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Abstract

This thesis studies extremizers for the Strichartz inequality for a family of
fourth order Schrödinger equations on R:

i∂tu− µ4u+42u = 0, µ > 0. (1)

We solve an open problem that was posed in the literature about seven years
ago by Jiang, Pausader and Shao in [JPS10] about the existence of maximizers
for the corresponding Strichartz inequality when µ = 0:

‖6
1
6 |∇|

1
3eit4

2
f‖L6t,x(R×R) 6 S ‖f‖L2(R) . (2)

We prove that extremizers for (2) exist and are smooth.
To show this result we will use an orthogonal basis of polynomials in
L2[−1, 1]. Connections between other Strichartz estimates and orthogonal
polynomials have been recently discussed in [Gon17].

For proving smoothness of maximizers, we exploit the bootstrapping
argument from [EHL11] and adapted in [HS12] for showing regularity for
extremizers of the Airy–Strichartz inequality.

The study of extremizers is closely related to the research of optimal con-
stants in the corresponding inequalities. For the Schrödinger equation:

i∂tu−4u = 0 (3)

Strichartz inequalities for the solution have been intensely studied in the
last decade by Kunze [Kun03], Foschi [Fos07], Shao [Sha09], Oliveira e Silva
and Quilodrán [OeSQ16]. For a more complete list, the reader can refer to
[FOeS17]. In low dimensions the sharp constants have been calculated and
extremizers characterised using different tools from PDEs and Harmonic
Analysis, in particular from the theory of restriction for the Fourier trans-
form.

The restriction problem was first posed by Stein: he wondered when it is
possible to meaningfully restrict the Fourier transform on a subset E of the
Euclidean space. Surprisingly, the answer is closely related to the curvature
of the set E. In fact, curvature is one of the main factors to cause decay of
oscillatory integrals.
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Structure of this thesis

In the first chapter we introduce the Schrödinger equations together with some back-
ground: Oscillatory integrals, Restriction theory and Strichartz estimates.

In Chapter 2 we present the family of fourth order Schrödinger equation in (1). We
focus on the case µ = 0 and the corresponding Strichartz estimate (2).
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1 P R E L I M I N A R I E S A N D B A C KG R O U N D

the schrödinger equation
The Schrödinger equation is a differential equation that describes the evolution of a
quantum system. It was introduced by Erwin Schrödinger in the 1925, who won the
Nobel Prize for Physics eight years later. The simplified form the of equation we use
in this thesis is

i
∂

∂t
Ψ(x, t) = [4+ V(x, t)]Ψ(x, t)

where i is the imaginary unit, Ψ is the so-called wave function and V is a potential.

When the potential V vanishes identically, we have the initial value problem for the
homogeneous Schrödinger equation in Rd with initial datum u0.{

i∂tu−4u = 0

u(0, x) = u0(x)
(SE)

Solution via Fourier analysis

When the initial datum u0 is taken in the Schwartz space S (Rd) it is possible to give
an explicit formula for the solution of the initial value problem (SE), by using the
Fourier transform on Rd.

Fourier transform

f̂(ξ) =

∫
Rd
e−ix·ξ f(x)dx,

Inverse Fourier transform

qf(y) =
1

(2π)d

∫
Rd
eiy·ξ f(ξ)dξ.

We will use the notation dξ to indicate the normalised measure dξ
(2π)d

. With this nor-

malisation the Fourier transform is an isometry between L2(Rd, dx) and L2
(
Rd, dξ

)
.

More results about the Fourier transform are recalled in the Appendix A.
We denote with Fx the Fourier transform with respect to the space variable x, while
F or Ft,x will stand for the space-time Fourier transform, in both time and space.

Applying the Fourier transform to (SE), we get{
i∂tû+ |ξ|2û = 0

û(0, x) = û0(x) , û0 ∈ S (Rd).
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The first line is now an algebraic equation. Divide it by the imaginary unit: since
i−1 = −i we obtain

∂tû− i|ξ|2û = 0.

Multiplying by e−it|ξ|
2
, we can rewrite the equation as

∂t(e
−it|ξ|2û(t, ξ)) = 0.

Now integrate from 0 to t. Since limt→0 e
−it|ξ|2û(t, ξ) = û(0, ξ), we have∫ t

0
∂τ(e

−iτ|ξ|2û(τ, ξ))dτ = e−it|ξ|
2
û(t, ξ) − û0(ξ) = 0,

then
û(t, ξ) = eit|ξ|

2
û(0, ξ).

The right hand side is still a Schwartz function, so we are allowed to take the Inverse
Fourier transform in the space variable on both sides:

u(t, x) = F−1
x

(
eit|ξ|

2
û0(ξ)

)
(x) =

∫
Rd
eix·ξeit|ξ|

2
û0(ξ)dξ.

Thus, our solution to (SE) is given by

u(t, x) = e−it∆u0, (1.1.1)

where we indicated with e−it∆ the evolution operator

(e−it∆f)(t, x) := F−1
x (eit|ξ|

2
f̂(ξ)) =

∫
Rd
ei(x·ξ+t|ξ|

2) f̂(ξ)dξ.

The solution (1.1.1) enjoys the following symmetries.

• space-time translations: u(t, x) u(t+ t0, x+ x0), with t0 ∈ R, x0 ∈ Rn;

• parabolic dilations: u(t, x) u(λ2t, λx), with λ > 0;

• change of scale: u(t, x) µu(t, x), with µ > 0;

• space rotations: u(t, x) u(t,Rx), with R ∈ SO(n);

• phase shifts: u(t, x) eiθu(t, x), with θ ∈ R;

• Galilean transformations:

u(t, x) exp
(
i

4

(
|v|2t+ 2v · x

))
u(t, x+ tv),

with v ∈ Rn.

Let G be the group generated by the above symmetries, and let g an element of G.
If u solves (SE) with initial data u0, then v = g · u is still a solution to (SE), where ·
denotes the multiplication on the group G.

Since we expressed the solution u(t, x) to the Schrödinger equation (1.1.1) via the
(space-time) Fourier transform, we can use results from the realm of oscillatory inte-
grals theory in order to study regularity of the solution.
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oscillatory integrals
Oscillatory integrals are one of the main tools in harmonic analysis since its very
beginning. The Fourier transform is in fact an example of oscillatory integral. We
recall a few important results about them.

Notation 1.2.1. If x,y are real numbers, we write x = O(y) or x . y if there exists a
finite positive constant C such that |x| 6 C|y|. We write x ∼ y if C−1|y| 6 |x| 6 C|y| for
some C 6= 0.

The main contribution in the oscillatory integral comes from critical points of the
phase: those points in which the gradient of phase ∇ϕ vanishes. The following result
is from [SS11b, Prop 2.1, Chapter 8, page 325].

Proposition 1.2.2 (Principle of non-stationary phase). Let ϕ ∈ C∞(Rd),ψ ∈ C∞c (Rd),
with |∇ϕ(x)| > c > 0 for every x ∈ supp(ψ). Then for any N > 0

|I(λ)| =

∣∣∣∣∫
Rd
eiλϕ(x)ψ(x)dx

∣∣∣∣ 6 cNλ−N ∀ λ > 0,

where the constant cN depends also on ϕ and ψ.

When critical points are present, we cannot hope for such a decay.

Example 1. Consider the 1-dimensional case: let a < 0 < b and let ψ be a smooth
cut-off function supported in

[
−π
2 , π2

]
and focus on the real part:

<

(∫b
a
eiλϕ(x)ψ(x)dx

)
=

∫b
a

cos(λϕ(x))ψ(x)dx .

As λ gets larger, we get more cancellation when no critical points are present. Below
we fix λ = 100 and we plot two example: in the first one on the left ϕ(x) = x, who
does not have critical points; in the second ϕ(x) = x2, and the derivative vanishes at
the origin.

ψ

Figure 1.: Plot of the function cos(100x).

ψ

Figure 2.: Plot of the function cos(100x2).

But we can still get some integrability if the critical points are not “too critical”.

Lemma 1.2.3 (van der Corput). Let ϕ ∈ C2[a,b] and |ϕ ′′(x)| > 1 for all x ∈ [a,b]. Then

|I(λ)| =

∣∣∣∣∣
∫b
a
eiλϕ(x) dx

∣∣∣∣∣ 6 8

λ
1
2

∀ λ > 0.
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The reader can find a proof in [SS11b, Prop 2.3, Chapter 8, page 328]
It is possible to partially generalize such result in higher dimension. See [CW02]

for more details on what follows.

Definition 1.2.4. Letϕ ∈ C∞(Rd). A point x0 ∈ Rd is a critical point ofϕ if∇ϕ(x0) = 0.
The point x0 is non-degenerate if the Hessian is non-degenerate in x0, namely if

∇2ϕ(x0) =
(
∂2ϕ

∂xi∂xj
(x0)

)d
i,j=1

has full rank

or, equivalently, if det(∇2ϕ(x0)) 6= 0.

Theorem 1.2.5 (van der Corput in higher dimension [CW02]). Let ϕ ∈ C∞(Rd),ψ ∈
C∞c (Rd), with det(∇2ϕ(x)) 6= 0 for every x ∈ supp(ψ). Then

I(λ) = O(λ−
d
2 ) .

These results have important applications in the theory of restriction of the Fourier
transform.

restriction theory

Let f be an integrable function. Then its Fourier transform f̂ is a continuous function.
Thus, for every subset E ⊂ Rd, the restriction of f̂ to E makes sense as a continuous
function. We can define a restriction operator RE which maps into the space C(E) of
continuous functions on E.

RE : L
1(Rd)→ C(E)

f 7→ f̂ �E .

The operator RE is a linear and bounded since

‖f̂ �E‖∞ 6 ‖f̂ ‖∞ = sup
ξ∈Rd

∣∣∣∣∫
Rd
e−ix·ξf(x)dx

∣∣∣∣ 6 ∫
Rd

|f(x)|dx = ‖f‖L1 .

On the other hand, the restriction of an L2 function to a null set1 makes no sense.
We wonder if it is possible to make sense to this operator on Lp(Rd), for 1 < p < 2.

In other words, we wonder for which (q,p) and E ⊂ Rd the operator

RE : L
p(Rd)→ Lq(E)

f 7→ f̂ �E

1 when E is a set of zero Lebesgue measure in Rd
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is bounded, even when the subset E has zero Lebesgue measure.
First, we start with defining a class of “nice” subsets on which we would like to
restrict f̂. We indicate with (x1, . . . , xd) the coordinates of a vector x ∈ Rd, and with
(p0,p1, . . . ,pd) the coordinates of a point p ∈ Rd+1.

Definition 1.3.1. We say that M is a local smooth hypersurface in Rd+1 if it is locally a
graph of a smooth map

ϕ : Rd → R

x 7→ ϕ(x1, . . . , xd).

This means that for every point p ∈ M there exists a neighbourhood Mp of p and a
map ϕ ∈ C∞(Rd) such that

Mp =
{
(x0, x) ∈ R×Rd : x0 = ϕ(x1, . . . , xd)

}
.

Example 2. The d-dimensional sphere Sd =
{
x ∈ Rd+1 : |x|2 = 1

}
and the paraboloid

P =
{
(x,y) ∈ Rd ×R : y = |x|2

}
are hypersurfaces in Rd+1.

