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1 Notation

A little section of notation that we used in all these notes.

e M((Q,F#),(E,8)) ={f:(Q,%) = (E,&) measurable }. If the sigma algebras are
clear, we indicate this set as M($2, F).



2 General

Let 2 be a set, let .F be a g-algebra of Z2(Q2), and let P be a probability measure on .Z.
Definition 1 (Probability Space). (£2,.% ,P) is a probability space.

Definition 2 (Measurable Space). (€2,.#) is a measurable space.

Let E be a Topological Space (So we have the Open Sets).

Definition 3 (Borelian Sets). B(E) is the littlest o-algebra that contains the open sets.

Let Y : Q — E be a function, with (F,&) a measurable space.

Definition 4 (Aleatory Variable). Y is an aleatory variable, or a random variable (r.v.), if
Y is measurable, that is

VAe &Y HA)={YcAleF
If we define
Y &) = {Y 1 (A)|Ac &}

we can write definition (4]) as Y 71(&) C .#. We sometimes indicate the o — algebrbas saying
that Y is (&, &) — measurable, or if it is clear just as Y is # — measurable.

Definition 5 (Law of ar.v). Let X : Q — F ar.v. We define the Law of X as the probability
Py, defined as follow for all A € &.

Py (A) == P(X1(A)).

Definition 6 (Real Random Variable). Y is a real random variable (r.r.v.) if £ = R, and
& =B(R).

Definition 7 (Generated o — algebra). Let € be a set, and let Z C P(£2) be a class of set
of Q. We define as o(Z) as the o — algebra generated by Z, that is

o(Z) = ﬂ% I'={y | v is ao—algebra, v DI}
yerl’

that is 0(Z) is the smallest o — algebra that contains Z.

Definition 8 (Product o — algebra). Let (Q,.%) and (E, &) be two measurable spaces. We
define product o — algebra as the smallest o — algebra that contains the rectangles, that is

E®F =0c({AxB| Aceé&, Be F}).

Let (£2,.%#) and (E, &) be two measurable spaces, and let X : (2, #) — (E,&) be ar.v.
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Proposition 2.1. X (&) is a 0 — algebra.
Proof. Easy check. O

Definition 9 (0 — algebra generated by a r.v.). We define the X ~1(&£) above as the o —
algebra generated by the r.v, and we denote it as o(X).

Remark 1. We observe that o(X) is the smallest 0 — algebra that make X measurable.

Definition 10 (Union o — algebra). Let §2 be a set and let (.%;);cr a family of o — algebras
of Q indexed by a set I. We define the smallest o — algebras that contains every .%; as

\ Zi=0o|lJZ

el i€l

Now, we want to write down a trivial fact, but it may be useful in some observation.
e Let (2, %) and (E,&) and (T,T) be measurable spaces.
e Let us have X and Y measurable function defined in this way,
(Q,7) 5 (B, &) 5 (T, T)
e Let us consider Y o X.

Proposition 2.2 (Trivial fact on 0 — algebra of r.v.). We have that o(Y o X) C o(X).

Proof. Let us have A € o(Y o X). Then we have that we can find B € T such that

A=Y oX)YB)= XYY Y(B)) € o(X)
and we have finished. O

Corollary 2.3 (Second trivial fact on o — algebras of r.v.). Let us suppose that Y is invert-
ible, and its inverse (that we call Z) is measurable. Then o(Y o X) = o(X).

Proof. We just need to use Proposition (2.2]). We have
cYoX)Co(X)=0(Zo(YoX)) Co(YoX),

and this is the thesis. O



2.1 Independence
Let (Q2,.%#,P) a fixed probability space.

Definition 11 (Independence of Events). Let A € .% and B € .# be two events. We say
that they are independent if

P(AN B) = P(A) - P(B).

Let %4, ..., %, be 0 — algebras, and we suppose that .%; C .% for all i.

Definition 12 (Independence of o —algebras). The o —algebras 1, .., %, are independent
if for all A; € #1,..., A, € #,, we have that

o (A - Treen
=1 =1

Remark 2. If we have A € F, then o(A) = {A, A°,Q, 0}

Definition 13. The events A, € #,.., A, € % are independents if the o — algebras
o(Ay),..,0(A,) are independents.

Let X;: (Q,%) = (E,&) ber.wv fori=1,..,n, and let P be a probability on (2, .%).
Definition 14 (Independence of r.v.). We say that the random variables Xi,.., X,, are
independent if o(X3),..,0(X,) are independent.

2.2 Monotone Class Theorem and Its Consequences
Theorem 2.4 (Monotone Class Theorem). Let §2 be a set, let T C P(Q2) such that
¢ Nel,
e ABcT — ANBeT.
Let M D 1 such that
a) Vn € N we have A, e M , A, C A1 = U:SE)A” e M.
b) ABeMand BC A = (A\ B) e M.

c) M is minimal, that is, if G is another class such that G O I, and G has the properties
a) and b), then M C G.

Then M is a o — algebra, and M = o(I).

Remark 3. This is a really simple but at the same time really important remark, because is
the key to prove many corollaries of ([2.4]).

ICACP), A respects a) and b) of — o(Z) C A.

>



The class Z of ([2.4) is really special, so we give it a special name.

Definition 15 (7 —system). Let Z C P(2) be a class of sets. We say that Z is a m — system
if

e el
e ABeZT = (ANB)eT
If a 0 — algebra F is given and o(Z) = %, then we say that Z is a 7 — system for .Z#.

Remark 4. From the definition above, it follows directly that a finite intersection of elements
of Z belongs to Z (this property is called stability by intersection).

Let (2,.%#,P) be a probabilistic space, and let Q be another probability on the same space.
Corollary 2.5. If P and Q coincides on a ™ — system for F, then P coincides to Q on % .
Proof. This is a standard strategy, so we write it just one time.

e Let 7 be a m — system for .%#. We observe that we just need that Z is stable for
intersection, because otherwise, since P(2) = Q(£2), we can take Z U {Q}.

o Let usset A:={Aec . 7| P(A) =Q(A)}. We observe that Z C A C .Z.

e Since Z is a m — system, if A respects condition a) and b) of (2.4), then we have that
F =0(Z) C AC.Z, sowe have the equality. Let’s check.

e a). Let us have A; € A for all i € N, and let us suppose that A; C A;; for all i. Let
us set A = j:og A;. We have

P(A) = lim P(A,) = lim Q(4,) =Q(A) — Ac A

n—-+00 n—-+oo

We have used the continuity of probability and that A, € A for all n, so condition a)
is true.

e b). Let us have A € A and B € A, with B C A. We can write
P(A\ B) =P(A) - P(B) = Q(A) - Q(4) = Q(A\ B) = (A\B) € A,
so even condition b) holds true.

e Since we have check that a) and b) hold true, we have that A = .%, and this is the
thesis.

