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We consider the homogeneous Schrédinger equation in R%:

{i@tu —Au=0 )

uw(0,2) = ug(z), wup € S(RY).

The solution is given by
u(t,x) = e_itAuo = (eit‘glzaa(f)):

where 7y and (UU)V are the Fourier Transform and the Inverse Fourier Transform on R¢.

Scaling If v is a solution of (1) with initial data ug, then uy(¢,z) = w(\?*t, Az) is a solution
with initial data (ug)x(x) = up(Ax).

1 Restriction theory

Look closer at the solution of Equation (1):

. 1 . 2
t.x) =e Hyy = / (- E+tlEl?) ]
u(t@) = e ug = g | e g (€) dé

We interpret the above display equality as an inverse space-time (R?*!) Fourier Transform:

1

u(t, ) = F L (v(r,€)) = e /R » 't T8y (1, €) dr de,

from which:

u(r,€) = 21 ug(§)a(r — €,

where §(7 — |¢|?) is the measure on the paraboloid ¥ = {(7,¢) € R 1 = |€]2]).

Definition 1. Let M C R%! be a d-dimensional manifold and . a smooth measure sup-
ported on it. We define the following operators

Restriction operator Extension operator
R: LP(RHY) = L2(M, p) R*: L*(M, p) — LV (RH1)
F i (FF)im 9= F Hgp)



Thus, the solution of the Schrodinger equation (1) is given by applying the extension op-
erator R* to the function ug when M is the paraboloid ¥ = {(7,¢) € R™! 7 = |¢|2} with the
measure 6(7 — |£]?).

Theorem 1 (Tomas-Stein). Let M C R4T! a compact! d-dimensional manifold with non van-

ishing Gaussian curvature, and f € LP(RT1), then

IRflz2my S I flpprasry  holds for 1 <p<

The dual statement for the extension operator reads:
Theorem 2 (Dual Tomas-Stein). Let M C R*! a compact d-dimensional manifold with non
vanishing Gaussian curvature, and g € L*(M), then

4
IR Gl gy S lolzney  holdsfor o =2+~ @

Remark 1. The operator e~** is the composition of R* with the spatial Fourier Transform.

Remark 2. The Tomas-Stein inequality (2) holds on compact hypersurface. We can get rid of
this assumption via rescaling. Consider ug € L*(R?) such that

supp(ug) C Bf = {£ € R? : [¢| <1}.
Rescaling uo with A > 0, the Fourier Transform changes with the dual scaling:
(wo)a(z) = uo(Az) = (uo)r(§) = A" "uo(¢/A) = 5™ (€),

then " is supported on B{ = {¢ € R? : |¢| < A} . The rescaled extension inequality (2):

o

_dg2 —d —A
=X 7[R UOHLP’(RdH) <COA2 H“OHL2(M) = H“O ’

Lv' (RI+1) L2 (M)

holds with the constant C, = C’)f%+%. In particular, for the value p’ = 2 + % we have
Cy = C for every A > 0. From Theorem 2, letting A — oo we obtain the bound for the whole
paraboloid . Since functions with compactly supported Fourier Transform are dense in L?,
with a limiting argument we obtain the extension inequality for all initial data in L.

2 Strichartz estimates for Schrodinger equation

Restriction theory gives estimates in time and space only on isotropic Lebesgue space (on
L{(R)L%E(R?) when ¢ = p). The paraboloid is invariant under anisotropic scaling

(z,t) — (Az, \°t)
so it is reasonable to study restriction and extension on anisotropic spaces (q # p):
||€_itAUO||L§L£(Rde) S luoll 2 (gay - 3)
Proving this inequality is equivalent to showing either of the following:
o T:=e¢ " LARY — LILP(R x RY) is bounded,
o TF:=(c ") LYIP (R x RY) — L2(RY) is bounded.

Yor M is a hypersurface with a compactly supported measure .



The composition T7* :
e 1A (e 8y LI IV (R x RY) — LILE(R x RY)  is a bounded operator.

We will prove the last bound for 77* and, by Holder and duality, the previous follow.