Let M be a smooth hypersurface in Rd+1, and let p ∈M. Then there exist an open
neighbourhood A of p, a point x0 ∈ Rd, an open neighbourhood U of x0 and map
φ ∈ C∞(U) such that

φ(x0) = p , A∩M = φ(U) =
{
(x,y) ∈ U×R : y = ϕ(x1, . . . , xd)

}
.

The map φ(x) = (x,ϕ(x)) (usually called “chart”) maps φ : U → φ(U). We can
carry over the Lebesgue measure Ld on Rd to M via φ. Let f be a smooth function
supported in the compact region V on M, with V = φ(U). We can define the surface
measure σ on the surface M via change of variables:∫

V
f(v)dσ(v) :=

∫
φ(U)

f(v)dσ(v)

=

∫
U
(f ◦φ)(x) |Jac(φ(x))|dx =

∫
U
(f ◦φ)(x)

√
1+ |∇ϕ(x)|2 dx.

Up to translations and rotations, we can assume that p = (x0, x) = 0 ∈ Rd+1,
φ(0) = (0,ϕ(0)) = 0 and ∇ϕ(0) = 0. Once a basis of Rd is fixed, the Hessian
of ϕ at the origin can be represented as a matrix ∇2ϕ(0). This is a linear map on Rd.
Since ϕ is smooth, its Hessian is symmetric, so it has d real eigenvalues k1, . . . ,kd.

Definition 1.3.2 (Curvature). Let p ∈ M and x ∈ Rd, with φ(x) = (x,ϕ(x)) = p as
before. The eigenvalues k1, . . . ,kd of the Hessian∇2ϕ(x) are called principal curvatures
of the M in p. The product of the eigenvalues

k(p) := k1 · ... · kd = det(∇2ϕ(x))

is the Gaussian curvature of M at p.
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Let µ be a smooth compactly supported measure on the hypersurface M. For ex-
ample, consider µ = ψσ, where σ is the surface measure and ψ ∈ C∞c (M), where
C∞c (M) is the space of smooth, compactly supported functions on the hypersurface
M. Consider the Fourier transform of such a measure2.

When M has non vanishing Gaussian curvature at every point, we can expect the
Fourier transform of the measure µ to decay. In fact, we assume that supp(µ) = φ(U)
with U compact, then

µ̂(ξ) =

∫
φ(U)

e−iξ·y dµ(y) =
∫
U
e−iξ·φ(x)|Jac(φ(x))|dx =

∫
U
e−iξ·φ(x)

(
1+ |∇ϕ(x)|2

)1
2 dx.

Expanding ϕ(x) in the origin using Taylor, the first two terms are zero, so we have

ϕ(x) =
1

2

d∑
j=1

kjx
2
j +O(|x|3).

When the principal curvatures kj never vanish, we can apply Theorem 1.2.5 to get the
decay

µ̂(ξ) = O(|ξ|−
d
2 ).

We want to see if the same result holds true when we consider functions on M. Let
us introduce an operator to deal with this case.

Definition 1.3.3. LetM ⊂ Rd+1 be a d-dimensional manifold and µ a smooth measure
supported on it. We define the following operators

Restriction operator

R : Lp(Rd+1)→ L2(M,µ)
f 7→ (Ff) �M

Extension operator

R? : L2(M,µ)→ Lp
′
(Rd+1) (1.3.1)

g 7→ F−1(gµ)

The operator R? is the adjoint of R. When the manifold M is curved and the measure
µ is compactly supported (for example, consider the d-dimensional sphere Sd with it
surface measure σ), in the case q = 2 one can use the following result due to Tomas
and Stein [Tom75].

Theorem 1.3.4 (Tomas-Stein). Let Sd ⊂ Rd+1, and f ∈ Lp(Rd+1), then

‖Rf‖L2(Sd) . ‖f‖Lp(Rd+1) holds for 1 6 p 6
2(d+ 2)

d+ 4
.

The dual statement for the extension operator reads:

2 A rigorous definition of Fourier transform of a measure is reported in Appendix A.
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Theorem 1.3.5 (Dual Tomas-Stein). Let Sd ⊂ Rd+1, and g ∈ L2(Sd), then

‖R?g‖
Lp
′
(Rd+1) . ‖g‖L2(Sd) holds for p ′ > 2+

4

d
. (1.3.2)

Remark 1.3.6. The implicit constants in Theorem 1.3.4 and Theorem 1.3.5 do not de-
pend on the function f, nor on g.

back to the schrödinger equation
Look closer at the solution of (1.1.1):

u(t, x) = e−it∆u0 =
1

(2π)d

∫
Rd
ei(x·ξ+t|ξ|

2)û0(ξ)dξ.

We multiply and divide by 2π and we interpret the above formula as an inverse
space-time Fourier Transform on Rd+1:

u(t, x) =
∫

Rd
ei(x·ξ+t|ξ|

2)û0(ξ)dξ =

∫
Rd+1

ei(t,x)·(τ,ξ) 2π û0(ξ) δ(τ− |ξ|2)
dτ
2π

dξ

from which:
u = F−1(û0(ξ)︸ ︷︷ ︸

f(ξ)

2π δ(τ− |ξ|2)︸ ︷︷ ︸
µ(τ,ξ)

) = F−1(f µ). (1.4.1)

where δ(τ− |ξ|2) is a measure supported on the paraboloid P = {(τ, ξ) ∈ Rd+1, τ = |ξ|2}.

Thus, the solution of the Schrödinger equation (SE) is given by applying the extension
operator R? to the function û0 when M is the paraboloid P, and µ is the measure
2π δ(τ− |ξ|2).
The operator e−it∆ is, in fact, the composition of R? with the spatial Fourier transform
on Rd.

u0
e−it∆7−−−−−−−−−−−−→ u(t, x)

u0 7→ û0 7→ R?û0 = u(t, x)

Remark 1.4.1. The Tomas-Stein inequality (1.3.2) holds on compact hypersurface. In
the case of the paraboloid, we can remove this assumption via rescaling3. Consider
u0 ∈ L2(Rd) such that

supp(û0) ⊆ Bd1 = {ξ ∈ Rd : |ξ| 6 1}.

Rescaling u0 with λ > 0, the Fourier transform changes with the dual scaling:

(u0)λ(x) = u0(λx) ⇒ (̂u0)λ(ξ) = λ
−dû0(ξ/λ) = û0

λ(ξ),

3 This is particular of the paraboloid, it is not possible to do it, for example, for the hyperboloid
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then û0
λ is supported on Bdλ = {ξ ∈ Rd : |ξ| 6 λ} . The rescaled extension inequality

‖R?û0
λ‖
Lp
′
(Rd+1) = λ

−d+2
p ′ ‖R?û0‖Lp ′(Rd+1) 6 Cλ

−d2 ‖û0‖L2(M) = ‖û0
λ‖L2(M)

holds with constant Cλ = Cλ
−d2+

d+2
p ′ . In particular, for the value p ′ = 2+ 4

d we have
Cλ = C for every λ > 0. From Theorem 1.3.5, letting λ→∞ we obtain the bound for
the whole paraboloid P. Since functions with compactly supported Fourier transform
are dense in L2, with a limiting argument we obtain the extension inequality for all
initial data in L2.

Once we interpret the solution of the Schrödinger equation e−it∆u0 as a Fourier
extension from a paraboloid, we can apply Theorem 1.3.5, that holds, by the previous
remark, for p(d) = 2+ 4

d . Then we have

‖e−it∆u0‖Lp(d)t,x (R×Rd)
. ‖u0‖L2(Rd). (1.4.2)

The exponent p(d) is also called the Strichartz exponent.
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strichartz estimates
The Strichartz estimates are a family of inequalities for dispersive equations in which
the norm of the solution is taken in the mixed Lebesgue space Lqt (R)Lpx(R

d).
They were introduced by Robert Strichartz in his seminal paper [Str77] in which he

pointed out the connection between restriction theory of the Fourier transform and
the decay of the solution of wave and Schrödinger equations.

Strichartz estimates for Schrödinger equation

The estimate we obtained in (1.4.2) using restriction theory is quite remarkable, never-
theless Theorem 1.3.5 gives estimates only on isotropic Lebesgue space (on Lqt (R)Lpx(R

d)

when q = p). On the other hand, the paraboloid is invariant under the anisotropic
scaling

(x, t) (λx, λ2t).

The solution of the Schrödinger equation (1.1.1), as a Fourier extension from a paraboloid,
enjoys this not linear dilation in the time coordinate. So it is reasonable to study re-
striction and extension estimates on anisotropic spaces, i.e. when q 6= p. In fact, the
solution of the Schrödinger equation (1.1.1) enjoys the following estimates:

‖e−it∆u0‖Lqt (R)Lpx(Rd)
6 C‖u0‖L2(Rd). (1.5.1)

The constant C = C(q,p,d) depends on exponents and
dimension. By scaling (1.5.1), we obtain the condition:

2

q
+
d

p
=
d

2
with


p ∈ [2,∞] if d = 1

p ∈ [2,∞) if d = 2

p ∈
[
2, 2d
d−2

]
if d > 3

(1.5.2)

For a given dimension d, a pair (q,p) satisfying the
above relation is called admissible.

1
p

1
q

•
1
2

|

d−2
2d

•1
4

◦1
2

•

(
1
2 , d−22d

)

d = 1

d
=
2

d
>
3

Remark 1.5.1. In d = 2 the endpoint (q,p) = (2,∞) has been proved false by Montgomery-
Smith [MS98]. For d > 3, the endpoint (q,p) =

(
2, 2d
d−2

)
has been proved by Keel and

Tao [KT98].

Proving this inequality is equivalent to showing either of the following:

• T := e−it∆ : L2(Rd) −→ L
q
t L
p
x(R×Rd) is bounded,

• T? := (e−it∆)? : Lq
′

t L
p ′
x (R×Rd)→ L2(Rd) is bounded.
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The composition TT? :

• TT? = e−it∆(e−is∆)?: Lq
′

t L
p ′
x (R×Rd)→ L

q
t L
p
x(R×Rd) is a bounded operator.

We prove the last bound for TT? and, by Hölder and duality, the previous follow.

Theorem 1.5.2 (Nonendpoint Strichartz estimates). The operator TT? is given by u 7→∫+∞
−∞ e−i(t−s)∆ uds and the following inequality holds∥∥∥∥∫∞

−∞ e−i(t−s)∆F(s)ds
∥∥∥∥
L
q
t L
p
x(R×Rd)

. ‖F‖
L
q ′
t L

p ′
x (R×Rd)

(1.5.3)

for (d,q,p) satisfying the condition (1.5.2).

Remark 1.5.3. The bound (1.5.3) is closely related to the bound for the solution of the
inhomogeneous Schrödinger equation:{

i∂tu−4u = F

u(0, x) = u0(x)

which by Duhamel’s formula is

u(t, x) = e−it∆u0 + i
∫ t
0
e−i(t−s)∆F(s)ds. (1.5.4)

We start proving Lp-bounds for the kernel in (1.5.3). Details of the proof can be
found in [LP14].

Lemma 1.5.4. The operator eit∆ defined on S (Rd) extends to an unitary operator on L2(Rd).
Moreover, we have the following estimates:

‖e−it∆v‖L2 = ‖v‖L2 ‖e−it∆v‖L∞ 6 (4π|t|)−
d
2 ‖v‖L1 .

Energy estimate Decay estimate

Interpolating between them for 2 6 p 6∞ we obtain:

‖e−it∆v‖Lp 6 (4π|t|)
−d
(
1
2−

1
p

)
‖v‖

Lp
′ .