O

Let (©,.%) and (F, &) be two measurable spaces.



Definition 16. C € & ® .%. We define C, as
C, ={y € Fl|(z,y) € C} =mp(CN({x} x F)).

Corollary 2.6. For every C' € & ® #, for every x € E, we have that C, € .

Let (2,.%) and (F, &) be two measurable space and let X : (Q2,.%) — (E, &) be a function.
Proposition 2.7. Let D C & a family of subset of E, and let us suppose that

e 0(D)=8,

e VA € D, we have that X '(A) € Z.
Then X is % — measurable, that is o(X) C 7.

Proof. We can not apply directly the standard strategy because D is not a m — system in
general. This is not a big problem, because given D we can define a m — system for &. Let
us set

L:={A€& A, . A, €D st. A=[)A}U{Q}.
i=1
O

It is easy to show that this is a 7 — system, that D C £ and X (L) C .#. Now we can
follow the standard strategy, that is an easy check.

Let (2,.%) and (F, &) be two measurable space and let X : (Q2,.%) — (E, &) be a function.
We remember that X is o(X) — measurable by definition.

Proposition 2.8. Let Z C & be a © — system for &. Then X YZ) is a © — system for
o(X).

Proof. The proof is an easy check that we sketch.
e 0(XYZ)) = o(X), that is X }(Z) generate o(X). Indeed, we just need to consider
A={Ac& X YA eca(X D))}

We have that Z C A, and we can verify that A verify the usual condition, so we have
the searched equality.

e X H(Z)isam— system. We have

— Qe X 1(Z). We just observe that Q = X 1(E).
— A,B € X YZ). Then

ANB=X"YC)nX}D)=X"Y(CND)e X \(T),

where C' and D are elements of Z, so their intersection belong to Z. We have used
the powerful property of the counter-images.
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]

Now we want to enunciate a criterion to establish if a finite number of o-algebras are inde-
pendent. Let’s begin with two sigma — algebras. Let (2, F,P) a fixed probability space.
Let .#; C % and %, C .% be two sigma — algebras.

Proposition 2.9. Let us have Z; C % that is a m — system for %1 and Iy C 5 that is a
m — system for Fo. Let us suppose that

VA, € T, YAy € Tp, P(A; N Ag) = P(A))P(Ay). (1)

Then 1 and 5 are independents, that is equality holds true for all Ay € #1 and for
all A2 € ﬁg.

Remark 5. As before, we just need that Z; and Z, were stable by intersection, because we
can increase Z; and Z, by adding {Q}.

Proof. The proof is simple, let us see.

o Let us set A:={A € F| VB €I, P(ANDB) =P(A)P(B)}. We want to check if A
has condition @) and b) of (2.4), so by remembering Remark (3) we conclude.

a) Obvious.

b) A,C € Aand C C A. Then for all B € 7,

P((A\ C)NB)=P(ANB)\ (CNB))=P(ANB) —P(CNB) =
P(A)P(B) — P(C)P(B) = (P(A) — P(C))P(B) = P(A\ O)P(B) = (A\C) € A.
A

So, we have that 7y C A C % — 7 =od(Ty) C
equality.

C %, and this implies the

o Let us set Ay = {A € F| VB € %, P(AN B) = P(A)P(B)}. The proof that
Ay = %5 is equal to the one above.

]

Lemma 2.10. Let us have
o Fy, ... F, 0—algebras, contained in a bigger o — algebra % .
o for alli, Z; is a ™ — system for %;,
o let us define G == \/]_| F;.
Then
L:={A€g| there exist Ay €Ty,.... A, €T, sit. A=[)A}
i=1

is a ™ — system for G.



Proof. We just check that £ has the property of a m — system for G.
e [ generate, that is 0(£) = G.

— Clearly, 0(£) C G.

—foralli, ; C L = F# Co(L) = G =0, %) C o(L), and this
conclude.

e L is am— system.

— Clearly, Q € £ (we simply take A; = Q).

— A, Be L. Then A=, 4; and B = (., B;, with A; € Z; and B; € Z, for all
i. Then

AmB:ﬂ ANB | el

i=1 €Z;
and A; N B; € Z; because Z; is closed by intersection.

With this last check we just have concluded. O

Corollary 2.11 (general criterion of independence). Let us have
o 1, ... F, o—algebras, contained in a bigger o — algebra % .
e for all i, we have Z; a ™ — system for .%;,
e let us suppose that
VA eZ, P| () A | = [] P4 (2)
1<i<n 1<i<n
Then
1. F, is independent of \/7—' ;.
2. F1, .., F, are independent.
Proof. We prove this corollary by induction.
e n = 2. This is just .
o n > 2.

— Let us define G = \/7—' %. By 1) we have that

n—1

L :={A € G| there exist Ay €Ty,...., Ay 1 €L, 1 st. A= m Ai}

i=1

is a m — system for G. Now we want to prove G and .%,, are independent.
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— We use again (2.9). We have Z,, a m — system for .%,, and L a m — system for G.
We have VA, € Z,, and B € L

P(A,NB) =P | 4,0 A | = ] p(a)=Pr@,) [ PA) =
i=1 7 1<i<n 1<i<n—1 (%)
n—1

where in (x) we have used (2) with A, = Q. So for our criterion ({2.9), %, and G
are independents, that is

VA€ Z, VBeg, P(ANB)=P(AP(B).

— Now, let us set B = ﬂ?;ll A;, with A; € ;. So B € G, and by inductive
hypothesis, we have that

n—1 n—1
P rw,Ai :3IIIP@40.
i=1 i=1
We conclude observing that for all A, € %,
P | ()4 | =P(4.NB) =P(A,)P(B) = [[P(4)
i=1 ;

and this is the thesis.

Now we have the following criterion,

Corollary 2.12. Let us have n > 2 integer, and let us have

o 71,.., %, that are 0 — algebras, contained in a bigger o — algebra % .

o 1, .., %, 1 are independent o — algebras.