Theorem 3 (Nonendpoint estimates). The operator TT* is given by u — [~ o0 emilt=5)y, 4
and the following inequality:
i(t—s)A
F(s)ds SIEN g v 4)
H/ LILE(RxRY) LE Le (RxRY
holds true for
44 p € [2,00] ifd=1
“t+o =g and p € [2,00) if d=2
¢ P pe[z%%) if d>3
Remark 3. The relation between ¢, p and d can be
obtained by scaling (3).
In d = 2 the endpoint (¢,p) = (2,00) has been
proved false by Montgomery-Smith [MS97] with a
counterexample involving Brownian motion.
For d > 3, the endpoint (¢q,p) = (2, d2d2) has been )
proved by Keel and Tao [KT98]. | v P
d—2 3
2d

Remark 4. The bound (4) is closely related to the bound for solution of the inhomogeneous
Schrodinger equation:

r&u—Au:F
u(0,z) = uo(x)

which by Duhamel’s formula is
t
u(t,z) = e "Pug + 2/ e 9B P (5) ds. (5)
0

We start proving LP-bounds for the kernel in (4):

Lemma 1. We have the following estimates:

—itA

le®0]| o = [|v]l 2 e 0|, < (drft) ™2 |[v]| 1

Energy estimate Decay estimate
Interpolating between them for2 < p < co we obtain:

—itA

le 40|, < (nlt) ™G5 o]



Proof of Theorem 3. From Lemma 1 applied to (4) we have:

|[terma

The RHS can be expressed as a convolution: call f(t) = || F(t)

—00

o 1_1
< / (4m|t — s])fd(575> [1E(s)] . ds.
LP ¢

I, and g(t) = (arle) (373,

then
HLHSHLg(R) SIf *gHLfJ(]R)'
Using weak Young inequality for r > 1:
1 1 1
If % 9llza < UFlsllgloe  forall (s,r): 24 ==14—.

1 1 1 . . 1 d/1 1
In our case g € L™*°(R) where — = d ( - ) Notice that, by scaling, — = B ( - ), then
r p q p

2
2 1 )
— = —, which implies s = ¢/, and
q T

ILHS [ zg @y S 1 * gllpay S W Fllg N9l 00 = IE N o 12 gy

This proves the estimate apart from the endpoint. O

3 Endpoint Strichartz Estimates

. . 2d \ . .. . . .
To obtain the endpoint (¢, p) = (2, d2> in dimension d > 3 we rewrite the estimates (4)

using the bilinear form:
T(F,G) / / Y E(s), (A G dsdr

where (-, -) is the L?(R%) scalar product. In this point the estimate (4) is equivalent to

TE G S IEN o 1G] (6)

L?Lgl .
3.1 Dyadic decomposition of the Bilinear Estimate
We decompose our bilinear form 7" dyadically as

G)=) T;(F,G) where @)

JEL
Tj(F7 G) = // <(6_I'SA)9<F1(S)7 (e—itA)*G(t)> ds dt.
{(t,s) : t—27+1<s<t—27}

Idea of the proof: We start by showing the bound (6) for 7j. Let us interpolate

T, )| < 1Pl 2 G2y ®)



for ea=b=0c0 a=b=2
By scaling this also gives the bound

=

IT5(E G S IE N 1G] forall j € Z.

¥

D=

3.2 Better control on dyadic estimates (i)
To bound the dyadic sum in (7) we need additional de-
cay:

S

I T5(F.G) <277 || Fll oy Gl oy )

Q=

for (a,b) in an open neighborhood of (p, p) and some

B(a,b)zH—d<1+l)>o.

SA
N[ =

a b
By scaling and interpolation this amounts to showing (8) for:
D) a=2,be(2,p),
(i) b=2,a € (2,p).
Proof. By applying Cauchy-Schwarz and (4) (non-endpoint Strichartz) we get the point a =
b = 2. Time locality of 7, and Holder gives us the other estimates. O
3.3 Summing up the dyadic pieces in (7)
Assume that ' and G have the form
F(t,2) =277 f() g (2),  G(t,w) =27 g()1 5, (2)
BE()| S 28, |E@)|<S28 vieR.

Then (9) simplifies to
IT(F,G)| 5 240G EIDGZ £l s g 2.
By choosing suitable (a, b) for any (k, k) we have
T3(F,G)] S 2 (92Dt | 7] o [ gl
which is summable in j € Z.

Lemma 2 (Atomic decomposition of L?). Let1 < p < co. The F(t,-) € L% can be written as

F(t,)= > ful®27"Pxp0)()

k=—o00

where |x g, (1) < Lg, ) with|Ey(t)] < 2¥ and

[ @®llep < 1 e -
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