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Let (Ω,A,P) be a probability space. We consider a complex-valued Brownian motion

β : [0, 1]× Ω→ C

such that

(i) β(0, ω) = 0 for almost every ω ∈ Ω,

(ii) β(t, ω) has independent increments and β(t)− β(s) ∼ N (0, t− s), for all 0 ≤ s ≤ t < 1.

There is a version of β such that P(t 7→ β(t, ω) is continuous) = 1.

1 Previous results

Theorem 1. The Brownian motion β(t) belongs almost surely to the Sobolev spaces Hs
loc,W

s,p
loc

if and only if s < 1
2 , regardless of p ∈ [1,∞].

Theorem 2. The Brownian motion β(t) belongs almost surely to the Besov spaces (Bs
p,q)loc if

and only if s < 1
2 , and p, q ∈ [1,∞], or if s = 1

2 for 1 ≤ p <∞ and q =∞.

Let 1 ≤ p, q ≤ ∞. We consider the modulation spaces on the torus Mp,q
s (T). One of the

two main results of this talk is:

Theorem 3. The mean zero Brownian motion u(t) belongs a.s. to Mp,q
s (T) if and only if

(a) q <∞ and (s− 1)q < −1.

(b) q =∞ and s < 1.
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2 Function spaces

Definition 1. Let be 〈 · 〉s := (1 + | · |2)
s
2 . Then we recall the following function spaces:

Sobolev spaces (p = 2) Hs(R) =
{
f ∈ S ′(R) : 〈ξ〉s f̂(ξ) ∈ L2(R)

}
Sobolev spaces W s,p(R) =

{
f ∈ S ′(R) :

(
〈ξ〉s f̂(ξ)

)
q

∈ Lpx(R)

}
Fourier-Lebesgue spaces FLs,p(R) =

{
f ∈ S ′(R) : 〈ξ〉s f̂(ξ) ∈ Lpξ(R)

}
Consider a window function g ∈ S(R) .

Modulation spaces Mp,q
s (R) =

{
f ∈ S ′(R) : 〈ξ〉s Vgf(x, ξ) ∈ Lpx(R)Lqξ(R)

}
Wiener Amalgam spaces Wp,q

s (R) =
{
f ∈ S ′(R) : 〈ξ〉s Vgf(x, ξ) ∈ Lqξ(R)Lpx(R)

}
Besov spaces ‖f‖Bs

p,q(R) = ‖‖(〈ξ〉s ϕj(ξ)f̂(ξ))q‖Lp
x(R)‖`qj (N)<∞.

Consider a bump functionϕ0, and defineϕj(x) = ϕ(2jx)−ϕ(2j−1x), for j ∈ N, such that
∑

j ϕj = 1.

ξ

ϕ0

ϕj

Figure 1: Plot of the functions ϕj for the Littlewood-Paley decomposition.

3 Brownian motions

Let Bt be a Brownian motion on R+. Consider an isometry

L2(R+,B(R+), dt)
G−→ G(Ω,A,P)

f 7→ N (0, ‖f‖22)

where G(Ω,A,P) is a space of centered Gaussian random variables; B(R+) indicates the class
of Borel set of R+, and dt is the Lebesgue measure. Then

B(t) := G(1[0,t]) = N
(

0,

ˆ ∞
0
1[0,t](s) ds

)
= N (0, t).

3.1 Brownian loop and Fourier analytic representation

Let be Bt a classic Brownian motion on R+.
Consider

β(t) := B(t)− t

2π
B(2π), for t ∈ [0, 2π).

By the invariance of Bt, this is a periodic function. For studying the local regularity it is
enough to consider the mean zero loop, that we indicate with u(t), such that

´ 2π
0 u(t) dt = 0.

We can express u via a Fourier-Wiener series.