Then the following are equivalent,

1. %, is independent of \/;:11 Fi,

2. F1, .., F, are independent.

Proof. Let us define

n—1

g =\ Z.

i=1

Let’s see.
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° 1) — 2).
Let A, € Z4,..., A, € %, be sets. Then we have

n—1 n—1 n
Pl AN (()A) | =PAP [ [)A | = ]]PA),
i=1 i=1 () =1
9

Where in (x) we have used that %1, ..., %, 1 are independents, and the equality above
is the definition of independence.

e 2) = 1)
We have that

— for all i =1,..,n, the o — algebra %; is a m — system for .Z;.

— for all A; € .%;, equality hold since #1, .., %, are independents.
So by Corollary (2.11]), we have that .%, is independent of ¢, and this is the thesis.
O

2.2.1 Sigma Algebras Of R.V. and Independence

Now we write some corollaries of the theorems of the above section.

Let us have (E, &) a measurable space, and let n > 1 be an integer.

Corollary 2.13. Let us consider
o (E" ), &) the product space with the product sigma algebra.

o LetT be a m— system for &.
Then

G={x",B : Bel}=1"
is a ™ — system for @, &
Proof. The proof is simple and follow from Corollary (2.10]).

e We have that by definition

n

®éa: \/U(Pz‘),

=1

with p; : E™ — FE such that p(ey,..,e,) = e; the canonical projection. In fact, the
product o — algebra is the littlest ¢ — algebra such that the canonical projection are
measurable.
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e Now, we have that

— o(p1),.,0(pn) € Q),, & are sigma algebras,

— for all 4, we have T is a m — system for & = p~'(Z) is a m — system for o(p;),
thanks to Corollary (2.8]).

So we have that
g = {ﬂ?zlAz : Az - pl_l(I)}

is a pi— system for @), &, and this is the thesis because every element of G is a product
between elements of 7.

]

2.3 Product Probability

Let us have (F,.%#,Q) and (E,&,P), that are two probabilistic space. We would like a
probability R, which we denote with P ® Q, on the space (E x F,& ® .%) such that for all
A€ .Z and B € &, we have

(P®Q)(A x B) = P(A)Q(B).
Clearly, if such probability exists, it is unique.

Proposition 2.14. Let us have f : E X F' — R a measurable function such that f > 0.
Then

1. Yx € E the function f, : F — R such that f.(y) = f(z,y) is F — measurable.
2. The function g : E — R such that g(x) == [, f.(y)dQ(y) is & — measurable.
Proof. Let us prove first 1. and after 2.

1. e f(x,y)=Ic(x,y) with C € & @ Z.
Because of (2.6, we have that the section C, € #, and it is straightforward to
show that for all x € E fixed, Io(z,y) = I, (y) = f.(y), so f. is ¥ —measurable.

e If f is a linear combination of indicator function (that is a simple function), we
conclude by linearity.

e f measurable, f > 0. We can find a sequence of simple function (f,)nen such
that f, T f, so we can conclude because f = sup,(f,), that is . F — measurable if
z is fixed.

2. o f(z,y) = laxp(z,y), with A € F and B € &. We have that f,(y) = La(x)Ip(y),

o(z) = / £o(1)dQy) = Lu(x)Q(B),

that is & — measurable.
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o We define A = {C € & ® Z| [,Ic(z,y) dQ(y) is & — measurable}, and we
prove thanks to (2.4 that A =& ® Z.

e Thanks to linearity, we extend the above result to f simple.

e If f is measurable, positive, we find a sequence of simple, increasing function that
approximate f and we conclude by Beppo Levi.

]

2.3.1 Independence thanks to Product Probability
e Let us have (Q2,.#,P) a probability space.

Let X : (Q,.%) = (Ey,&) and Y : (Q,.7) — (Fa, &) be two r.v.
e We can consider the function (X,Y) : (Q,.%) — (Ey X Ey, & ® &), such that

(X, Y)(w) = (X(w), Y (w)).

All these function have a law, that are respectively Px and Py and P(x y).

e We observe that we can consider (Ey, &1, Px) and (Es, &,Py) as probabilistic space,
and we can build the probability space (F; X Es, & ® &, Px ® Py).

Lemma 2.15. X and Y are independent <= Pxy)=Px @ Py.
Proof. We see first one implication, then the another.

e X and Y are independent.

We observe that & x % is a m — system for & ® %#. Because of our hypothesis,
Pixy)y=Px ® Py on & x #, so they are equal on & ® .# thanks to (2.5).

[ ] P(X,y) == ]PX &® ]P)y.

We just need to observe that {(X,Y) € A x B} ={X € A,Y € B}, and the thesis is
straightforward if we evaluated the identity in A x B € & X .Z#.

]

Remark 6. Of course, the argument is the same, even if we have a finite number (say n) of
random variable.

2.4 Other Independence Criterion
2.4.1 Independence if we have a condition for every C 0 Bounded function

Let us have (€2,.7,P) a probabilistic space, and let us have (R,B(R)) Let X : Q2 — R be a
r.r.v, and let us have ¥4 C .% a o — algebra.
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Proposition 2.16. Let us suppose that VA € Z, and Y € C%(R) (continuous and bounded
real functions) we have that

E[(¢0X>-IA]=E[¢0X]%7 (3)
P(A)

with T a m — system for G. Then X and ¢ are independent, that is o(X) and 94 are
independent.

Proof. We just need to prove that given A € Z for all B € B(R) we have that
P({X € B}NnA) =P(X € B)P(A).
because Z is a m — system for G, and o(X) is a m — system for itself, thanks to (2.9).

e Our strategy is to pass from the continuous and bounded functions to the indicator
function of a m — system of *B(R), then thanks to (2.4 we pass to the Borel of R, so
we have the thesis if we take the indicator function of such sets.

e Now, let us fix A € 7.
o We define
A={ (—o0,z]: ze€R}U{R}.
We remember that B(R) = o({open set of R})=oc(A).
e It is immediate that A is stable by finite intersection, so it is a 7 — system for B(R).

e Let us test formula on the sets of A, that is we want to see if holds true with
v = Ip, with B € A.

o If ¢ = Iy, then (3)) is trivially true because p € C%(R).
e We suppose now ¢ = [(_p, with b € R.

e Let us define

on(x) = I_op)(z) + Lppy1y- [n(b—z)+1].

that is
1if <D
on(r) = —nz+nb+1if b<z<b+1i
0if v>b+ %
n——+0oo
It is immediate that ¢, is a bounded continuous function and, and ¢, “—" ¢ point-
wise.
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e So, we have that

