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We consider the cubic one-dimensional defocusing nonlinear Schrödinger equation (NLS):{
−iut +4u = |u|2u
u(0, x) = u0(x) u0 ∈ Hs

x(R).
(NLS)

We consider solutions in the space C0([0, T ], Hs(R)) that are fixed points of the Duhamel
map:

u(t) = U(t)u0 + i

∫ t

0
U(t− s)|u|2u(s) ds,

with U(t) = e−it4 defined as U(t)u0 := F−1(eitξ
2
û0), where F is the Fourier Transform.

1 Well-posedness

We will say that our Initial Value Problem is

locally well-posed in Hs if for every ball BR of radius R > 0 exists a time T = T (R) > 0 such
that the solution operator

S : BR = {u0 ∈ Hs : ‖u0‖Hs < R} → C0([0, T ), Hs(R))

is uniformly continuous.

globally well-posed if T can be arbitrarily large independent of R.

1.1 Previous result

Theorem 1 (Tsutsumi, 1987). The defocusing (NLS) is globally well-posed in Hs(R) for s ≥ 0.

The main result of this talk is:

Theorem 2. The cubic one-dimensional defocusing (NLS) is not locally well-posed in Hs(R)
for s < 0.
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2 Symmetries

Let u(t, x) be a solution of (NLS), then are solutions as well:

Symmetry Invariant norm

Scaling uλ(t, x) = 1
λu
(
t
λ2
, xλ
)

Ḣ
−1/2
x

Galilean Gv(u)(t, x) = eitv
2
eixvu(t, x+ 2vt) L2

x

Hs(R) :=
{
u ∈ S ′(R)|(1 + |ξ|2)s/2û(ξ) ∈ L2(R)

}
2.1 Free Schrödinger and pseudo-conformal transformation

Consider the Free Schrödinger Equation for forward time{
−iut +4u = 0 t > 0

u(0, x) = u0(x).
(FSE)

Let u(t, x) be a solution of (FSE). We introduce the pseudo-conformal transformation by
setting:

v(s, y) := pc(u) = s−1/2 exp
(
iy2/4s

)
u

(
1

s
− 1,

y

s

)
.

This transformation is associated to the following change of variables:

(y, s) =

(
x

1 + t
,

1

1 + t

)
, (x, t) =

(
y

s
,
1

s
− 1

)
.

The transformed v(s, y) := pc(u) solves the backwards Free Schrödinger for time :{
ivs +4v = 0 s ∈ (0, 1]

v(1, y) = v1(y).
(bFSE)

We now can solve this problem for any time s < 1, and in particular the solution extends
continuously to s = 0:

v(s, y)
s→0+−−−−→
L2

v(0, y) =: ϕ(y).

Using the inverse transformation u = pc−1(v) we see that:

u(t, x)
t→+∞
≈ (1 + t)−1/2 exp

(
−ix2/4(1 + t)

)
ϕ

(
x

1 + t

)
.

3 Backwards Nonlinear Schrödinger equation

Applying the pc transformation to solutions of (NLS) we obtain a new initial value problem
for v(s, y) := pc(u): {

ivs +4v = s−1|v|2v s ∈ (0, 1]

v(1, y) = v1(y)
(bNLS)
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Dropping ∂yyv, we can explicitly solve the ODE:{
iv

[w]
s = s−1|v[w]|2v[w]

v(1, y) = w(y)
(ODE)

finding the solution
v[w](s, y) = w(y) exp(−i|w(y)|2 log(s)).

We notice that as s→ 0+:

|v[w]s | ∼ s−1, |4v[w]| ∼ (log s)2,
∣∣∣s−1|v[w]|2v[w]∣∣∣ ∼ s−1,

and since |log s| � s−1, neglecting the term4v[w] is reasonable and v[w] turns out to be “close”
to a solution of (bNLS).

To make this precise we introduce a weighted Sobolev norm:

‖v‖
Hk,k

y
:=

∑
α,β≥0:
α+β≤k

∥∥∥yα∂βy v∥∥∥
L2
y

.

Consider the ball Bε = {‖u‖Hk+2,k+2 < ε}, where ε� 1. Let be k ∈ N, k ≥ 5.