Proof of Theorem 1.5.2. We prove the theorem in all case but the endpoint.
From Lemma 1.5.4 applied to (1.5.3) we have:∥∥∥∥∫∞

−∞ e−i(t−s)∆F(s)ds
∥∥∥∥
L
p
x

6
∫∞
−∞ (4π|t− s|)

−d
(
1
2−

1
p

)
‖F(s)‖

L
p ′
x

ds.

The right hand side can be expressed as a convolution. Let A be the left hand side

and let f(t) = ‖F(t)‖
L
p ′
x

and g(t) = (4π|t|)
−d
(
1
2−

1
p

)
, then

‖A‖Lqt (R) . ‖f ∗ g‖Lqt (R).

10



Using weak Young inequality4 for r > 1:

‖f ∗ g‖Lq 6 ‖f‖s‖g‖r,∞ for all (s, r) :
1

s
+
1

r
= 1+

1

q
.

In our case g ∈ Lr,∞(R) where 1
r = d

(
1
2 −

1
p

)
. Notice that, by scaling, we have

1

q
=
d

2

(
1

2
−
1

p

)
then

2

q
=
1

r
,

which implies s = q ′. Thus

‖A‖Lqt (R) . ‖f ∗ g‖Lqt (R) . ‖f‖q ′‖g‖r,∞ = ‖F‖
L
q ′
t L

p ′
x (R×Rd)

.

This proves the estimate away from the endpoint.

extremizers for strichartz estimates
We are interested in the best value of the constant in the inequality (1.5.1). This will
be defined as

C := sup
u0∈L2(Rd)\{0}

‖e−it∆u0‖Lqt (R)Lpx(Rd)

‖u0‖L2(Rd)
. (1.6.1)

Definition 1.6.1. A nonzero function f that realises equality in an inequality is called
extremizer or maximizer for that inequality.

In particular, we look for a nonzero f ∈ L2(Rd) that realises equality in (1.5.1),
if there exist one. Even if maximizers do not exist, we always have sequences of
functions maximising (1.6.1).

Definition 1.6.2. A sequence {fn}n∈N, with ‖fn‖L2 6 1 is an extremizing sequence for
(1.5.1) if

lim
n→∞‖e−it∆fn‖Lqt (R)Lpx(Rd)

→ C.

Remark 1.6.3. Due to the several symmetries of the solution, extremizing sequences
may not converge to an extremizer in the strong topology.

Despite of the difficulties, existence of extremizers for the Strichartz estimate (1.5.1)
has been proved in all dimensions! The first result, in dimension 1, was given by
Kunze [Kun03]: he proved existence of extremizers exploiting the concentration-
compactness principle of Lions [Lio85]. Then Foschi [Fos07] managed to characterise
maximizers in dimensions d = 1 and 2, showing that they are5 Gaussians. A few

4 or by applying Hardy-Littlewood-Sobolev lemma
5 up to the symmetries of the solution Section 1.1.1.
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years later Shao [Sha09] proved the existence of extremizers in every dimension, and
not only in the symmetric case but for any non-endpoint admissible pair (q,p).

The figure shows admissible pairs of exponent
(q,p) for different dimensions.
The blue dots on the diagonal represent the
symmetric exponents (q,q), for which we can
use restriction theory.

Characterise the extremizers in higher dimen-
sion is still an open problem.

1
p

1
q

•
1
2

•1
4

◦1
2

•

(
1
2 , d−22d

)

•
•
•
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2 A FA M I LY O F F O U R T H O R D E R
S C H R Ö D I N G E R E Q U AT I O N

We study a family of fourth order Schrödinger equations in one dimension depending
on the parameter µ > 01:{

i∂tu− µ4u+42u = 0 x, t ∈ R

u(0, x) = f(x) ∈ L2(R)
(2.0.1)

The solution of the equation (2.0.1) is given by

Sµ(t)f := e
it(42−µ4)f = (ei(xξ+tφµ(ξ))f̂(ξ))q=

∫
R

ei(xξ+tφµ(ξ))f̂(ξ)dξ , (2.0.2)

where φµ(ξ) = ξ4 + µξ2. A family of Strichartz estimates is available:

‖D
θ
2
µ Sµ(t)f‖Lqt (R)Lpx(R) 6 c ‖f‖L2(R) , (2.0.3)

where (q,p) =
(
4
θ , 2
1−θ

)
, θ ∈ [0, 1], and the operator Dαµ is given by

Dαµf(x) :=

∫
R

eixξ|φ ′′µ(ξ)|
α
2 f̂(ξ)dξ. (2.0.4)

These estimates have been proven by Kenig, Ponce and Vega [KPV91, Theorem 2.1]
for a broad class of phase function φ. In their paper the authors deal with global
and local smoothing properties of dispersive equations. These results are obtained
exploiting the decay of the oscillatory integral representing the solution.

In our case, when the parameter θ ranges in
[0, 1], we obtain all the points in line connect-
ing (12 , 0) and (0, 14) in the diagram. We are
mainly interested in the symmetric case, when
q = p = 6, and the inequality (2.0.3) is:

‖D
1
3
µSµ(t)f‖L6t,x(R×R) 6 C ‖f‖L2(R) . (2.0.5)

This case (in blue in the diagram) is obtained
when θ = 2

3 .

1
p

1
q

•
1
2

•1
4

•

(
1
6 , 16
)

Figure 3.: Riesz diagram for the
Strichartz estimates in
(2.0.3).

1 The case µ < 0 is not considered since Strichartz estimates may not be available in view of the presence
of the critical point for the phase function, see [KPV91, Condition (2.1.c)].
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Recently, in [OeSQ16] the authors studied the problem of existence of extremizers
for the Strichartz estimates for the same family (2.0.1) but in dimension 2. By using a
dichotomy result about existence of extremizers [JSS14, Section 4] for the correspond-
ing Strichartz inequality they proved that maximizers exist when µ = 0, and fail to
exist when µ = 1 (and, by scaling, when µ > 0).

Aiming to a similar result for the 1-dimensional problem, in this thesis we study
the problem of maximizers for the endpoint µ = 0.

pure power of laplacian
From now on we will consider the case µ = 0 for which our family (2.0.1) reduces to
the equation: {

i∂tu+42u = 0 x, t ∈ R

u(0, x) = f(x) ∈ L2(R).
(2.1.1)

The solution is given by

S0(t)f := e
it42f = (ei(xξ+tξ

4)f̂(ξ))q=

∫
R

ei(xξ+tξ
4)f̂(ξ)dξ . (2.1.2)

As before, for the solution we have the corresponding Strichartz estimate:

‖D
1
3
0 e
it42f‖L6t,x(R×R) 6 S ‖f‖L2(R) , (2.1.3)

where the operator D
1
3
0 is defined as

D
1
3
0 f(x) :=

∫
R

eixξ|6ξ2|
1
6 f̂(ξ)dξ.

Remark 2.1.1. Here the operator D
1
3
0 = 6

1
6 |∇|13 . This operator differs from the one in

(2.0.4) and in [KPV91] by a factor of 2
1
6 .

For the convenience of the reader, we indicate with T(t) the propagator given by

the composition D
1
3
0 S0(t) = D

1
3
0 e
it42 . This is defined as

T(t)f(x) :=

∫
R

eixξ6
1
6

√
w(ξ)eitξ

4
f̂(ξ)dξ, w(ξ) = |ξ|

2
3 . (2.1.4)

Sometimes we will omit the time variable t writing Tf in place of T(t)f.

The optimal constant S in (2.1.3) is defined as

S := sup
f∈L2(R),
f 6=0

6
1
6 ‖|∇|13eit42f‖L6t,x(R×R)

‖f‖L2(R)

. (2.1.5)
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We write this quantity in a different way. First, we expand the solution T(t)f in
(2.1.4) using the extension operator R? defined in (1.3.1). Let ν(ξ, τ) = δ

(
τ− ξ4

)
.

Then
T(t)f = D

1
3
0 e
it42f = F−1

t,x

(
2π f̂(ξ)

√
w(ξ)ν(ξ, τ)

)
.

Since ‖ · ‖3
L6

= ‖[ · ]3‖L2 , we get

S3 = sup
f∈L2

6
1
2 ‖ |∇|13eit42f‖3

L6t,x(R
2)

‖f‖3L2(R)

= sup
f∈L2

6
1
2 ‖
[
F−1(2π f̂(ξ)

√
w(ξ)ν(ξ, τ))

]3
‖L2t,x(R2)

‖f‖3L2(R)

.

We focus on the quantity inside the norm in the numerator. By applying Plancherel
(A.0.1) in dimension 2 we have

‖
[
F−1(2π f̂(ξ)

√
w(ξ)ν(ξ, τ))

]3
‖L2t,x(R2) = (2π)−1‖F

[
F−1(2π f̂(ξ)

√
w(ξ)ν(ξ, τ))

]3
‖L2t,x(R2)

We use the convolution identity for the Fourier transform (A.0.2) twice and the Inver-
sion formula (A.0.4) to obtain

(2π)−1‖F
[
F−1(2π f̂

√
wν
]3
‖L2t,x(R2) = (2π)−1‖(2π)−1F

[
F−1(2π f̂

√
wν)

]2
∗ f̂
√
wν‖L2t,x

= (2π)−1‖(2π)−1f̂
√
wν ∗ (f̂

√
wν ∗ f̂

√
wν)‖L2t,x

= (2π)−2‖f̂
√
wν ∗ (f̂

√
wν ∗ f̂

√
wν)‖L2t,x .

We apply the Fourier transform to the denominator, and again by Plancherel we have

‖f‖3L2(R) = (2π)−
3
2‖f̂ ‖3

L2(R).

Finally, since the Fourier transform is a bijection on L2:

S3 =

√
6

2π
sup
f∈L2

‖f̂
√
wν ∗ f̂

√
wν ∗ f̂

√
wν‖L2t,x(R2)

‖f̂ ‖3
L2(R)

=

√
3

π
sup
f∈L2

‖f
√
wν ∗ f

√
wν ∗ f

√
wν‖L2t,x(R2)

‖f‖3L2(R)

.

Taking the square to both sides, we have:

π

3
S6 = sup

f∈L2(R),
f 6=0

‖f
√
wν ∗ f

√
wν ∗ f

√
wν‖2

L2t,x(R
2)

‖f‖6L2(R)

(2.1.6)
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existence of maximizers
In this section we prove the following theorem.

Theorem 2.2.1. There exist a maximizer for the Strichartz inequality (2.1.3).

Then, the best constant in (2.1.5) is given by

S = sup
f∈L2(R),
f 6=0

6
1
6 ‖|∇|13eit42f‖L6t,x(R×R)

‖f‖L2(R)

= max
f∈L2(R),
f 6=0

6
1
6 ‖|∇|13eit42f‖L6t,x(R×R)

‖f‖L2(R)

.

In [JPS10, Theorem 1.8] the authors proved a dichotomy result for extremizers of our
Strichartz estimate:

Theorem 2.2.2 (Dichotomy, [JPS10]). Either

(i) S = SSchr and there exist f ∈ L2(R) and a sequence {an}n∈N going to infinity as
n→∞, such that {eixanf}n∈N is an extremizing sequence for (2.1.5), or

(ii) S 6= SSchr and extremizers for (2.1.5) exist.