Vw e Q, o (X(w)) gty (X (w)),

and since |, o X| < Ig € L'(Q2), we have that

n—-+00

Elpn o X] "= Elp o X],
by dominated convergence.

e Now, we observe moreover that

n—-+o0o

Vw € 2, pu(X(w)) - La(w) 3 p(X()) - La(),

and since |(¢, 0 X) - I4| < I € L*(2), we have that

n—-4o00

El(pn 0 X) - 1a] =7 E[(p 0 X) - L],
by dominated convergence.

e So, if we put everything together and we observe that for all n, we have ¢, € C%(R),
we obtain

E[(po X) - I4] = Ellim(p, 0 X) - [4] =limE[(¢, 0 X) - [4] =
lim E[(p, o X)] E[L4] = Ep o X]P(A).
n ——
P(A)
e So we have discover that hold true for the elements of A.

e Now, let us define

B:={BeBR):E[(IgoX) 14 =E[IpoX)]-E[l] }.

e We have that A C B C B(R), and A is a 7 — system for B(R). If we prove that B
respect condition (a) and (b) of (2.4), we have finished.

e This is just a standard check, and we omit it, so we have the thesis.

2.5 Arbitrary Product

Let I be a set of index, and let us consider (E;, &;);c; a family of measurable space. Let us

define
E=][E={f:1-JE |Viel, ft)ecE}.

el el
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We consider given j € I the function 7; : £ — FE; that is the canonical projection on Ej.
So, for all f € E, we have 7;(f) = m;((e:)ier) = €; = f(j)-

We can even consider the following point of view. Given ) C J C I, not empty, we can
define

Ty HEZ — HEj’ such that w;(f) = f|;.
iel jeJ
So, if J = {i} C I, we can identify the element e € E as the function é : {i} — E; such that

é(i) =e.

Definition 17 (arbitrary product o — algebra). We define the product o — algebra on E,
and we indicate it as ®;c;&, as the smallest ¢ — algebra on which the projection m; are
measurable, that is

% =iy =0 ({m ' (A) | A€ &}) =\ o(m).

i€l

Remark 7. The above definition goes well even if we have a finite product of probabilities.

Remark 8. We follow the following notation. If we have K C J C I, we can consider

A L5 = T[ B such that =26) = ol

jeJ keK

that is the projection from a suitable subset of [],.; E; to another. Of course, if we have
H C K CJ C I, we have the following identity

() ()
K H
= =
=1 115
jed keK heH

that is WI(LIK) o 71';;]) = 71'1(1}]).

We remember the following easy equality that hold true in general and sometimes it is useful.
Let A =/ B —9 C be two function, and let D C C be a set. Then the following equality
hold,

(go /) (D)= f" (g7 (D)).

What are the rectangles in this definition? Given our idea in finite dimension, one can
discover by heuristic that the rectangles are the elements of the form

HAz' = ﬂﬁfl(Az%

i€l i€l
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with (A;);e; a sequence of elements such that for all i € I, we have A; € &;. We observe
that in general [ is not countable, so in general it is NOT true that [],.; 4; € &, & In
fact, intersection of too sets can not stay in the o — algebra, even though the single elments
stay in it.

e Now, let J C I be a subset, not empty.
e Vj € J, let us consider A; C E;. It would be better A; € &.

e Let us define

A={g:J=>|JE;: Viel gi=glie A} C]]E:
jed jeJ
Proposition 2.17. Then we have
A=) (A,
jed

Proof. 1t is just a chain of implication. In fact

feA = Vje f|j:7T§J)(f)eAj =
vied, fe@) N4 = fe ()4,

jedJ

Remark 9. Tt is straightforward that
(=7 (4) = M@ (@A) = @D erl)) A = D)4y =
jedJ jeJ jedJ
(1

if it is not ambiguous, for all J C I we denote 7’ as 77, that is we don’t write the starting
space if it is 1.

Now, let X : (2, #) — (E,®;c;&) be a function.

Proposition 2.18 (Measurability of a r.v. in the product space). The following fact are
equivalent,

1. X is measurable.
2.Viel, X;=moX :(Q,.7)— (E;, &) is measurable.

Moreover, we have that o((X;)ier) = 0(X), that is the smallest o — algebra that make every
X; measurable and the smallest o — algebra that make X measurable are the same.

Proof. Let’s see.

17



e 1) — 2). It’s clear, it is composition of measurable functions, and from this it
follows immediately that o(X; 7€ I) C o(X).

e 2) = 1). We would like to use (2.7), so we have to find A C @), &; such that
- o) = ®, &
— VA € A, we have that X~!(A4) € Z.

e Let us consider

A={m (A i €T and A; € &} = 7' (&) (4)

el
We have that ), &; = o(A).

e Now, let A € A be a set. Then there exists i € I and A; € &; such that we have
A =7;'(4;). So we have that
X HA) = X Ha Y A) = (mo X)) (4A) = X, 1 (4) € Z.

K3 K3

so we can apply Proposition (2.7), and we have concluded.

In particular if we are more accurate we can observe that
XA eo(X;) Co(X;:iel),

so the truth is that X is o(X; : ¢ € I) measurable, that is o(X) C o(X; : i € I), and
this conclude.

]

Remark 10. We observe that, given the set A defined in (4]), we have that

B=J{nLAlVi AieA}

neN

is a ™ — system for ), &;.

3 Integrals and Convergence Theorems
Let us have a probability space (2, #,P).

Proposition 3.1 (Integration with respect to a Probability Law). Let us have the
following setting,

o let X : (2, #,P)— (E,&) be arwv,

o let uy be the law of X, that is for all A € &, ux(A) =P(X € A),

18



o let f:(E,&) — (R,B(R)) be a measurable function.

Then f is ux — integrable if, and only if f o X is P — integrable, and in this case we
have

[E F(x) ux(dz) = / foX(w) Pldw).

Let us have (A,),>1 a sequence of events in (§2,.#,P). Let us define

+oo
limsupAn:A::ﬂ UAk ,

n—+oo n=1 \ k>n
that is
A={w:we A, for infinitely many indices n}.
Then the following is true,
Lemma 3.2 (Borel-Cantelli Lemma). We have the following two condition.
1. If YT P(A,) < 400, then P(A) = 0.

2. If Y72 P(A,) = +00 and A, are pairwise independent, then P(A) = 1.

3.1 Convergence Theorem

Lemma 3.3 (Approximating by Simple Function). . Let f : (Q,.#) — (R,B(R)) be a
positive measurable function. Then we can find a sequence of simple function (f,)nen such

that f, 1 f.

