$
|v_s^{[w]}| \sim s^{-1}
$$
, $|\triangle v^{[w]}| \sim (\log s)^2$, $|s^{-1}|v^{[w]}|^2 v^{[w]}| \sim s^{-1}$,

and since $\log s |\ll s^{-1}$, neglecting the term $\triangle v^{[w]}$ is reasonable and $v^{[w]}$ turns out to be "close" to a solution of [\(bNLS\)](#page-1-1).

To make this precise we introduce a weighted Sobolev norm:

$$
||v||_{\mathbf{H}_{y}^{k,k}} := \sum_{\substack{\alpha,\beta \geq 0:\\ \alpha + \beta \leq k}} \left||y^{\alpha} \partial_{y}^{\beta} v\right||_{L_{y}^{2}}.
$$

Consider the ball $B_{\epsilon} = {\|u\|_{\mathbf{H}^{k+2,k+2}}} < \epsilon$, where $\epsilon \ll 1$. Let be $k \in \mathbb{N}, k \geq 5$.

Lemma 1. *For all* $w \in B_\epsilon$ *exists* $v_1 \in \mathbf{H}^{k,k}$ *such that the unique solution* $v^{\langle w \rangle}$ *to [\(bNLS\)](#page-1-1) in* $\mathbf{H}^{k,k}$ *with initial data* v_1 *satisfies*

$$
\left\|v^{\langle w\rangle}(s) - v^{[w]}(s)\right\|_{\mathbf{H}^{k,k}} \lesssim \epsilon s (1 + |\log s|)^C \quad \text{for all } s \in (0,1]
$$

Furthermore, the map from B_{ϵ} to $C^0((0,1], \mathbf{H}^{k,k})$ *,* $w \mapsto v^{\langle w \rangle}$ is Lipschitz up to the end time $s = 0.$

3.1 Decoherence in L 2

We fix w (e.g. $w(y)=\epsilon e^{-y^2}$, so $w\approx \epsilon$). For $a\in \mathbb{R}$ we can take the initial value $aw(y).$ We have this:

Lemma 2 (decoherence property). If $a, a' \leq 1$ and $a \neq a'$, then

$$
\limsup_{s \to 0^+} \left\| v^{[aw]}(s) - v^{[a'w]}(s) \right\|_{L_y^2} \gtrsim (|a| + |a'|) \left\| w \right\|_{L_y^2}.
$$

The last two Lemmas together imply

$$
\limsup_{s \to 0^+} \left\| v^{\langle aw \rangle}(s) - v^{\langle a'w \rangle}(s) \right\|_{L_y^2} \gtrsim \epsilon.
$$

Using the inverse pc we may construct a family of solutions $u^{\langle aw \rangle} = pc^{-1}(v^{\langle aw \rangle})$, and $u^{[aw]} =$ ${\rm pc}^{-1}(v^{[aw]})$ such that:

a)
$$
||u^{\langle aw \rangle}(0)||_{H^k} \lesssim ||v^{\langle aw \rangle}(1)||_{\mathbf{H}^{k,k}} \lesssim \epsilon
$$
;
\nb) $||u^{\langle aw \rangle}(0) - u^{\langle a/w \rangle}(0)||_{H^k} \lesssim ||v^{\langle aw \rangle}(1) - v^{\langle a/w \rangle}(1)||_{\mathbf{H}^{k,k}} \lesssim \epsilon |a - a'|$;
\nc) $||u^{\langle aw \rangle}(t) - u^{[a/w]}(t)||_{H^k} \lesssim \epsilon (1 + t)^{-1} (1 + |\log(1 + t)|)^C$;

$$
\text{d)}\ \limsup\nolimits_{t\to+\infty}\left\|u^{\langle a w\rangle}(t)-u^{\langle a' w\rangle}(t)\right\|_{L^2}=\limsup\nolimits_{s\to 0^+}\left\|v^{\langle a w\rangle}(s)-v^{\langle a' w\rangle}(s)\right\|_{L^2}\gtrsim\epsilon.
$$

4 Ill-posedness

To disprove uniform continuity of $S\colon B_R\subset H^s(\mathbb{R})\to C^0([0,T),H^s(\mathbb{R}))$, for $s\in\big({-\frac12}$ $(\frac{1}{2},0)$, we will show that for any $T > 0$ there exists $\epsilon > 0$ such that for any $\delta > 0$ there are two solutions ϕ , ϕ' such that:

- $\phi(0), \phi'(0) \in B_R$,
- $\|\phi(0) \phi'(0)\|_{H^s} \lesssim \delta$,
- $\sup_{[0,T)} \|\phi(t) \phi'(t)\|_{H^s} \gtrsim \epsilon.$

We take $N \gg 1$ and consider:

$$
\phi^{\langle a \rangle}(t,x) := G_N\left(u^\lambda\right)(t,x) = \frac{1}{\lambda}e^{itN^2}e^{ixN}u^{\langle aw \rangle}\left(\frac{t}{\lambda^2},\frac{(x+2Nt)}{\lambda}\right).
$$

We need a lemma to control the H^s norm of $\phi^{\langle a \rangle}$ by the H^k norm from above and by the L^2 norm from below:

Lemma 3. Let be $k \in \mathbb{N}$, $u \in H^k$, $N \geq 1$, $\lambda \in \mathbb{R}^+$, and let be $\phi^{\langle a \rangle}$ defined as above. Then

i) For $s < 0, k \ge |s|$, whenever $1 \le \lambda N^{1 + (s/k)}$, we have:

$$
\|\phi\|_{H^s} \lesssim \lambda^{-\frac{1}{2}} N^s \, \|u\|_{H^k} \, ,
$$

ii) For every $u \in H^k$ exists a constant $C_u < \infty$ such that when $\lambda N \geq C_u$ we have:

$$
\|\phi\|_{H^s} \gtrsim \lambda^{-\frac{1}{2}} N^s \, \|u\|_{L^2}
$$

Taking $a,a'\lesssim 1$, consider $\phi^{\langle a\rangle}$ and $\phi^{\langle a'\rangle}$. Applying the Lemma and choosing $\lambda=N^{2s}$ these two solutions disprove the uniform continuity of S, in fact:

a) $\left\|\phi^{\langle a\rangle}(0)\right\|_{H^{s}} \lesssim \left\|u^{\langle aw\rangle}(0)\right\|_{H^{k}} \lesssim \epsilon$;

b)
$$
\|\phi^{\langle a \rangle}(0) - \phi^{\langle a' \rangle}(0)\|_{H^s} \lesssim \epsilon |a - a'|;
$$

\n**d)** $\limsup_{t \to +\infty} \|\phi^{\langle a \rangle}(t) - \phi^{\langle a' \rangle}(t)\|_{H^s} = \limsup_{t \to +\infty} \|u^{\langle aw \rangle}(t) - u^{\langle a'w \rangle}(t)\|_{L^2} \gtrsim \epsilon.$

Thus there exists t_0 such that \parallel $u^{\langle aw \rangle}(t_0) - u^{\langle a'w \rangle}(t_0) \Big\|_{L^2} \gtrsim \epsilon.$ Let $t = \lambda^2 t_0$. Making N arbitrarily large, $\lambda = N^{2s}$ becomes arbitrarily small, so $t \in [0, T)$ for any time $T > 0$.