A solution to the extremizing problem (2.1.5) is related to the one for the classical
Schrödinger equation. We recall that the sharp constant for the Strichartz estimate
for the free propagator e−it4 is

SSchr := sup
v∈L2(R)\{0}

‖e−it4v‖L6t,x(R×R)

‖v‖L2(R)

=

(
1

12

) 1
12

. (2.2.1)

This constant was calculated by Foschi, see [Fos07, Theorem 1.1].
To prove the existence of extremizers it is enough to show a lower bound for S

good enough to ensure that
S > SSchr. (2.2.2)

This will rule out the first case in Theorem 2.2.2. The condition (2.2.2) is equivalent
to

π

3
S6 >

π

3
(SSchr)

6 =
π

6
√
3

,

and because of (2.1.6), it is also equivalent to

sup
f∈L2(R),
f 6=0

‖f
√
wν ∗ f

√
wν ∗ f

√
wν‖2

L2(R2)

‖f‖6
L2(R)

>
π

6
√
3

. (2.2.3)

We can approximate the left hand side with some explicit function f ∈ L2.
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Lower bound for the sharp constant S

We start proving a result analogous to the [OeSQ16, Lemma 6.1] adapted for the
3-fold convolution where the perturbation is Ψ(x) = x4.

Lemma 2.2.3. Consider the measure ν(y, t) = δ
(
t− y4

)
dydt. Let E denote the support of

the convolution measure ν ∗ ν ∗ ν. Let w(x) be the non-negative function |x|
2
3 and consider

f(x) = e−x
4√
w(x) ∈ L2(R), then the convolution f

√
wν ∗ f

√
wν ∗ f

√
wν ∈ L2(R2) and

the following lower bound holds:

‖f
√
wν ∗ f

√
wν ∗ f

√
wν‖2

L2(R2)

‖f‖6
L2(R)

>
‖f‖6

L2(R)∫
E e

−2τ dτdξ
. (2.2.4)

Proof. The following identity holds:

f2ν ∗ f2ν ∗ f2ν(ξ, τ) = e−τ f
√
wν ∗ f

√
wν ∗ f

√
wν(ξ, τ). (2.2.5)

Moreover we have ∫
R2
f2ν ∗ f2ν ∗ f2ν(ξ, τ)dξdτ = ‖f‖6

L2(R). (2.2.6)

Then using the preceding identities and Cauchy-Schwarz we obtain

‖f‖6
L2(R) =

∫
R2
e−τ(f

√
wν ∗ f

√
wν ∗ f

√
wν)(ξ, τ)dτdξ

6

(∫
E
e−2τ dτdξ

)1
2

‖f
√
wν ∗ f

√
wν ∗ f

√
wν‖L2(R2).

that implies the desired inequality (2.2.4).

We can explicitly calculate the right hand side of (2.2.4). The function f(x) = e−x
4√
w(x)

is even, and we have

‖f‖2
L2(R) =

∫
R

e−2x
4
(x2)

1
3 dx =

1

2

∫∞
0
e−2zz

5
12−1 dz =

1

2

Γ( 512)

2
5
12

, so ‖f‖6
L2

=
1

24
Γ( 512)

3

2
1
4

.

We compute the denominator. The support of ν ∗ ν ∗ ν is E =
{
(ξ, τ) ∈ R2 : τ > ξ4

27

}
,

see Proposition 2.2.4.∫
E
e−2τ dτdξ =

∫
R

∫∞
1
27

e−2λξ
4
ξ4 dλdξ =

1

2

∫∞
1
27

(∫∞
0
e−2uu

5
4−1 du

)
dλ

λ
1
4+1

=
3
3
4 Γ(54)

2
1
4

.

Putting all together, we obtain the lower bound:

‖f‖6
L2(R)∫

E e
−2τ dτdξ

=
1

243
3
4

Γ( 512)
3

Γ(54)
≈ 0.2913141 . . . (2.2.7)

Unfortunately, this quantity is not large enough to defeat the sharp constant, in fact:
π

3
(SSchr)

6 =
π

6
√
3
≈ 0.302299 > 0.2913141.
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Improved lower bound

The inequality in Lemma 2.2.3 was too crude and we need a new way to approxi-
mate ‖f

√
wν ∗ f

√
wν ∗ f

√
wν‖2

L2(R2)
. For this purpose, we exploit the identities (2.2.9),

(2.2.5), and the following properties of the convolution measure.

Proposition 2.2.4. Let w(ξ) = |ξ|
2
3 and ν be the measure defined by

ν(ξ, τ) = δ
(
τ− |ξ|4

)
dξdτ.

Then the following properties hold for the convolution measure wν ∗wν ∗wν.

(a) It is absolutely continuous with respect the Lebesgue measure on R2.

(b) Its support is given by

E = {(ξ, τ) ∈ R2 : τ > 3−3|ξ|4}.

(c) It is radial and homogeneous of degree zero in ξ, the sense that:

(wν ∗wν ∗wν)(λξ, λ4τ) = (wν ∗wν ∗wν)(ξ, τ), for every λ > 0.

and (wν ∗wν ∗wν)(−ξ, τ) = (wν ∗wν ∗wν)(ξ, τ) for every ξ ∈ R.

Following the work of Oliveira e Silva e Quilodrán in [OeSQ16, Proposition 6.4] we
will prove a more general result. The proof of the previous Proposition will follow
from this taking the power p = 4.

Proposition 2.2.5. Given p > 2, let w(ξ) = |ξ|
p−2
3 . Let νp be the measure defined by

νp(ξ, τ) = δ(τ− |ξ|p)dξdt.

The following assertions hold Then the following properties hold for the convolution measure
wνp ∗wνp ∗wνp.

(a) It is absolutely continuous with respect the Lebesgue measure on R2.

(b) Its support is given by

Ep = {(ξ, τ) ∈ R2 : τ > 31−p|ξ|p}.

(c) It is radial in ξ, and homogeneous of degree zero in ξ, in the sense that:

(wνp ∗wνp ∗wνp)(λξ, λpτ) = (wνp ∗wνp ∗wνp)(ξ, τ), for every λ > 0,

and (wνp ∗wνp ∗wνp)(−ξ, τ) = (wνp ∗wνp ∗wνp)(ξ, τ) for every ξ ∈ R.
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Proof. With the change of variables: η 7→ 2
3ξ + η , ζ 7→ ξ

3 − ζ, we can write the
convolution measure as

(wνp ∗wνp ∗wνp)(ξ, τ) =
∫∫

Rη×Rζ

Aξ,τ(η, ζ)dηdζ,

where

Aξ,τ(η, ζ) := δ(τ− |ξ3 − η|
p − |ξ3 − ζ|

p − |ξ3 + η+ ζ|
p)
(
|ξ3 − η| |

ξ
3 − ζ| |

ξ
3 + η+ ζ|

)p−2
3 .

(a),(c) It is enough to change variables and use that δ(λpF(x)) = λ−pδ(F(x)) (see [FOeS17,
Appendix]). Note also that

(wνp ∗wνp ∗wνp)(−ξ, τ) =
∫∫
A−ξ,τ(η, ζ)dηdζ

=

∫∫
Aξ,τ(−η,−ζ)dηdζ = (wνp ∗wνp ∗wνp)(ξ, τ).

(b) First we show that every point in Ep belongs to the support of wνp ∗wνp ∗wνp.
In fact, let ψ(y) = |y|p and consider y1,y2,y3 ∈ R such that

ξ = y1 + y2 + y3, τ = ψ(y1) +ψ(y2) +ψ(y3).

From the midpoint convexity of ψ it follows:

1

3
τ =

1

3
ψ(y1) +

1

3
ψ(y2) +

1

3
ψ(y3) > ψ

(
y1 + y2 + y3

3

)
= ψ(ξ/3). (2.2.8)

On the other hand, consider (ξ, τ) ∈ R2 such that τ > 3ψ(ξ/3). We want to find
y1,y2,y3 ∈ R as before. It is enough to find y1,y2, since y3 = ξ− (y1 + y2). The
left hand side of Eq. (2.2.8) is convex and continuous, and it goes to infinity as
|(y1,y2)| → ∞. Then, for every fixed τ > 3ψ(ξ/3), for the Intermediate Values
Theorem, there exists (y1,y2) ∈ R2 such that

τ = ψ(y1) +ψ(y2) +ψ(ξ− (y1 + y2)) > 3ψ(ξ/3).

We have that

‖f
√
wν ∗ f

√
wν ∗ f

√
wν‖2

L2(R2) =

∫
R2
e−2τ(wν ∗wν ∗wν)2(ξ, τ)dξdτ,

because, in the support of the measure, we can write τ = λξ4, for λ > 3−3, and the
following equality holds

(f
√
wν ∗ f

√
wν ∗ f

√
wν)(ξ, τ) = e−τ (wν ∗wν ∗wν)(ξ, τ). (2.2.9)
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Applying Fubini and the change of variables λξ4 = u, we get∫
R2
e−2τ(wν ∗wν ∗wν)2(ξ, τ)dξdτ =

∫∞
1
27

(wν ∗wν ∗wν)2(1, λ) 2
∫∞
0
e−u

(u
λ

)5
4−1 du

4λ
dλ

=
Γ
(
5
4

)
2
1
4

∫334
0

(wν ∗wν ∗wν)2(1, t−4)dt.

Remark 2.2.6. As we saw in Propo-
sition 2.2.4 the value of the convo-
lution measure depends only on
one parameter. This because ν ∗
ν ∗ ν is radial and it is constant
along branches of the quartic τ =

αξ4. Let α(t) = t−4 the amplitude
of the quartic τ = α(t)ξ4. When t
ranges in (0, 3

3
4 ], α(t) gives all pos-

sible amplitudes of quartic in the
support of ν ∗ ν ∗ ν.

ξ

τ

α(t)

Figure 4.: Support of the measure wν ∗ wν ∗ wν. Its
value in a point (ξ, τ) depends only on α(t).

After rescaling, since the integrand is even, we can write

∫334
0

(wν ∗wν ∗wν)2(1, t−4)dt = 3
3
4 · 1
2

∫1
−1
g2(t)dt

where the function of the right hand side is g(t) = (wν ∗wν ∗wν)(1, 3−3t−4). We
have

‖f
√
wν ∗ f

√
wν ∗ f

√
wν‖2

L2(R2)

‖f‖6
L2(R)

=

(
243

3
4 Γ
(
5
4

)
Γ
(
5
12

)3
)

−

∫1
−1
g2(t)dt. (2.2.10)

Thus, computing a lower bound for the numerator in the left hand side it reduces to
approximate the norm of g in L2([−1, 1]) equipped with the normalised scalar product
f,g = −

∫1
−1 fg. With this purpose in mind, we consider the set of all monomials{

1, t, t2, . . .
}

. It is a complete system in L2([−1, 1]). Using the Gram-Schmidt process
we obtain a well-known orthogonal basis: the Legendre polynomials.

Definition 2.2.7 (Legendre polynomials). Let denote with Pn = Pn(t) the solution to
the differential equation:

d

dx

[
(1− x2)

d

dx
Pn(x)

]
+n(n+ 1)Pn(x) = 0.

The function Pn(t) is the nth Legendre polynomial. The set {Pn}n∈N is an orthogonal
basis of L2([−1, 1]).
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The first four even Legendre polynomials are plotted below.

Figure 5.: First four even Legendre polynomials.

P0(t) = 1,

P2(t) =
1
2 (3t

2 − 1),

P4(t) =
1
8 (35t

4 − 30t2 + 3),

P6(t) =
1
16 (231t

6 − 315t4 + 105t2 − 5).