3.2 Switch Limit, Integral Theorem

Lemma 3.4 (Fatou’s Lemma). Let us have

o (X,)nen a sequence of r.r.v. on our probability space.
eVneN, X, >0
Then

/ (liminf X)) dP < liminf (/ X, dIP).
Q Q
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3.3 Measure Defined By a Density
Let u be a probability on (R™, B(R™)).

Definition 18 (Density). p admits a density if there exists a function f : (R™ B(R™)) —
(R,B(R)) measurable, f > 0, such that for every A € B(R), we have

u(4) = / f(@)de.

Let us have X : (Q,.%) — (R™,B(R™)) a r.v, let u be the law of X and we suppose that u
has density f.

Lemma 3.5. Let a € R™, and let A a m x m invertible matriz. Let us set Y := AX + a.
Then'Y has density, and the density of Y s given by

1
g<y) - |detA|

that is for all A € B(R™), we have py(A) =P(Y € A) = [, g(y)dy.

f(A7(y —a)), Vy eR™.

4 Conditional Mean

5 Theorem on r.v.

5.1 Sum of r.r.v.
e Let us have (2, .7, P) a probabilistic space.
e Let us have (R, B(R)).
o Let X: Q= RandY :Q — R be random variable.
Proposition 5.1. We have that
c(X+Y)Co(X,Y)=0(c(X)Ua(Y)),

that s the sigma algebra generated by the sum is contained in the sigma algebra generated
by both random variables. In particular if X andY are r.v, then even the sum is a r.v.

Proof. The proof is the following.
o [etusset Z=X+Y.

e We just need to prove thanks to (2.7) that Z7'(A) € Z, for all A in a set of generator
of B(R).

e Let us define
A= {(—o0,z) : x € R}.

This is our sets of generator.
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We have that

Z7 (—00,0)) ={X +Y < ¢} = U{X+q <cpn{Y <gq},
qeQ

and the last inequality hold true because we have that for all « € R and b € R and
ceR,

a+b<c <= dqeQst.at+qg<candb<yq.

So Z7H((—o0,¢)) € o(X,Y) for all ¢ € R, so we have the thesis.

5.2

Topological Results (for vector normed spaces)

Let us have (E,||-||) a Banach space, but completeness.
E have a topology that is induced by the norm. We indicate as
Ble,r) ={z: le—e| <rp={lx—ell <r}

the ball centered in e € E of radius r, and it is well known that it is a base of the
topology. we indicate the topology generated by the ball as B (that is the set of the
open sets).

Let us consider now E™. It has by definition a topology, that is the product topology.

This product topology is defined in this way. Let us consider p; the canonical projec-
tion.

Let us define

A = {T topology s.t. p1,...pn: (E",T)— (E,B) are continuous}.

Now, let us define

P:zﬂT

TeA
Well, P is the product topology.
We can indicate more generally as
T(R)
the littlest topology that contain R, with R C P(FE), in analogy of what we did in
Definition .
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e Since we have a finite product, it is immediate to show that
P = T({X?:y‘lu A; € B}) ;

that is the product topology is the smallest topology which contains the product be-
tween the open sets of E.

e Now we want to prove that the product topology on E™ in this case is given by a norm.
Proposition 5.2. Let us define
n:E" =R, nley,..,e,) = mazi—1_nlle] -

Then n s a norm.
Proof. Obvious. O]

We indicate as||-||, this norm.

e Let us denote as P, _ the topology induced by this norm (the one defined by the ball
on E™).

Proposition 5.3. P =T __.

Proof. The proof is not hard, we prove the double inclusion.

— C:
We just need to prove that projections are continuous functions. Since we have
in this case for all 2 = 1, ..,n that
is a function between normed spaces, we just need to check the ¢ — § definition,
and this is immediate.
So we obtain one inclusion.

_» 2 ”.
We just need to see if the ball with respect to |||, are elements of P. We have
for all e = (ey,..,e,) € E™ and for all r > 0 real,

By (e;r) ={z:flz —el <r} =
={z=(v1,.,2,) :Vi=1,..,n, ||z, — el <r} =
={zy ||z —e|| <r} x-x{z, t|r, —en| <7} =
=(\r'{yeExlly—el<r})eP
i=1
and the last set belong to P because is intersection of a finite number of open
sets.

]
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5.3 Relation product sigma algebra and sigma algebra induced by
the topology

e Let us consider again (E,||-||), that is a vectorial normed space.
e Let us consider Open(E) the topology induced by the norm.

e Let us consider Open(E™) the topology on E™ induced by the norm ||-||__, that is the
same as the canonical topology on the product space E™.

e As always we denote as B(E) = o(Open(FE)), that is B(E) is the smallest 0 — algebra
which contains the open sets of E.

e Now, we want to compare
B(E") := o(Open(E™))

and
X B(E) = \/pgl(%(E)) =0 ({x",A; © A €B(E)}) =o(B(E)).

Proposition 5.4. Let us suppose that E is separable. Then B(E™) = Q),, B(E).
Proof. We show the double inclusion.
° 7 2 7

Since E is separable, it is base numerable (it’s metric), that is

AN C Open(E), countable: VYA € Open(E), 3JCN: A= U B.

BeN

e Now, N base for Open(FE) = N" is a base for Open(E™), because the product of
basis is a base for the product space (it is immediate to show).

e So, we have that Open(E) C o(N") = B(E") = o(N").
o We define
A= {x"JA; 1 A €B(E)} =B(E)",
so we have that ®,B(F) = o(A).

e Since N C Open(E) C B(FE), we have that N* C A, so we conclude seeing that
B(E") =0(N") Co(A) =@, B(E).

.77g77

Since Opens(E) is a m — system for B(F), we have that Open(E)" is a m — system
for ®,B(F) because of Corollary ([2.13)).

e Moreover, Open(E)" C Open(E™), so @,B(F) = o(Open(E)") C o(Open(E™)) =
B(E™), so we have finished.

]
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5.4

Measurability of the sum

Now we can prove some useful theorem.

Let us have a fixed Measurability Space (Q..7).

Let us consider (E,B(F)), with (E,||-|]|) a separable normed space.
Let X, : 2 — E be a measurable function, for all i =1, .., n.

Let us consider the function X defined in this way,

X: (7)) - (E"Q,B(E)
w - (Xi(w),.., Xn(w)).

