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We consider the cubic one-dimensional defocusing nonlinear Schrodinger equation (NLS):

{—iut + Au = |ufu (NLS)

u(0,x) = up(x) ug € H3(R).

We consider solutions in the space C°([0, 7], H*(R)) that are fixed points of the Duhamel
map:

u(t) =U(t)ug + z'/o U(t — s)|u>u(s) ds,

with U(t) = e~#4 defined as U (t)ug := F~!(¢€*%g), where F is the Fourier Transform.

1 Well-posedness

We will say that our Initial Value Problem is

locally well-posed in H* if for every ball By of radius R > 0 exists a time 7' = T'(R) > 0 such
that the solution operator

S: Br={ug € H® : |Jug| s < R} — C°([0,T), H*(R))
is uniformly continuous.

globally well-posed if 7" can be arbitrarily large independent of R.

1.1 Previous result
Theorem 1 (Tsutsumi, 1987). The defocusing (NLS) is globally well-posed in H*(R) for s > 0.
The main result of this talk is:

Theorem 2. The cubic one-dimensional defocusing (NLS) is not locally well-posed in H*(R)
fors < 0.



2 Symmetries

Let u(t, z) be a solution of (NLS), then are solutions as well:

Symmetry ‘ Invariant norm
Scaling wMt,o) = su(z, %) ;2
Galilean  G,(u)(t,z) = €™ u(t, z + 2vt) L2

H*(R) = {u € SR)|(1+]¢2)%a(6) € LA(R) }

2.1 Free Schrodinger and pseudo-conformal transformation

Consider the Free Schrédinger Equation for forward time

(FSE)

—tug +Au=0 t>0
u(0,x) = ug(z).

Let u(t, z) be a solution of (FSE). We introduce the pseudo-conformal transformation by
setting:

v(s,y) == pe(u) = s~ Y2 exp (iy2/4s) u <i -1, ‘Z) .

This transformation is associated to the following change of variables:

(y,5) = (137“1_1“) (,t) = (Zi— 1).

The transformed v(s, y) := pc(u) solves the backwards Free Schrodinger for time :

(bFSE)

{ws+m—o s € (0,1]
v(Ly) = vi(y).

We now can solve this problem for any time s < 1, and in particular the solution extends
continuously to s = 0:

—07t
v(s,y) ST> v(0,y) = ¢(y).
Using the inverse transformation u = pc~!(v) we see that:

t——+o0

u(t,x) = (1+t)_1/2exp(—ix2/4(1—|—t))90( i >

1+t

3 Backwards Nonlinear Schrodinger equation
Applying the pc transformation to solutions of (NLS) we obtain a new initial value problem
forv(s,y) := pc(u):

{ivs +Av=s""olPv s (0,1] (bNLS)

v(1l,y) = v1(y)



Dropping 9,,v, we can explicitly solve the ODE:

z’va] _ 871‘1}[1”}’21}[10] (ODE)
v(1,y) = w(y)

finding the solution
(s, ) = w(y) exp(—ilw(y)|* log(s)).
We notice thatas s — 01

ol ~ 571 A0~ (ogs)?, sl 2ol s

and since |log s| < s~ !, neglecting the term Av!"! is reasonable and v[*! turns out to be “close”
to a solution of (bNLS).
To make this precise we introduce a weighted Sobolev norm:

Pollger =

a,3>0:
a+B<k

B
ya(?yv‘

Ly

Consider the ball Bc = {||u||gr+2.5+2 < €}, wheree < 1. Letbe k € N, k > 5.

Lemma 1. Forallw € B, existsv, € H** such that the unique solution v\*) to (bNLS) in H*-*
with initial data v, satisfies

Ses(1+[logs)®  foralls e (0,1]

ot (s) — U[w](s)’

Hk.k
Furthermore, the map from B, to C°((0,1],H**), w — v} is Lipschitz up to the end time
s=0.

3.1 Decoherence in >

We fix w (e.g. w(y) = ee ¥, s0 w ~ ¢). For a € R we can take the initial value aw(y). We have
this:

Lemma 2 (decoherence property). Ifa,a’ <1 anda # o, then

‘v[aw](s) _ U[a’w](s)‘

lim sup , 2 (lal + la']) lwll 2 -
s—0t Ly .

The last two Lemmas together imply

’

‘v<“w>(3) _yla “’)(s)‘ > e

lim sup
s—0t

2
Ly

Using the inverse pc we may construct a family of solutions u(**) = pc~!(v{**}), and ul**] =
pc ! (v[*¥]) such that:

Q) [[uO)] e S [0 W) gpar S €3

MHM“NM—uwwmw

e S @) = vl )

e S cla—al

0) Hu<aw>(t) _law] (t)HHk Se(l+6)71 (1 + [log(1+ 1))

> €

~

d) limsup; ,, Hu<aw> (t) — ule®) (t)HL2 = limsup,_,o+ Hv(aw>(s) - v<a,w>(s)‘

L2



4 TIll-posedness

To disprove uniform continuity of S: Bg ¢ H*(R) — C°([0,T), H*(R)), for s € (—1,0), we
will show that for any 7" > 0 there exists ¢ > 0 such that for any § > 0 there are two solutions
¢, ¢’ such that:

 ¢(0),¢'(0) € Bg,

o [[¢(0) = ¢'(0)ll s <6,

o supy ) [[6(t) = &' ()l s 2 €
We take N > 1 and consider:

¢><a> (t,z):=Gn (u’\) (t,z) = %e“NQe””Nu(‘”“> ( ¢ 7(37 + 2Nt)> )

A2\

We need a lemma to control the H* norm of ¢{* by the H* norm from above and by the
L? norm from below:

Lemma3. Letbek € N,u € H*, N > 1, A\ € R*, and let be qS(“) defined as above. Then
i) Fors <0,k > |s|, whenever1 < AN'+(/¥) we have:
18l S AN fJul g
ii) Foreveryu € HF exists a constant C,, < oo such that when A\N > C, we have:

1
”¢HH6 2 AT2N? ”UHL2

Taking a,a’ < 1, consider ¢* and ¢{*". Applying the Lemma and choosing A = N2* these
two solutions disprove the uniform continuity of S, in fact:

a) [o(0)]
b) [[6(0) - 61(0)|

e S ([ O] S €5

e S Ela—d'l

> €

~ °

A limsup, . |[61)(0) = 6 (0) | = limsupy oo |l (1) — e (1)

L2

Thus there exists ¢, such that Hu<‘“”> (to) — ul®®) (ty) Hm > e. Lett = \*ty. Making N arbitrarily
large, A = N2 becomes arbitrarily small, so t € [0, T) for any time 7' > 0.
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