Moreover, with the normalised scalar product, we have that

Pm,Pn = −

∫1
−1
Pm(t)Pn(t)dt =

1

2n+ 1
δm,n,

thus ‖Pn‖2 = (2n+ 1)−1. We indicate with Qn the normalised polynomial Pn
‖Pn‖ . Then

Qn = (
√
2n+ 1)Pn and {Qn}n∈N is an orthonormal basis of L2([−1, 1], ·, · ).

We are now ready to prove the existence of maximizers.

Proof of Theorem 2.2.1. The norm of g can be written as

‖g‖2
L2

=
∑
n>0

g,Qn 2 =
∑
n>0

g,Q2n 2,

since the function g is even. We can approximate the norm calculating arbitrarily
many coefficients:

c2n := g,Qn 2 = (2n+ 1)

(
−

∫1
−1
g(t)Pn(t)dt

)2
.

These coefficients can be retrieved from the moments of the measure g:

Ik :=

∫1
−1
g(t) tk dt,

once we have them, one can obtain the value of cn.
To compute Ik we consider the function f(x)

√
w(x)ebx =: h2b(x).

In view of (2.2.5) and (2.2.6) we have∫
R2

(h2bν ∗ h2bν ∗ h2bν)(ξ, τ)dξdτ =
(
‖hb‖2L2(R)

)3
=: G(b)3∫

R2
(h2bν ∗ h2bν ∗ h2bν)(ξ, τ)dξdτ =

∫
R2
e−(τ−bξ)(wν ∗wν ∗wν)(ξ, τ)dξdτ =: F(b).
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We write F and G as Taylor series. Then we expand the cube and rearrange the terms
in series, we have:

F(b) =
∑
n>0

F(n)(0)

n!
bn, G(b)3 =

∑
n>0

G(n)(0)

n!
bn

3 =∑
n>0

dn

n!
bn.

Thus, for every n ∈N

F(n)(0) = dn.

Also notice that, because of Proposition 2.2.4, the functions F and G are even. In
particular in the above series only even coefficients appear.

F(b) =
∑
n>0

F(2n)(0)

(2n)!
b2n, G(b)3 =

∑
n>0

d2n
(2n)!

b2n.

The first five coefficients of the second expansion are

d0 = G(0)
3 (2.2.11)

d2 = 3G(0)
2G
′′
(0) (2.2.12)

d4 = 3G(0)
(
6G

′′
(0)2 +G(0)G(4)(0)

)
(2.2.13)

and d2n+1 = 0 for every n > 0.
We compute the derivatives:

G(2k)(0) =

∫
R

e−x
4
(x2)

1
3x2k dx

= 2

∫∞
0
e−x

4
x
2
3+2k dx

(u=x4)
=

1

2

∫∞
0
e−uu

1
6+

k
2u

1
4−1 du

=
1

2

∫∞
0
e−uu

5
12+

k
2−1 du =

1

2
Γ

(
5

12
+
k

2

)
.

F(2k)(0) =

∫
R2
e−τ(wν ∗wν ∗wν)(ξ, τ)ξ2k dτdξ (changing variables: τ = λξ4)

=

∫∞
1
27

(wν ∗wν ∗wν)(1, λ)
[
2

∫∞
0
e−λξ

4
ξ4+2k dξ

]
dλ

=
1

2
Γ

(
5

4
+
k

2

) ∫∞
1
27

(wν ∗wν ∗wν)(1, λ) dλ

λ
5
4+

k
2

=
1

2
Γ

(
5

4
+
k

2

) ∫334
0

(wν ∗wν ∗wν)(1, t−4) 4dt
t−2k

= Γ

(
5

4
+
k

2

)
(3
3
4 )2k+1

∫1
0
(wν ∗wν ∗wν)(1, 3−3s−4)s2k ds

= Γ

(
5

4
+
k

2

)
(3
3
4 )2k+1 I2k.

22



where we changed variables back λ−
1
4 = t, so that λ−

1
4−1 dλ = −4dt, then we rescaled

t = 3
3
4 s.

The expressions for F(2n)(0) encapsulate the moments I2n. We compute I2n com-
paring the coefficients F(2n)(0) with the explicit values of d2n:

I2n =
d2n

(3
3
4 )2n+1Γ

(
5
4 +

n
2

) . (2.2.14)

the first coefficient c0 Because of the normalised product we have chosen, the
double of the first coefficient c0 equals the first moment I0. We compare the first
coefficients of the two series using the formulas (2.2.14) and Eqs. (2.2.11) to (2.2.13).{

F(0) = 3
3
4 Γ ( 54 ) 2 c0

G(0)3 = 2−3
(
Γ ( 512 )

)3 ⇒ c0 =

(
Γ ( 512 )

)3
243

3
4 Γ ( 54 )

.

This first coefficient is an old friend. In fact, this quantity is closely related to the
constant in front of the squared norm of g in (2.2.10): that constant is c−10 . Truncating
the expansion at the first step, what we get is exactly our first approximation (2.2.7):

‖f
√
wν ∗ f

√
wν ∗ f

√
wν‖2

L2 (R2 )

‖f‖6
L2 (R)

>
1

c0
· c20 = c0

Now we can continue computing more coefficients.

the coefficient c2 To calculate c2 we need the second moment I2. This is

I2 =
3 G(0)2G

′′
(0)

(3
3
4 )3 Γ ( 74 )

=
3 Γ ( 512 )

2Γ ( 1112 )

233
9
4 Γ ( 74 )

= α2 c0 , α2 :=
2 Γ ( 1112 )Γ (

1
4 )

3
√
3 Γ ( 512 )Γ (

3
4 )

.

The second coefficient squared is

c22 = 5 g , 12 (3t
2 − 1) 2 = 5

42
(3I2 − I0)

2 .

the coefficient c4 The fourth moment I4 is:

I4 =

(
24

15

Γ ( 1112 )
2

Γ ( 512 )
2
+
2

33

)
c0 = α4 c0 .

The fourth coefficient squared is

c24 = 9 g , 18 (35t
4 − 30t2 + 3) 2 = 9

4
1
82
(35I4 − 30I2 + 3I0)

2 .

We sum all the coefficients squared that we have calculated so far, in terms of c0.
After collecting c0, we obtain:

c20 + c
2
2 + c

2
4 =

(
9

4
−
15

4
α +

45

42
α2 +

9

28
(35α4 − 30α2 + 6)

2

)
c20 .

23



Since
c20 + c

2
2 + c

2
4

c0
≈ 0 .306879 >

π

6
√
3

this proves a lower bound for S good enough to ensure that S > SSchr, since

π

3
S6 >

‖f
√
wν ∗ f

√
wν ∗ f

√
wν‖2

L2 (R2 )

‖f‖6
L2 (R)

>
c20 + c

2
2 + c

2
4

c0
>
π

3
(SSchr)

6

This rules out the second case in Theorem 2.2.2, proving existence of extremizers.
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regularity of extremizers
In this section we study regularity of extremizers for the Strichartz estimate (2.1.3).
We prove the following theorems.

Theorem 2.3.1. Let be f an extremizer of (2.1.3). Then there exists µ ∈ R+ such that∫∞
−∞ |eµ |ξ |

4
f̂(ξ) | dξ < ∞ .

Since decay in frequency translates into regularity in space, as a consequence of
Theorem 2.3.1 we obtain the following result.

Theorem 2.3.2. Any extremizer of the Strichartz inequality (2.1.3) is a smooth function.
Moreover

sup
x∈R

|∂nf(x) | < +∞ for any n ∈ N .

We recall our operator T (t) previously defined in (2.1.4) as

T (t)f(x) :=

∫
R

eixξw(ξ)eitξ
4
f̂(ξ) dξ , w(ξ) = (6ξ2)

1
6 .

Euler-Lagrange equation

In the previous chapter we settled the existence of extremizers for the Strichartz in-
equality (2.1.3). Then the sharp constant S is a maximum:

S := max
f∈L2 (R) ,
f 6=0

‖T (t)f‖L6 (R2 )

‖f‖L2 (R)

.

We consider the functional L : L2(R) → R defined as

L(f) :=
‖T (t)f‖6

L6t ,x (R2 )

‖f‖6
L2 (R)

.

The extremizers of (2.1.3) are critical points of L, in particular they are solutions of
the following equation.

∂

∂τ
L(f + τv) �τ=0= 0 , ∀v ∈ L2(R) .

We derive formally, exchanging the derivative and the integral.

∂

∂τ
|T (f + τv) |6 �τ=0 = 3 |T f |4(T vT f + T vT f)

= 6 |T f |4<(T vT f)

= 6 |T f |4<(T fT v) .
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∂

∂τ
‖f + τv‖6

L2
�τ=0= 6‖f‖4

L2 (R)

∫
R

<(fv) .

We obtain the equation:∫ ∫
R2

|T f |4<(T fT v) dt dx =
‖T (t)f‖6

L6 (R2 )

‖f‖6
L2 (R)

‖f‖4
L2 (R)︸ ︷︷ ︸

ω

∫
R

<(fv) dx .

The quantity ω is a Lagrange multiplier that equals S6‖f‖4
L2 (R)

when f is an ex-

tremizer. Since |T f |4 is real, we can take out the real part in both sides. Then, any
extremizer has to satisfy the equation

<

(∫ ∫
R2

|T f |4T f T v dt dx
)

= ω<

(∫
R

f v dx
)

, ∀ v ∈ L2(R) . (2.3.1)

The left hand side is well defined for every f , v ∈ L2. Expanding the integral T v
we have

T v =

∫
w(ξ)ei(tξ

4+xξ)

∫
e−iyξv(y) dy dξ

so we can rewrite

T v =

∫
Rξ

w(ξ)e−i(tξ
4+xξ)

∫
Ry

eiyξv(y) dy dξ =

=

∫
Ry

∫
Rξ

w(ξ)e−i(tξ
4+xξ)eiyξ v(y) dξ dy .

Denote with u(x , t) the function |T f |4T f; the left hand side in (2.3.1) becomes∫
Ry

∫
Rt

∫
Rξ

eiyξw(ξ)e−itξ
4
∫

Rx

e−ixξ u(x , t) dx dξ dt v(y) dy .

This equals∫
Ry

∫
Rt

T ?u dt v(y) dy , that is
〈∫

Rt

T ? |T f |4T f dt , v
〉
L2y

where

T ?u =

∫
Rξ

eiyξw(ξ)e−itξ
4
Fxu(x , t) dξ = (w(ξ)e−itξ

4
û)q= D

1
3
0 e

−it42u .

We have obtained that any extremizer satisfies the equation:

<

〈∫
Rt

T ? |T f |4T f dt , v
〉

= ω< 〈f , v〉 , ∀ v ∈ L2(R) . (2.3.2)
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This equation has to hold for all v ∈ L2(R). Consider iv, then the hermitian
product 〈· , iv〉 = −i〈· , v〉, and <〈· , iv〉 = <(−i〈· , v〉) = =〈· , v〉, so the above
equality for the real part implies the one for the imaginary part. Thus we can forget
about the real part and write:〈∫

Rt

T ? |T f |4T f dt , v
〉

= ω 〈f , v〉 , ∀ v ∈ L2(R) . (weak E-L)

This means (∫
Rt

T ? |T f |4T f dt − ωf
)
⊥v , ∀ v ∈ L2(R)

and so it has to be the zero element in L2(R). We obtained the Euler-Lagrange
equation of L: ∫

Rt

T ? |T f |4T f dt = ω f . (E-L)

In particular, any extremizer f ∈ L2(R) of (2.1.3) satisfies the Euler-Lagrange equa-
tion.