We know that such function is (%, Q),, B(E)) — measurable and o(X, .., X,) = o(X)
from Proposition (2.18]).

Let us consider (H, Open(H)) another topological space.

Let us consider f : (E,Open(E)) — (H,Open(H)) a continuous function.

Theorem 5.5. We have that f o X is (F,B(H))—measurable.

Proof. Given our work before, the proof is a simple path.

e We firstly show that f is (B(E™),B(H)) measurable. Let’s see.
— We have that o(Open(H)) = B(H) and
— f7Y(Open(H)) C Open(E™) C B(E™).
— Condition above implies that f~'(B(H)) = o(f) C B(E") thanks to (2.7).
— So we have proved that f is (B(E™),B(H))-measurable, as we wanted.
e Moreover, we have that B(E") = @), B(F) thanks to Proposition (5.4]), so we can
write that f is also (&), B(E), B(H)) measurable.
e So we have the following composition of function,
(2. 7) % (B, @,%8(E)) % (H.B(H)).
and since f and X are measurable, we have that f o X is measurable, as we wanted.
O
e Let us suppose now that H = E™, with the same topology that we had at the beginning.
e Now f will be a function like f = (f1,.., fn), With f; = m; o f, with 7 : E™ — E the
canonical projection such that m;(eq, .., e,) = €.
e In this case we have that fo X = (fi 0 X, .., f, 0 X).
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Corollary 5.6. Let us suppose that f is continuos, invertible, and its inverse is a continuous
function. Then

o(X1,.,Xp) =0(fioX, .., fnoX).

Proof. We observe that f and f~! are measurable function. So we have thanks to Corolllary

(2.3) and Proposition ([2.18))
o(X1,. ., Xp)=0(X)=0(foX)=0c(mo(foX),..,mo(foX))=0(fioX, ..., fnoX),
as we wanted. 0

Corollary 5.7 (measurability of the sum). Let us suppose that E is a vectorial space. Then
the random variable

Z = i Xi,
i=1

is (F,B(E)) — measurable.

Proof. Let us consider
f:(E", Open(E™)) — (E,Open(E)), f(e1,..,en) = Zei.
i=1

It is immediate that this is continuous, so we can apply the T'heorem above. O

6 Characteristic Function
Let X : (2,7 ,P) — (R™,B(R™)) be ar.v, let us set p = Py.

Definition 19. We define for all § € R™,
i(6) = [0 u(da) =B[ 00 )

6.1 Property

A~ ~

1. X and Y are r.v. independents. Then fix.y(6) = fix(0)fy ().
2. V0 € R" we have [(0) =0(0) = pn=v.

3. Xi,.., X, are r.v.'s respectively with law gy, ..., fin.
We denote as p the law of (X7, .., X,,).
Then Xy, .., X,, are independent if, and only if for all = (64, ..,60,,) € R", we have



4. Let b € R* be a vector, and let A € RF*™ a matrix. Let us set Y := AX +b. Then for
all € R* we have

,aY(Q) — E[ei(G,Y>] _ E[ei<9,AX+b)] — 6i<9,b>E[ei(A*0,X>] _ €i<9’b>ﬂx(z4*9)-
We remember that A* is the transpose of A.

5. X = (X1,..,X,,) arandom vector. Then for all i = 1,..,n we have that

We prove now a little lemma. Let Y : (©2,.%7,P) — (R™,B(R™)) be ar.v, let us set p := Py

Lemma 6.1. We have that Y is constant and Y = a almost certain, with a € R™ if, and
only if for all § € R™ we have that jiy(0) = e,

Proof. We prove both implication. We denote as uz the law of Z and as uy the law of Y.
e If Y = a almost certain, then the thesis is obvious.
e For the other, let us set Z(w) = a for all w € Q.
e Then we have that iz = fiy, and this implies for our property that puy = py.
e But then, we have that
1= P(Z = a) = pz(a) = py (a) = P(Y = a)

so Y = a almost certain, and this means that it is constant almost certain.

6.2 Gaussian Law
Let us have u a probability on (R, B(R)).

Definition 20. We say that p is N(a,0?) (normal, with mean a and variance ¢?), with
o >0 and a € R, if it has density with respect to Lebesgue measure given by

1 (@—a)?
foo2(x) = e 202 .

V2r

Q

Remark 11. If we have

foa(x) = e 2,

Tr—a
pn .

then we have the following relation,

fa,a2 ([E) - %fo,l

Y
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at this point, we have a probability © on (R, B(R)), that is

VA € B(R), u(A) = /Afa,(ﬂ(f)dﬂ

We want to compute its characteristic function . We have

Proposition 6.2.

202

VO € R, (0) = e 2”

Remark 12. We observe that, if X ~ N(a,0?) and Y ~ N(b,7%) and they are independent,
then X +Y ~ N(a+b,0% + 7%). In fact if we denote respectively as pux and puy and px iy
their law, we have

IELXJrY(Q) = ,ELX(G)/,LAy(e) = eie(a+b)e*%(02+72)02

and this last one is the characteristic function of a r.v. N(a+b,0%+72), so (X +Y) it have
to be a variable N(a + b, 0% + 7%). We have used our properties in Section (6.1]).

Now let’s talk about Gaussian Vectors. We suppose to have a fixed probability space
(Q,.7,P).

Definition 21 (Standard Gaussian Vectors). Let Z := (Zy, .., Z,) be a random vector. We
say that Z has the Standard Gaussian Distribution if P, has density

o dei3 — 1

(2m)2 (27)

for(xi, .., x,) = o~ 3@a)

NE

for all z € R™.

