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Let (€2, A, P) be a probability space. We consider a complex-valued Brownian motion
B:10,1] x Q2 —C
such that
(i) B(0,w) = 0 for almost every w € €,
(i) A(t,w)hasindependent increments and 3(t) — 3(s) ~ N (0,¢ — s), forall0 < s <t < 1.

There is a version of g such that P(¢t — [(t,w) is continuous) = 1.

1 Previous results

Theorem 1. The Brownian motion (3(t) belongs almost surely to the Sobolev spaces H;, ., W,*
ifand only if s < %, regardless of p € [1, cc].

Theorem 2. The Brownian motion 3(t) belongs almost surely to the Besov spaces (B, ,)ioc if
and onlyifs < i, andp,q € [1,00], orifs = & for1 < p < co and q = cc.

Let 1 < p,q < oco. We consider the modulation spaces on the torus MY %(T). One of the
two main results of this talk is:

Theorem 3. The mean zero Brownian motion u(t) belongs a.s. to ML (T) if and only if
(@ qg<ooand(s—1)g < —1.

(b) g=occands < 1.



2 Function spaces

Definition 1. Letbe (-)® := (1 +|-|?)2. Then we recall the following function spaces:

Sobolev spaces (p = 2) H*R) = {f e S'(R) : (6)°f(E) € Lz(R)}

)={res®: (19 79) e nm)
)={feS®) : (©)F©) € R}
=4
{

Sobolev spaces WHEP(R

Fourier-Lebesgue spaces  FL°P(R

Consider a window function g € S(R) .

Modulation spaces MPYR
Wiener Amalgam spaces ~ W2(R) = {f € S'(R) : (§)" Vyf(x,€) € LUR)LL(R)

I1(€)° 03 () FEN 2@ ez <o

FeSR) 5 (&) Vof(w,6) € IHRILR) }
( j

Besov spaces || f||p;

Consider a bump function ¢, and define p;(x) = ¢(27x) — (27~ 'z), for j € N, such that 3=, ; = 1.
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Figure 1: Plot of the functions ; for the Littlewood-Paley decomposition.

3 Brownian motions

Let B; be a Brownian motion on R. Consider an isometry

L2(Ry, B(Ry), dt) %5 6(0, A, P)
f= N, [I£13)

where G(2, A, P) is a space of centered Gaussian random variables; 5(R..) indicates the class
of Borel set of R, and dt is the Lebesgue measure. Then

B(t) :=G(lpy) =N (0, /OOO Tjo,4(s) ds> = N(0,1).

3.1 Brownian loop and Fourier analytic representation

Let be B; a classic Brownian motion on R .
Consider

B(t) = B(t) — %B(Qw), for ¢ € [0,27).

By the invariance of B, this is a periodic function. For studying the local regularlty it is
enough to consider the mean zero loop, that we indicate with u(¢), such that f t)dt = 0.
We can express v via a Fourier-Wiener series.



Since f is periodic, consider the isometry

L2([0,27)) = G(92, A, P)
27 21

fe ; f(s)dB(s)= [ fols)dB(s) ~ N(0,0%)

0

where f; is the mean zero part of f, fo(t) := f(t) — f( )ds and 0% = 2| f||3!
Then 3(t) = T(1jpy). Letbe {e, },c; an orthonormal basis of L?(]0, 27]). We can expand
any function as Fourier series, so

B(t) = T(Lpy) = T(3_ cnen) Z cnT (€n) Z cn(t) gn(w)

nez nez

where g, is a centered Gaussian random variable, since T'(e,) ~ N(0,2). Subtracting the
average, since c, () = (Ljo 4, en) y = \/ETTZTL’ we obtain (up to constant) the following represen-
tation of the periodic, mean zero Brownian loop on [0, 27):

):Zg”?(?/w)eint i

n#0

4 Regularity of Brownian motion

We study local-in-time regularity of the sample paths ¢ — [(¢). Localized version of the
spaces coincide with equivalent norms

MP4(T) = WP4(T) = FL*I(T).
Thus in the proof we can use the norm of the Fourier-Lebesgue space
ull 7rsacry = [1Kk)” (k)] (2

Proof of Theorem 3 for ¢ < oo. Denote with E the expectation, we have

E [IIuH%LS,q(T)} =" ()™ |n| I [|gn| ] ~ ()7 < o

n#0 n#0
ifand onlyif (s — 1)g < —1.
On the other hand
iy = 3 ) g )~ 3 3 () g )
n#0 J=0 |n|~27
> Z Z () gn(w ZX = 00, a.s.
J=0 |n|~2J

where X; = 277 ZMNQJ‘ |gn(w)]?.

!the 2 in front comes from the fact that we are considering the complex-valued Brownian motion.



5 Abstract Wiener Spaces
Let H = H'(T) be a Hilbert space with the norm ||u| g = 3°,,cz|n|?|@(n)[%. Let be
F = {finite rank projections on H} +— {finite dimensional subspace of H} .

A cylinder setof His E = {ue€ H : Pue A}, where P € F, Ais a Borel subset of P(H). We
can define a Gaussian measure on R = {cylinder set of H}

1
u(E) = d/e_;'“”%f du
(271-)5 A

where d = dim P(H), and du is the Lebesgue measure on P(H).

Definition 2. A seminorm [-] on H is measurable if for every ¢ > 0 exists Py € f such that
pu(u : [Pu] >¢) <e VP 1 Py, PeF.
Remark 1. The seminorm [ - ] is weaker then || - || z.

Theorem 4. The seminorms || - || ypa(ry, | - [lweacry |- | 72s.a(T), are measurable on H
for(s—1)g < —1.

Corollary 1. Let i be the mean zero Wiener measure on the torusT. Then the spaces (ML (T), p),
(WE(T), ) and (FL>9(T), ) are abstract Wiener space for (s — 1)qg < —1.

As a consequence of the Fernique theorem

Theorem 5 (Fernique). Let (B, 1) be an abstract Wiener space. Then there exists ¢ > 0 such
that ,
plllullp > K) < ™o,

for sufficiently large K > 0.
we obtain large deviation estimates for the time-frequency spaces

Theorem 6. If (s — 1)q < —1 there exists ¢ > 0 such that for (sufficiently large) K > 0:

_cK2
()l agpacry > K) < ™K,
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