We introduce also the following definition.

Definition 2.3.3 (Weak solutions). A function f in L2(R) that is a solution to (weak E-L)
is called weak solution of the Euler-Lagrange equation.

Motivated by these formulas, we introduce the 6-linear form

Q(f1 , f2 , f3 , f4 , f5 , f6) :=
∫ ∫

R2

3∏
i=1

T fi

6∏
i=4

T fi dt dx . (2.3.3)

Remark 2.3.4. Notice that Q(f , f , f , f , f , v) equals the left hand side of (weak E-L).
Thus, when f is a weak solution, we have

ω 〈v , f〉 = Q(v , f , f , f , f , f) , ∀ v ∈ L2(R) . (2.3.4)

Moreover, when all the arguments coincide, Q(f , f , f , f , f , f) = ‖T f‖66.
The Strichartz inequality (2.1.3) gives a bound for the 6-linear form.

Lemma 2.3.5. For i = 1 , . . . , 6 let fi be functions in L2(R). Then

|Q(f1 , f2 , f3 , f4 , f5 , f6) | .
6∏
i=1

‖fi‖L2 .

Proof. The bound follows by applying generalised Hölder inequality and the Strichartz
estimate for the propagator T :

|Q(f1 , f2 , f3 , f4 , f5 , f6) | 6
∫ 6∏
i=1

|T fi | dt dx 6
6∏
i=1

‖T fi‖L6 (R2 ) 6 S6
6∏
i=1

‖fi‖L2 .
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Expanding the definition of the operator T in (2.3.3), we rewrite the form Q as

Q(f1, f2, f3, f4, f5, f6) =
∫∫

R2

∫
R6
eita(ξ)+ixb(ξ)

∏
j=1,2,3
l=4,5,6

f̂j(ξj)f̂l(ξl)

6∏
1

w(ξj)dξj dtdx

=
1

(2π)4

∫
R6
δ
(
a(ξ)

)
δ
(
b(ξ)

) ∏
j=1,2,3

f̂j(ξj)f̂j+3(ξj+3)

6∏
1

w(ξj)dξj

where ξ is the vector (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) and the functions a,b are defined as

a(ξ) :=
∑
i=1,2,3

ξ4i − ξ
4
i+3 , b(ξ) :=

∑
i=1,2,3

ξi − ξi+3.

We also used the formula δ
(
k
)
= 1

2π

∫
R e

iks ds. See Appendix A, and in particu-
lar (A.0.5).

Remark 2.3.6. Using the above expression for Q, we have

|Q(f1, . . . , f6)| 6
1

(2π)4

∫
R6
δ
(
a(ξ)

)
δ
(
b(ξ)

) ∏
j=1,...,6

|f̂j(ξj)|w(ξj)dξj = Q(|f̂1|
q, . . . , |f̂6|q).

For simplicity, we define

qQ( · , . . . , · ) := Q(| · |q, . . . , | · |q). (2.3.5)

We introduce also the exponentially weighted form, that we will use later. Given a
nonnegative function F(x), we denote

qQF(f1, f2, f3, f4, f5, f6) = qQ(eFf1, e−Ff2, e−Ff3, e−Ff4, e−Ff5, e−Ff6).

In particular

qQF(h1,h2,h3,h4,h5,h6) = Q((eF|h1|)
q, (e−F|h2|)q, (e−F|h3|)q, . . . , (e−F|h6|)q)

=
1

(2π)4

∫
R6
δ
(
a(ξ)

)
δ
(
b(ξ)

)
eF(ξ1)−

∑6
2 F(ξj)

6∏
j=1

|hj(ξj)|dξj.

Bilinear estimates

Using generalised Hölder inequality with p = 3, we can split the product in a different
way.

|Q((fi)i=1,...,6)| 6
∫ 6∏
i=1

|Tfi|dtdx 6 ‖Tf1Tf2‖L3 ‖Tf3Tf4‖L3 ‖Tf5Tf6‖L3

6 ‖Tf1Tf2‖L3 S4
6∏
i=3

‖fi‖L2 .
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Up to permutation, we can consider any pair fi, fj above and estimate ‖TfiTfj‖L3 .
We can gain some decay if, for some distinct i and j, fi and fj have “well separated”
support in frequency. This is a well-known result for the free Schrödinger propagator
eit4 (see [HL09]), where one has the following

Theorem 2.3.7 (Fourier bilinear estimate for free Schrödinger). Let f1, f2 ∈ L2(R) and
let c = dist(supp f̂1, supp f̂2) > 0. Then

‖eit4f1eit4f2‖L2t,x(R×R) 6
1√
2c
‖f1‖L2(R) ‖f2‖L2(R).

We prove a similar result for our operator T(t). Due to the positive weightsw(ξ) ∼ |ξ|
1
3 ,

the decay is not directly related to the distance of the support in frequency, but to the
ratio of the closest endpoints of the two supports. Also the42 gives a different power
in the decay of the Jacobian.
The choice of support is meant for exploiting the Littlewood-Paley decomposition
later, as in [HS12, Lemma 4.1]. See Appendix A.1 for an introduction to the Littlewood-
Paley theory.

Lemma 2.3.8 (Fourier bilinear estimate). Suppose that exist two distinct i, j ∈ {1, . . . , 6},
and N1 � N2 such that

supp f̂i ⊆ {ξ : |ξ| 6 N1} and supp f̂j ⊆ {ξ : N2 6 |ξ| 6 2N2} .

Then there exists a constant C > 0 independent of N1,N2 and fi, fj such that

‖TfiTfj‖L3t,x(R2) 6 C
3

√
N1

N22
‖fi‖L2(R) ‖fj‖L2(R).

Proof. For the sake of clarity, we assume that the hypothesis are satisfied for i = 1

and j = 2. We want to estimate

‖Tf1Tf2‖L3 = ‖
∫
eit(ξ

4
1+ξ

4
2)+ix(ξ1+ξ2)w(ξ1)w(ξ2)f̂1(ξ1)f̂2(ξ2)dξ1 dξ2‖L3 .

Changing variables and indicating with Jac the Jacobian{
a := ξ41 + ξ

4
2

b := ξ1 + ξ2
and Jac(ξ1, ξ2) =

(
4ξ31 4ξ32
1 1

)
.

Integrating where ξ1 ∈ [0,N1] and ξ2 ∈ [N2, 2N2], since N2 � N1, we have

|det Jac| = 4|ξ32 − ξ
3
1| = |ξ2|

3 4

(
1−

(
ξ1
ξ2

)3)
∼ N32.
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Our integral becomes∫
eita+ixbw(ξ1)w(ξ2)f̂1(ξ1)f̂2(ξ2)

dadb
|det Jac|

= F

(
w(ξ1)w(ξ2)f̂1(ξ1)f̂2(ξ2)

|det Jac|

)
(−x,−t)

where ξ1, ξ2 are now functions of a and b and F is the Fourier transform in (x, t).
We use Hausdorff-Young inequality∥∥∥F ((w⊗w · f̂1 ⊗ f̂2) |det Jac|−1

)∥∥∥
L3t,x(R

2)
6 ‖(w⊗w · f̂1 ⊗ f̂2) |det Jac|−1‖L3/2(R2).

Then the right hand side equals(∫
R+×R

|det Jac|−
1
2 |w(ξ1(a,b))w(ξ2(a,b))f̂1(ξ1(a,b))f̂2(ξ2(a,b))|

3
2

dadb
|det Jac|

)2
3

,

changing variables back we have

(∫
R×R

|det Jac|−
1
2 |w(ξ1)w(ξ2)f̂1(ξ1)f̂2(ξ2)|

3
2 dξ1 dξ2

)2
3

6
1

(4|N32 −N
3
1|)

1
3

(∫∫
R2

|f̂1(ξ1)f̂2(ξ2)|
3
2χ1(ξ1)χ2(ξ2)dξ1 dξ2

)2
3

where χ1 and χ2 are given by

χ1(ξ1) =
|ξ1|

1
2

2π
1[0,N1](|ξ1|)

χ2(ξ2) =
|ξ2|

1
2

2π
1[N2,2N2](|ξ2|),

since the weight w(ξ) ∼ |ξ|
1
3 .

Using Hölder inequality with (p,p ′) = (43 , 4) we obtain

‖Tf1Tf2‖L3 .
1

N2
‖f̂1‖2 ‖χ1‖

2
3
4 ‖f̂2‖2 ‖χ2‖

2
3
4

.
1

N2

3
√
N1

3
√
N2 ‖f̂1‖2 ‖f̂2‖2 =

(
N1

N22

)1
3

‖f1‖2 ‖f2‖2.

This concludes the proof.

Remark 2.3.9. In the previous lemma the presence of the weight w(ξ) ∼ |ξ|
1
3 is not an

issue, since we are assuming that f̂1 and f̂2 have compact support.

We can use this result to get decay even after dropping the compact support as-
sumption on one of the functions.
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Corollary 2.3.10. Assume that there exist two distinct i, j ∈ {1, . . . , 6} for which

supp f̂i ⊆ {ξ : |ξ| 6 s} and supp f̂j ⊆ {ξ : |ξ| > Ns}

for some s > 1, and N� 1. Then there exists C > 0 independent of s,N and fi, fj such that

‖TfiTfj‖L3t,x 6 C
3

√
s

N2
‖fi‖2‖fj‖2.

Proof. Assume again i = 1 and j = 2. For k ∈ Z, let be Pk the Littlewood-Paley
projector on Ak =

{
ξ : 2k 6 |ξ| < 2k+1

}
defined as P̂kf = 1Ak f̂. We can decompose f2

as
∑
k:2k+1>Ns Pkf2. Then, by triangle inequality

‖Tf1 Tf2‖L3t,x 6
∑

k:2k+1>Ns

‖Tf1 T(Pkf2)‖L3

applying Lemma 2.3.8 .
∑

k:2k+1>Ns

( s
22k

)1
3 ‖f1‖2‖Pkf2‖2

6 ‖f1‖2 3
√
s
∑

k:2k+1>Ns

2−2k/3 ‖Pkf2‖2

applying Cauchy-Schwarz 6 ‖f1‖2 3
√
s

 ∑
k:2k+1>Ns

2−
4
3k

1
2 (∑

k∈Z

‖Pkf2‖22

)1
2

using (A.1.1) . ‖f1‖2 3
√
s (Ns)−

2
3 ‖f2‖2

=
3
√
s

3
√
N2
‖f1‖2 ‖f2‖2.

This concludes the proof.

Remark 2.3.11. The method used in the proof of Lemma 2.3.8 goes back to Carleson
and Sjölin in the ’70s [CS72] and it is a key ingredient for estimating the tails of
the Fourier Transform of the extremizers. Since asymptotic properties of the Fourier
transform f̂ translate in local properties of f in space, a super-polynomial decay of
the tails in frequency will imply a (super) regularity in space: smoothness.