Lemma 1. For all w ∈ Bε exists v1 ∈ Hk,k such that the unique solution v〈w〉 to (bNLS) in Hk,k

with initial data v1 satisfies∥∥∥v〈w〉(s)− v[w](s)∥∥∥
Hk,k

. ε s (1 + |log s|)C for all s ∈ (0, 1]

Furthermore, the map from Bε to C0((0, 1],Hk,k), w 7→ v〈w〉 is Lipschitz up to the end time
s = 0.

3.1 Decoherence in L2

We fix w (e.g. w(y) = εe−y
2
, so w ≈ ε). For a ∈ R we can take the initial value aw(y). We have

this:

Lemma 2 (decoherence property). If a, a′ . 1 and a 6= a′, then

lim sup
s→0+

∥∥∥v[aw](s)− v[a′w](s)∥∥∥
L2
y

&
(
|a|+ |a′|

)
‖w‖L2

y
.

The last two Lemmas together imply

lim sup
s→0+

∥∥∥v〈aw〉(s)− v〈a′w〉(s)∥∥∥
L2
y

& ε.

Using the inverse pc we may construct a family of solutions u〈aw〉 = pc−1(v〈aw〉), and u[aw] =
pc−1(v[aw]) such that:

a)
∥∥u〈aw〉(0)∥∥

Hk .
∥∥v〈aw〉(1)∥∥

Hk,k . ε ;

b)
∥∥∥u〈aw〉(0)− u〈a′w〉(0)∥∥∥

Hk
.
∥∥∥v〈aw〉(1)− v〈a′w〉(1)∥∥∥

Hk,k
. ε|a− a′|;

c)
∥∥∥u〈aw〉(t)− u[a′w](t)∥∥∥

Hk
. ε (1 + t)−1 (1 + |log(1 + t)|)C ;

d) lim supt→+∞

∥∥∥u〈aw〉(t)− u〈a′w〉(t)∥∥∥
L2

= lim sups→0+

∥∥∥v〈aw〉(s)− v〈a′w〉(s)∥∥∥
L2

& ε.

3



4 Ill-posedness

To disprove uniform continuity of S : BR ⊂ Hs(R) → C0([0, T ), Hs(R)), for s ∈
(
−1

2 , 0
)

, we
will show that for any T > 0 there exists ε > 0 such that for any δ > 0 there are two solutions
φ, φ′ such that:

• φ(0), φ′(0) ∈ BR,

• ‖φ(0)− φ′(0)‖Hs . δ,

• sup[0,T ) ‖φ(t)− φ′(t)‖Hs & ε.

We take N � 1 and consider:

φ〈a〉(t, x) := GN

(
uλ
)
(t, x) =

1

λ
eitN

2
eixNu〈aw〉

(
t

λ2
,
(x+ 2Nt)

λ

)
.

We need a lemma to control the Hs norm of φ〈a〉 by the Hk norm from above and by the
L2 norm from below:

Lemma 3. Let be k ∈ N, u ∈ Hk, N ≥ 1, λ ∈ R+, and let be φ〈a〉 defined as above. Then

i) For s < 0, k ≥ |s|, whenever 1 ≤ λN1+(s/k), we have:

‖φ‖Hs . λ−
1
2N s ‖u‖Hk ,

ii) For every u ∈ Hk exists a constant Cu <∞ such that when λN ≥ Cu we have:

‖φ‖Hs & λ−
1
2N s ‖u‖L2

Taking a, a′ . 1, consider φ〈a〉 and φ〈a
′〉. Applying the Lemma and choosing λ = N2s these

two solutions disprove the uniform continuity of S, in fact:

a)
∥∥φ〈a〉(0)∥∥

Hs .
∥∥u〈aw〉(0)∥∥

Hk . ε ;

b)
∥∥∥φ〈a〉(0)− φ〈a′〉(0)∥∥∥

Hs
. ε|a− a′|;

d) lim supt→+∞

∥∥∥φ〈a〉(t)− φ〈a′〉(t)∥∥∥
Hs

= lim supt→+∞

∥∥∥u〈aw〉(t)− u〈a′w〉(t)∥∥∥
L2

& ε.

Thus there exists t0 such that
∥∥∥u〈aw〉(t0)− u〈a′w〉(t0)∥∥∥

L2
& ε. Let t = λ2t0. MakingN arbitrarily

large, λ = N2s becomes arbitrarily small, so t ∈ [0, T ) for any time T > 0.
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