Remark 13. The definition above is equivalent to ask that the r.v. Zi, ..., Z,, are independent
and for all i, we have that Z; ~ N(0,1).
Remark 14. Z; ~ N(0,1) = for all § € R, we have that iz, () = e~ 2%

Remark 15. For all 8 = (04, ...,0,) € R™, properties (/6.1]) implies that

n

fiz(0) = [ nz(0:) = [ 2% = e7dllz = =300,
=1 i=1

Definition 22. A random vector Y = (Y7, ..,Y,,) is said to be Gaussian if we can write
Y =AZ+b

where A is a m X n matrix, b € R, Z = (73, .., Z,,) is a n — dimensional standard gaussian
vector.
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Now let us suppose n = m, and det(A) # 0. Then (3.5) hold true, and we have that Y’
has density. We observe preliminary that for all z,w € R

(A2, A7) = (AT Az w) = ((A%) T A 2 w) = (T 1z, w).

where we have set I' = AA* in the above equality, so ™! = (A4*)"!A~. Given this, we can
write down the density of Y as

1 _
Jor(y) = mfo,l(fl Hy—10) = (5)
]. 1 1 —1
— =3 (L y—=b),(y—b)) _ 6
(2m)2 |detA]e ’ (6)
1 L it w-b).-b) (7)

(27m)% |det T'|2

Lemma 6.3. Let Y = (Y1,...Y,,) = AZ + b be a Gaussian Vector, and A is an m X n
matriz, Z is an n-dimensional Standard Gaussian Vector. Then

o b= (E[Y],...E[Y,]).

o Cou(Y;,Y)) = (A A");; = Ai - (A™).
Proof. This is a simple check.

e b =E[Y] is obvious since Z; ~ N(0, 1).

e This is a simple check. Let ¢ € {1,..,m} and j € {1,..,m} be two numbers. Then

Cou(Y,Y;) =Cov | Y AinZi+bis Yy AjnZn+b; | =
k=1 h=1

bilinearity

= Z Ai,k:Aj,h COU(Zk, Zh) =
~——

k,h=1 —0 if h#tk
n
= AinAji Cov(Zi, Zi)
N————
k=1 =Var(Zy)=1

— A () = A (AT = (A4
O]

Remark 16. Given Y Gaussian Vector, we denote as Cov(Y) = A - A*. We observe that it
is positive definite.

Now, given I' m x m matrix positive definite and b a vector in R™, we ask ourselves if we
can find a Gaussian random variable Y = (Y7, ..,Y},) such that Cov(Y) =T and E[Y] = 0.

Lemma 6.4. Let us have
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o [' m x m positive definite matriz.

e b vector in R™
Then we can find a Gaussian Variable X such that Cov(X) =T and E[X] = b.

Proof. This is a linear algebra exercise, because we just need to find a matrix A such that
A-A* =T. This is possible, and we can find it symmetric. Let’s call such matrix v/I'. We
obtain the thesis if we set

X =VTZ+b
with Z a Standard Gaussian Vector. O

Remark 17. We have seen that given a matrix () positive definite and a vector b € R™, we
can find a r.v. Y = (V1,..,Y,,) that is Gaussian, that Cov(Y) = @ and E[Y] = b. We
denote this fact saying that Y ~ N (b, @), that is Y is normal, with mean b and covariance
matrix Q.

Remark 18. A n — dimensional standard Gaussian Vector Z = (Zi,..,Z,) is denoted by
Z ~ N(0,I), with 0 the null vector of R" and I the identical matrix n x n.

Now, let us calculate the characteristic function of Y = (Y7, .., ¥%), with Y a Gaussian Vector.
So we have that Y = AZ + b, with A matrix k x m and b € R¥ and Z m — dimensional
standard Gaussian Vector. Thanks to Properties (6.1]), we have for all § € RE.

fiy (0) = ei(@,me(A*g) — oi0.0) o= 5(A0,A%0) _ i(0.b) ,—5(T0.0) (8)

where we have set I' .= A - A* that is ' = Cov(Y).

Let us have Y = (Y1,..,Y,,) 1 (,.7,P) — (R™,B(R™)) a r.v. Let puy be the law of Y.
Proposition 6.5. The following statements are equivalent.
1. Y ~ N(,T), that is Y is Gaussian, b = E[Y] and I" = Cov(Y')

2. Y0 € R™, [y(0) = 0 e=3T09) yyith b € R™ and T a m x m positive semi-definite
matriz.

3. V0 € R™, we have that (0,Y) is a Gaussian r.r.v, that is (0,Y) ~ N(agy,o}), with
ap € R and of > 0.

Proof. 1t is easy.
e 1) = 2). This is the count above in (§).

e 2) = 1). We suppose det ' ## 0. The case detI' = 0 is degenerate and we study it
another time.

— We can find thanks to (6.4) a Gaussian Variable X = AZ + b, with A m x m
matrix such that AA* =T and Z ~ N(0,) and b € R™.
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— We see immediately that for all 8 € R™, we have

fix (6) = fiy (0).
and thanks to properties (6.1)) we have that px = py.

— Now we know that X has density that is given by , so even Y has the same
density because p1x = py, and this density is fpr.

— Let us consider W = A7'Y — A71h = A=Y(Y —b). Thanks to (3.5)), we know that
even W has density, and this density is given by

1 L
g(x) = mfb,r(fl(x + ATD)) =

1
= m.fb,l“(fll‘ + b) =

1 1 . B
= Tdet(A-D)] [det(ay Jor A (Az 0 =0))
= fou(),

so for our definition (21)), we have that W is a standard Gaussian Vector, that is
W ~ N(0,I).

— Then we have
Y= A (AYNYY-b)+_ b,
~ — =~
matrix N(O,I) vector
that is Y ~ N(b,I'), and that is the thesis.

— Now we suppose det I" = 0.

— If ' =0, then by Lemma ([6.1)) we obtain that Y is constant, so it is Gaussian (by
definition (7, that is we don’t know)).

— Otherwise, if 7k(I") > 0 we firstly suppose that I' is diagonal, so we have
I = diag(v:,..,73,0,..,0) with 1 <k <m and ; > 0.

— One of the Properties in (6.1) say us that the marginal law of Y are Gaussian
1-dimensional, so we have that

Y; ~ N(bi,72) if 1<i<k
Y, =b;, that is Y; ~ N(b;,0) if k<i<m.

We have used even Lemma (6.1]).

— Let use set
Y — b .
Z; = for 1 <i <k,
Yi
Z = (Zla'ka’)*v
b= (b1,..,bm)",
Y1 0
_|B : _ : kxk _ 1000 (m—k)xk
A_H,wzthB— : l eR andC—OOO eR
Yk




We remember that *x means transpose.

— Now it is a little count to show that Y = AZ + b, and Z is a k — dimensional
Standard Gaussian Vector, so Y is a Gaussian Vector.

— If I" is not diagonal or it is not in our form, we can find an orthogonal matrix

O such that OT'O* is diagonal as we want, because by definition I' is symmetric.
We define I' = OI'O*.

— Let us define T' = OY. We have that the characteristic function of ur become,
thanks to our property (6.1]),

i (0) = iy (0*0) = £i(070.b) ,—5(LO*0,070) _ ei(G,Ob)€7%<f‘9,0>’ Vo € R™.