Remark 2.3.12. In the case of the free Schrödinger propagator eit∆, bilinear estimates
in frequency translate into estimates in space. This is due to the special multiplier
associated to the free propagator, for which is possible to write explicitly the inverse
Fourier transform:

eit∆f(x) =

∫
R

eixξ+itξ
2
f̂(ξ)dξ =

(
eitξ

2
f̂(ξ)

)
q

=
1

2π

(
eitξ

2
)

q

∗ f = C 1√
t

∫
R

e−i
|x−y|2

4t f(y)dy,

with C > 0.
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Exponential decay

We want to show that for any extremizer f in L2(R), there exists µ ∈ R+ such that

‖eµ| · | f̂‖L1(R) < +∞. (2.3.6)

One can also show a super exponential decay, proving that eµ|ξ|
n
f̂(ξ) belongs to L2(R)

for some n > 1. (We will use later, for our case, n = 4.)

Lemma 2.3.13. Assume that eµ0|ξ|
n
f̂(ξ) ∈ L2(R) for some µ0 > 0 and n > 1, then

eµ|ξ|f̂(ξ) ∈ L1(R) for any µ < µ0.

Proof. We have that
eµ|ξ| f̂(ξ) = eµ|ξ|−µ0|ξ|

n
eµ0|ξ|

n
f̂(ξ).

Applying Cauchy-Schwarz one has∫
eµ|ξ||f̂(ξ)|dξ =

∫
eµ|ξ|−µ0|ξ|

n
eµ0|ξ|

n
|f̂(ξ)|dξ 6 ‖eµ|ξ|−µ0|ξ|

n
‖2 ‖eµ0|ξ|

n
f̂‖2.

The second factor is bounded by hypothesis; the first one is finite, since

‖eµ|ξ|−µ0|ξ|
n
‖22 .

∫∞
0
eµξ−µ0ξ

n
dξ 6 sup

[0,1]
|eµξ−µ0ξ

n
|+

∫∞
1
e(µ−µ0)ξ

n
<∞.

We showed the desired bound (2.3.6).

Thus, as in [HS12], for the argument of the exponential we are allowed to use a
particular class of functions which fits well into our problem.

Definition 2.3.14. Consider the func-
tion

Fµ,ε(x) =
µ|x|4

1+ ε|x|4
, for µ, ε > 0.

Notice that Fµ,ε(x)→ µ|x|4 as ε→ 0+ .

Following the approach in [EHL11],
our bound (2.3.6) will follow from an
uniform bound in ε of ‖eFµ,ε(ξ) f̂(ξ)‖2.

ξ

eµ|ξ|
4

eFµ,ε(ξ)

ε→ 0+

Figure 6.: Plot of the functions eFµ,ε as ε
approaches zero.

With this choice of F we are able to control the exponentially weighted form

qQFµ,ε(f1, f2, f3, f4, f5, f6) := qQ(eFµ,εf1, e−Fµ,εf2, e−Fµ,εf3, e−Fµ,εf4, e−Fµ,εf5, e−Fµ,εf6).
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Proposition 2.3.15. Let hj be in L2(R) for j = 1, . . . , 6. Then for every µ, ε > 0

qQFµ,ε(h1, . . . ,h6) 6 qQ(h1, . . . ,h6).

Proof. Since

qQFµ,ε(h1, . . . ,h6) =
1

(2π)4

∫
R6
δ
(
a(ξ)

)
δ
(
b(ξ)

)
eFµ,ε(ξ1)−

∑6
2 Fµ,ε(ξj)

6∏
j=1

|hj(ξj)|dξj,

we want to prove that eFµ,ε(ξ1)−
∑6
2 Fµ,ε(ξj) 6 1, so it is enough to show

Fµ,ε(ξ1) 6
6∑
j=2

Fµ,ε(ξj).

Under the hypothesis a(ξ) = 0, we have ξ41 = −ξ42 − ξ
4
3 + ξ

4
4 + ξ

4
5 + ξ

4
6

and in particular ξ41 6
∑6
j=2 ξ

4
j .

The function

t 7→ µt

1+ εt

is increasing on R+ for every positive µ, ε. t

ε→ 0+

t
1+εt

Figure 7.: Plot of the functions t 7→ t
1+εt

for different values of ε ∈ [0, 1).
Then

Fµ,ε(ξ1) =
µξ41

1+ εξ41
6 µ

∑6
2 ξ

4
j

1+ ε
∑6
2 ξ

4
k

=

6∑
j=2

µξ4j

1+ ε
∑6
2 ξ

4
k

6
6∑
j=2

µξ4j

1+ εξ4j
=

6∑
j=2

Fµ,ε(ξj)

where in the last inequality we used
∑6
2 ξ

4
k > ξ

4
j for some j ∈ {2, . . . , 6}. This concludes

the proof.

Let
‖ f ‖µ,ε := ‖eFµ,εf ‖2.

We want to control ‖ f̂ ‖µ,ε.

Notation 2.3.16. Fix s > 1. For a function f we define

f� := f1[−s,s] , f< := f1[−s2,s2] , f> := f1[−s2,s2]c , f∼ := f< − f� . (2.3.7)
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0 s s2−s−s2

f� f∼ f>

Recall that every extremizer f is also a weak solution of the Euler-Lagrange equa-
tion (Definition 2.3.3).

Lemma 2.3.17. Let f be a weak solution of the (weak E-L), with ω > 0 and ‖f‖2 = 1. Then,
for every fixed s > 1, taking µ = 1/s8 we have

ω‖f̂>‖µ,ε .
5∑
l=2

‖f̂>‖lµ,ε + ‖f̂>‖µ,ε

(
es

−4

3
√
s
+ ‖f̂∼‖2

)
+

(
es

−4

3
√
s
+ ‖f̂∼‖2

)
,

where the implicit constant does not depend on ε nor s.

Proof. Let be h = eFµ,ε f̂, so that ‖ f̂ ‖µ,ε = ‖h‖2. Exploiting the definition of weak
solution, in particular (2.3.4), we have

ω‖f̂>‖2µ,ε = ω‖eFµ,ε f̂>‖22 = ω〈e2Fµ,ε f̂>, f̂〉 = ω〈(e2Fµ,ε f̂>)
q, f〉 = Q((e2Fµ,ε f̂>)

q, f, . . . , f)

and

Q((e2Fµ,ε f̂>)
q, f, . . . , f) 6 Q((eFµ,ε |h>|)

q, (e−Fµ,ε |h|)q, . . . , (e−Fµ,ε |h|)q) = qQFµ,ε(h>,h, . . . ,h).

By Proposition 2.3.15, we have

qQFµ,ε(h>,h, . . . ,h) 6 qQ(h>,h, . . . ,h).

We split h as in (2.3.7). By sublinearity of Q(| · |, . . . , | · |)

qQ(h>,h, . . . ,h) 6 qQ(h>,h<,h,h,h,h) + qQ(h>,h>,h,h,h,h)

. qQ(h>,h<,h<,h<,h<,h<) (I)

+ qQ(h>,h>,h<,h<,h<,h<) (II)

+
∑

qQ(h>,hj1 ,hj2 ,hj3 ,hj4 ,hj5). (III)

The last sum is over all other possible combination with at least two ji equal to >.
Term: (I) We split further writing h< = h� + h∼. By sublinearity again

Q(h>,h<,h<,h<,h<,h<) 6 Q(h>,h�,h<,h<,h<,h<) +Q(h>,h∼,h<,h<,h<,h<).

Using bilinear estimate as in Corollary 2.3.10

Q(h>,h�,h<,h<,h<,h<) .
1
3
√
s
‖h>‖2‖h�‖2 ‖h<‖42,

Q(h>,h∼,h<,h<,h<,h<) . ‖h>‖2‖h∼‖2 ‖h<‖42.
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Recalling that ‖f‖2 = 1, we have

‖h<‖2 = ‖eFµ,ε f̂<‖2 6 ‖eµ|x|
4
f̂<‖2 6 sup

[−s2,s2]
|eµx

4
| ‖f̂‖2 = eµs

8
(2.3.8)

‖h�‖2 = ‖eFµ,ε f̂�‖2 6 ‖eµ|x|
4
f̂�‖2 6 sup

[−s,s]
|eµx

4
| ‖f̂‖2 = eµs

4

‖h∼‖2 6 ‖eµ|x|
4
f̂∼‖2 6 sup

[−s2,s2]\[−s,s]
|eµx

4
| ‖f̂∼‖2 = eµs

8
‖f̂∼‖2.

Thus (I) is bounded by

Q(h>,h<, . . . ,h<) . ‖h>‖2

(
eµ(s

4−s8)

3
√
s

+ ‖f̂∼‖2

)
e5µs

8
.

Term (II) This case is similar to the previous one. By sublinearity

Q(h>,h>,h<,h<,h<,h<) 6 Q(h>,h>,h�, ,h<,h<,h<) +Q(h>,h>,h∼,h<,h<,h<).

Then use bilinear estimate as before

Q(h>,h>,h�,h<,h<,h<) . ‖h>‖2
1
3
√
s
‖h>‖2‖h�‖2 ‖h<‖32

Q(h>,h>,h∼,h<,h<,h<) . ‖h>‖22 ‖h∼‖2 ‖h<‖32.

We obtain

Q(h>,h>,h<, . . . ,h<) . ‖h>‖22

(
eµ(s

4−s8)

3
√
s

+ ‖f̂∼‖2

)
e4µs

8
.

Term: (III) Consider for example Q(h>,h>,h>,h<,h<,h<), we have

Q(h>,h>,h>,h<,h<,h<) . ‖h>‖32 ‖h<‖32 6 e3µs
8
‖h>‖32,

where we used the bound for ‖h<‖2 in (2.3.8).

Summing up, we have

ω‖f̂>‖2µ,ε .‖h>‖2

(
eµ(s

4−s8)

3
√
s

+ ‖f̂∼‖2

)
e5µs

8

+ ‖h>‖22

(
eµ(s

4−s8)

3
√
s

+ ‖f̂∼‖2

)
e4µs

8
+ ‖h>‖2 e3µs

8
5∑
l=3

‖h>‖l2.
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Dividing by ‖h>‖2, recalling that ‖f̂>‖µ,ε = ‖h>‖2, we get

ω‖f̂>‖µ,ε .

(
eµ(s

4−s8)

3
√
s

+ ‖f̂∼‖2

)
e5µs

8

+ ‖h>‖2

(
eµ(s

4−s8)

3
√
s

+ ‖f̂∼‖2

)
e4µs

8
+ e3µs

8
5∑
l=3

‖h>‖l2.

The norm ‖f̂∼‖2 6 ‖f̂1[−s,s]c‖2 → 0 as s→∞. Taking µ = 1/s8

eµ(s
4−s8)

3
√
s

∼
e1/s

4

3
√
s
→ 0 as s→∞.

Then

ω‖ f̂> ‖µ,ε .
5∑
l=2

‖ f̂> ‖jµ,ε + ‖ f̂> ‖µ,ε

(
es

−4

3
√
s
+ ‖f̂∼‖2

)
+

(
es

−4

3
√
s
+ ‖f̂∼‖2

)
.

This concludes the proof.

We are now ready to prove Theorem 2.3.1.

Proof of Theorem 2.3.1. Call ν = ν(s,µ, ε) := ‖f̂>‖µ,ε. Our aim is to prove that there
exist s0 > 1 and µ0 > 0 such that ν(s0,µ0, 0) < +∞.