2



Since β is periodic, consider the isometry

L2([0, 2π])
T−→ G(Ω,A,P)

f 7→
ˆ 2π

0
f(s) dβ(s) =

ˆ 2π

0
f0(s) dB(s) ∼ N (0, σ2)

where f0 is the mean zero part of f , f0(t) := f(t)−
ffl 2π
0 f(s) ds and σ2 = 2‖f‖221

Then β(t) = T (1[0,t]). Let be {en}n∈Z an orthonormal basis of L2([0, 2π]). We can expand
any function as Fourier series, so

β(t) = T (1[0,t]) = T (
∑
cnen) =

∑
n∈Z

cnT (en) =
∑
n∈Z

cn(t) gn(ω)

where gn is a centered Gaussian random variable, since T (en) ∼ N (0, 2). Subtracting the
average, since cn(t) =

〈
1[0,t], en

〉
2

= eint
√
2πin

, we obtain (up to constant) the following represen-
tation of the periodic, mean zero Brownian loop on [0, 2π):

u(t, ω) =
∑
n6=0

gn(ω)

n
eint .

4 Regularity of Brownian motion

We study local-in-time regularity of the sample paths t 7→ β(t). Localized version of the
spaces coincide with equivalent norms

Mp,q
s (T) = Wp,q

s (T) = FLs,q(T).

Thus in the proof we can use the norm of the Fourier-Lebesgue space

‖u‖FLs,q(T) = ‖〈k〉s û(k)‖`qk(Z).

Proof of Theorem 3 for q <∞. Denote with E the expectation, we have

E
[
‖u‖qFLs,q(T)

]
=
∑
n6=0

〈n〉sq |n|−qE [|gn|q] ∼
∑
n6=0

〈n〉(s−1)q <∞

if and only if (s− 1)q < −1.
On the other hand

‖u‖qFLs,q(T) =
∑
n6=0

〈n〉sq |n|−q|gn(ω)|q ∼
∞∑
j=0

∑
|n|∼2j

〈n〉(s−1)q |gn(ω)|q

≥
∞∑
j=0

∑
|n|∼2j

〈n〉−1 |gn(ω)|q ∼
∞∑
j=0

X
(q)
j (ω) =∞, a.s.

where Xj = 2−j
∑
|n|∼2j |gn(ω)|q.

1the 2 in front comes from the fact that we are considering the complex-valued Brownian motion.
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5 Abstract Wiener Spaces

Let H = Ḣ1(T) be a Hilbert space with the norm ‖u‖H =
∑

n∈Z|n|2|û(n)|2. Let be

z = {finite rank projections on H} ←→ {finite dimensional subspace of H} .

A cylinder set of H is E = {u ∈ H : Pu ∈ A}, where P ∈ z, A is a Borel subset of P (H). We
can define a Gaussian measure onR = {cylinder set of H}

µ(E) :=
1

(2π)
d
2

ˆ
A
e−

1
2
‖u‖2H du

where d = dimP (H), and du is the Lebesgue measure on P (H).

Definition 2. A seminorm J·K on H is measurable if for every ε > 0 exists P0 ∈ z such that

µ (u : JPuK > ε) < ε ∀P ⊥ P0, P ∈ z.

Remark 1. The seminorm J · K is weaker then ‖ · ‖H .

Theorem 4. The seminorms ‖ · ‖Mp,q
s (T), ‖ · ‖Wp,q

s (T), ‖ · ‖FLs,q(T), are measurable on H
for (s− 1)q < −1.

Corollary 1. Letµ be the mean zero Wiener measure on the torusT. Then the spaces (Mp,q
s (T), µ),

(Wp,q
s (T), µ) and (FLs,q(T), µ) are abstract Wiener space for (s− 1)q < −1.

As a consequence of the Fernique theorem

Theorem 5 (Fernique). Let (B,µ) be an abstract Wiener space. Then there exists c′ > 0 such
that

µ(‖u‖B ≥ K) ≤ e−c′K2
,

for sufficiently large K > 0.

we obtain large deviation estimates for the time-frequency spaces

Theorem 6. If (s− 1)q < −1 there exists c > 0 such that for (sufficiently large) K > 0:

µ
(
‖u(ω)‖Mp,q

s (T) > K
)
< e−cK

2
.
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