Choosing µ = 1/s8, by Lemma 2.3.17, we have

ων 6 C

 5∑
j=2

νj + ν

(
es

−4

3
√
s
+ ‖f̂∼‖2

)
+

(
es

−4

3
√
s
+ ‖f̂∼‖2

) , (2.3.9)

where the constant C does not depend on s, nor on ε.
Notice that, with this choice of µ, the function ν only depends on s and ε. Further-
more, for fixed ε, ν goes to zero as s goes to infinity2. In particular, for s > 1, for any
ε > 1

ν(s, 1/s8, ε) = ‖f̂>‖ 1
s8

,ε 6 ‖f̂> exp
(
1

s8
ξ4

1+ ξ4

)
‖2 . ‖f̂ es

−8
‖2 6 ‖f‖2 <∞.

We divide the proof in two steps. The main step will be to find s0 for which
ν(s0, 1/s80, ε) is bounded for ε ∈ [0, 1].

First step. Call M(s) the quantity es
−4

3
√
s
+ ‖f̂∼‖2. We rewrite the above inequality (2.3.9)

as

H(ν) := (ω−CM(s))ν−C

5∑
j=2

νj 6 CM(s).

2 This because the exponential weight becomes “lighter” and the support of f̂> dwindles.
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note on variables The function H(ν) is actually H(ν(s, ε),ω, s) depending im-
plicitly also on s, ε and ω. When f is an extremizer with ‖f‖2 = 1, the quantity ω is a
fixed number and equals S6. We will omit it, as well as the dependence of ε.

Consider the function

G(ν) := H(ν) −
ω

2
ν =

(ω
2
−CM(s)

)
ν−C

5∑
j=2

νj.

As we already noticed, M(s) in bounded for any s > 1, and

M(s) =
es

−4

3
√
s
+ ‖f̂∼‖2 → 0 as s→∞.

For every ε > 0, the function G(ν) = G(ν(s, ε), s) is bounded by

G(ν, s) 6 H(ν, s) 6 CM(s) <∞.

So G(ν, s) is bounded by a function of s that goes to 0 as s goes to infinity.

In particular G(ν) is bounded. More-
over G is strictly concave in ν on R+

and

G(0) = 0 and lim
ν→∞G(ν) = −∞.

Thus there exists a point νmax ∈ R+ in
which G reaches its maximum.
Let ν0 < νmax. For example one can
take ν0 = νmax/2. Because of the strict
concavity, there exists another point ν1
such that G(ν0) = G(ν1).
Thus we have
G−1([0,G(ν0)]) = [0,ν0]∪ [ν1,∞).

ν
0 ν0 ν1νmax

G(ν0)

G(ν)

[0,ν0]∪ [ν1,∞)

Figure 8.: Graph of G(ν) and the trapping
region G−1

(
[0,G(ν0)]

)
.

We can choose s large enough such that

1. CM(s) < min
{ω
2

,G(ν0)
}

2. ν(s, 1) < ν0.

Fix s = s0 for which the above conditions hold. For this choice of s we have

G(ν, s0) 6 H(ν, s0) 6 G(ν0).

In particular, for µ0 = 1/s80, the required conditions imply
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1. ⇒ G(‖f̂>‖µ0,ε) 6 G(ν0) independently of ε > 0 ,

2. ⇒ ‖f̂>‖µ0,1 ∈ [0,ν0] .

Consider now the function Υ:

ε 7→ ‖f̂>‖µ0,ε.

This is continuous, so it has to map connected sets into connected sets.
Because of (1), Υ([0, 1]) ⊂ G−1([0,G(ν0)]) = [0,ν0] ∪ [ν1,∞). Since Υ([0, 1]) is con-
nected, it must be contained only in one of the two components. But Υ(1) ∈ [0,ν0],
because of (2), so ‖f̂>‖µ0,ε ∈ [0,ν0] for every positive ε.

Then, by monotone convergence

‖f̂>‖µ0,0 = lim
ε→0
‖f̂>‖µ0,ε = sup

ε>0

‖f̂>‖µ0,ε 6 ν0 <∞.

This shows that the L2-norm of the tails3 of es
−8
0 |ξ|4 f̂ is finite.

Second step. To obtain the bound on f̂, notice that

‖es
−8
0 |ξ|4 f̂‖2 6 ‖es

−8
0 |ξ|4 f̂<‖2 + ‖es

−8
0 |ξ|4 f̂>‖2.

The function es
−8
0 ξ4 is bounded on [−s20, s

2
0], so

‖es
−8
0 |ξ|4 f̂<‖2 6 sup

[−s20,s20]
es

−8
0 |ξ|4 ‖f̂ ‖2 . ‖f̂ ‖2

thus the function ξ 7→ es
−8
0 |ξ|4 f̂(ξ) belongs to L2(R). Apply Lemma 2.3.13 to conclude.

We prove the regularity of extremizers.

Proof of Theorem 2.3.2. We write f using the inverse Fourier transform:

f(x) =

∫
R

eixξf̂(ξ)dξ.

Then we have

∂f(x) = ∂x

∫
R

eixξf̂(ξ)dξ = lim
h→0

∫
R

ei(x+h)ξ − eixξ

h
f̂(ξ)dξ.

We can use the Dominated convergence theorem to move the limit inside the integral.
To see this, denote the integrand by gh(ξ) and let g = iξeixξf̂(ξ). Since

3 we mean that value on the set
{
ξ ∈ R : |ξ| > s20

}

38



1. limh→0 gh(ξ) = g(ξ) pointwise almost everywhere;

2. |gh(ξ)| 6
∣∣∣eihξ−1h

∣∣∣ |f̂(ξ)| 6 (1+ |ξ|)|f̂(ξ)| . eµ|ξ|f̂(ξ) ∈ L1(R),

by applying the Dominated convergence theorem we get

lim
h→0

∫
gh =

∫
lim
h→0

gh =

∫
g

thus
∂f(x) =

∫
R

∂xe
ixξf̂(ξ)dξ =

∫
R

iξ eixξf̂(ξ)dξ.

The bound on ∂nf(x) follows from the one on (1+ |ξ|n)f̂(ξ), in fact

‖∂nf‖∞ 6
∥∥∥∥∫

R

(1+ |ξ|n) eixξf̂(ξ)dξ
∥∥∥∥∞ .

∫
R

eµ|ξ| |f̂(ξ)|dξ = ‖eµ| · | f̂ ‖L1(R)

that is finite by Lemma 2.3.13.
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A F O U R I E R T R A N S F O R M

For the convenience of the reader, in this appendix we include some well known
results about the Fourier transform. The interested reader can find the details in
[SS11a].

riemann-lebesgue The Fourier transform of a L1 function is continuous and de-
cays at infinity.

F : L1(Rd)→ C0(R
d) =

{
f : Rd → R continuous, such that lim

|ξ|→∞ f̂(ξ) = 0
}

.

plancherel The Fourier transform F is an isometry on L2. More precisely

F : L2(Rd, dx)→ L2

(
Rd,

dξ

(2π)
d
2

)
.

One has
‖ · ‖L2(Rd) = (2π)−

d
2 ‖F[ · ]‖L2(Rd). (A.0.1)

convolution On Rd the following identities hold

f̂ ∗ g = f̂ · ĝ f̂ · g =
1

(2π)d
f̂ ∗ ĝ, (A.0.2)

}f · g = qf ∗ qg }f ∗ g = (2π)dqf · qg. (A.0.3)

inversion

Proposition A.0.1. Let f, f̂ ∈ L1(Rd). Then

f(x) =
1

(2π)d

∫
Rd
f̂(ξ)eix·ξ dξ. (A.0.4)

Fourier transform of a measure

It is possible to define the Fourier transform of a finite measure. The following is
adapted from [Tar07, page 74].
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Let be µ a finite measure on Rd. Consider the pairing with continuous compactly
supported functions ϕ ∈ Cc(Rd) given by

〈µ,ϕ〉 :=
∫

Rd
ϕ(x)dµ.

We have that
|〈µ,ϕ〉| 6 C‖ϕ‖∞ for all ϕ ∈ Cc(Rd).

If the above bound holds, the maps ϕ 7→ 〈µ,ϕ〉 extends in an unique way, with the
same bound, to the Banach space Cb(Rd) of continuous bounded functions equipped
with the sup norm ‖ · ‖∞. We can define the Fourier transform of such a measure as

µ̂(ξ) := 〈µ, e−i〈·,ξ〉〉.

By Dominated convergence theorem, µ̂ is continuous.

Fourier transform on tempered distributions S ′(R)

It is possible to apply the Fourier transform to a larger class objects. There are several
books on the topic, for example the one by Strichartz [Str03].

Consider a local integrable function f. We indicate with Tf the corresponding dis-
tribution in S ′(R). This is the tempered distribution such that, for every ϕ ∈ S (R),
it is defined as

〈Tf,ϕ〉 :=
∫

R

f(x)ϕ(x)dx.

Let a ∈ R, and δa ∈ S ′(R). Then, for every ϕ ∈ S (R) we have

〈δ̂a,ϕ〉 = 〈δa, ϕ̂〉 = ϕ̂(a) =
∫
e−i〈a,x〉ϕ(x)dx = 〈Te−i〈a,·〉 ,ϕ〉

so
δ̂a = e−i〈a, · 〉 (A.0.5)

in distributional sense, meaning that∫
{|x|<R}

e−i〈·,x〉 dx R→∞−−−→ 2π δ0

in the sense of tempered distributions (i.e. in the weak-?-topology on S ′(R)).

littlewood-paley theory
We provide a short introduction to the Littlewood-Paley theory. The interested reader
can find an entire chapter on this topic in [Gra08, Chapter 5].
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Lemma A.1.1. There exists a smooth compactly supported function ψ ∈ C∞c (R \ {0}), non-
negative, radial, such that ∑

j∈Z

ψ(2−jx) = 1, ∀x ∈ R \ {0}

and for any x 6= 0 the sum consists of at most two terms.

Proof. Let χ ∈ C∞(R) smooth, radial, non-negative, such that χ ≡ 1 on the ball of
radius 1 and χ ≡ 0 on the complement of the ball of radius 2. Let ψ(x) = χ(x)−χ(2x).
For any N ∈N, the sum of the rescaled ψ(2−jx) is the telescopic sum:

N∑
j=−N

ψj(x) =

N∑
j=−N

[
χ(2−jx) − χ(2−j+1x)

]
= χ(2−Nx) − χ(2N+1x)

and for any x 6= 0 there exists N ∈N such that χ(2−Nx) = 1 and χ(2N+1x) = 0.

Definition A.1.2 (Littlewood-Paley projector). Let ψj(x) := ψ(2−jx). We define

Pjf := (ψjf̂)
q, f ∈ S (R).

When ξ ∈ supp(ψj) then

ξ ∈ Aj, where Aj =
{
ξ : 2j 6 |ξ| < 2j+1

}
.

We indicate the condition ξ ∈ Aj with |ξ| ' 2j. Thus

P̂jf = 1Aj f̂.

Definition A.1.3 (Littlewood-Paley square function).

Sf(x) :=

∑
j∈Z

|Pjf(x)|
2

1
2

.

We have

‖Sf‖2
L2(R) =

∫
R

∑
j∈Z

|Pjf|
2 =
∑
j∈Z

∫
R

|Pjf|
2 =
∑
j∈Z

‖Pjf‖2L2(R) ' ‖f‖
2
L2(R). (A.1.1)
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[CS72] Lennart Carleson and Per Sjölin. Oscillatory integrals and multiplier prob-
lem for the disc. Studia Mathematica, 44(3):287–299, 1972.

[CW02] Anthony Carbery and James Wright. What is van der Corput’s lemma in
higher dimensions? Publicacions Matemàtiques, 46:13–26, 2002.
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