— So, we have discovered that 7' is a vector that has a characteristic function as the
one in hypothesis 2, with Ob € R™ and I' = OI'O* a m x m, positive semi-definite
matrix. So we have, because of what we have just proved that

OY = AZ + Ob,

with A matrix m X k, and Z a k — dimensional Standard Gaussian Vector, with
k =rk(T).

— From the last identity, we discover that
Y = [(0")AIZ +b,
that is Y is a Gaussian Vector.

e 1) = 3). Obvious, we just need to observe that a sum of real Gaussian variable is
still Gaussian.

e 3) = 2). We calculate the characteristic function of Y. We proceed in this way.

.0)).

— We observe that Y; is Gaussian for all ¢ (take 8 = (0,, 1 |

i—th

— This implies that E[Y;] is well defined (we need Y; € L'), as well Cov(Y;,Y;) (we
need Y; € L? and Y; € L?).

— Let us set b= (E[Y1],..,E[Y,,]) and I := Cov(Y) = [Cov(Y, Y))|ij=1...m-
— It is well known that Cov(Y') is a positive semi-definite matrix.

— Also, we have that for all # € R™,

Var((Y,0)) = Cou((Y,0), (Y,0)) = (Cou(Y), 6) = (T0, 6),
E[(Y,0)] = (E[Y].0) = (b,0).

— So, if we recall (6.2)), we have for all # € R™ that
fiy (0) = E[eiﬁﬁe).l] _ N(Yﬁ)(l) _ ei.lEKY,Q)]e—%Var((Y,e)) _ ei.<b79>€_%<F9’ 0)

and this is the thesis. We have used the integration with respect to a probability

law, that is (3.1)).
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Proposition 6.6 (Normal Law under Affine Trasformation). . Let L(z) == Az + b be an
affine transformation with C' a matriz k x m and b € R* a vector and let Y = (Y1,..,Yy,) ~

N(a,T") be a Gaussian variable. Then X = L oY is still Gaussian, and its law is given by
N(Aa + b, AT A*).

Proof. We just need to compute the characteristic function of X. Since L is affine, using a
property in (6.1)) we have for all § € R,

)

fix(0) = (i) [y (A*0) = ) ( IR 6—%(FA*9,A*0>> _ ilAa+b) ,~ (AT A" )

so X =AY + b~ N(Aa+ b, AT A*). O

Remark 19. We observe that given Y = (Y1,..,Y,) ~ N(a,I'), we have that its k — th
marginal is given by

wy, (0) = S NS
thanks to property (6.1)) and the formula ().
From this remark and from property (6.1)), it is straightforward the following

Proposition 6.7. Let Y = (Y3,..,Y,,) ~ N(b,T") be a Gaussian Vector. Then the following
statement are equivalent,

1. Y1,..,Y,, are independent.

2. Y1,.., Y, are uncorrelated, that is I' is diagonal.
Proof. we have

o 1) = 2). It is always true.

e 2) = 1).

because we can conclude thanks to one of our property (6.1)).
— But, if T" is diagonal, then
[y (0) = 00 e a(TO0) — oXRLyibkbr o0y — 3Tk kf} —
m m
. 1 2 R
= H e ekl — HMYk(ek)
k=1 k=1

and for what we have said, this implies the thesis.
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7 Stochastic Process

Definition 23 (Stochastic Process). Let X : Q@ x T'— E be a function.
X is a Stochastic Process (S.P.) if for all t € T', we have that

Xt = X|Q><{t} . (Q7§) — (E,g)
is % -measurable.

We can indicate X as (X;)ier-

7.1 Another Point of View, and the Law of a S.P.

We observe that there is another point of view connected to our definition, that is the
following. We denote as

E" =] E. 6" =Q)¢&

teT teT

where E; = F for all t and & = & for all . We remember that E7 .= {f : T — E}, and for
all t € T, the projection on Ej is defined as m;(f) = f(t) = f|s, for all f € ET. We can see
a S.P. X as a .# — measurable function

Dy 1 (Q,.F) = (ET, 627

defined as @y (w)(t) = X (w,t). The definitions are equivalent in the following sense.
Let (£2,.#) and (E, &) be two measurable spaces. Let T be a set of index.

Proposition 7.1. The following statement hold true.

1. Let us consider X : T x QQ — E a S.P, that is Vt € T, we have that X; = X’{t}XQ 18
F — measurable.

Then the function

(2, F) — (ET,&9T)
w — Ow): T —FE
t— X(t,w)

1s F — measurable.

2. Let us consider a function

that is F — measurable.

Then the function

X:TxQ — E
(W) = (®w)()

isaS.P.
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Proof. The proof are simple.

e Let’s start with 1.

For our Lemma ([2.18)), we just need to check that for all ¢ € T, the function (m; o ®)
is .# — measurable. We have

(m 0 @) (w) = m(P(w)) = (P(w))(t) = X(t,w) = X(w)
and this last one is measurable because of our hypothesis, so ® is .% — measurable.

e Now we prove 2.

We just need to observe that for all w € 2,
Xi(w) = X|ixalt,w) = X(t,w) = (2(w))(t) = m(2(w)) = (m 0 ) (w),

and the last function is . % — measurable because it is composition of measurable
function, so for all t € T' we have that X, is measurable, so X is a S.P.

]

Remark 20. Given a S.P., let’s say X, we denote the function ® defined above as ® .

Now, let us suppose that we have a probability measure on (€,.%), let’s say P.

Definition 24 (Law of a S.P.). Let X be a S.P. We define the Law of the process as the
measure of probability Pg, on the measurable space (ET, £%7T).

Remark 21. So, given A C ET| with A € &%T, we have that
Py (A) =P ({w] Px(w) € A}),

that is Pp, calculate the probability that the function ®x maps some elements of 2 in a
bunch of fixed function, that is A.

Remark 22. Let us consider T' = [0, +00), or [0,t] with ¢, a real number, or let T" be a
subset of N. We observe that definition implies that for all t; < t,... < t, € T, we have

(Xpyy ooy Xt,)) 0 (2, F) = (E™,Q"8)
(Xiyy oo X, ) (W) = (X (W), ooy Xy, (w))

is % -measurable.

Let us consider
S = {(tl,tg, ,tn) | <ty <...,<t,, t;€E T} (9)
We define for a generic (t1,...,t,) =1t € S the r.v

Xf = (Xt17 e th) (10)
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Definition 25 (Finite Dimensional Distribution). The set
{ IP)X? | teS }

Is the set of finite dimensional distribution of the process X. We observe that Py, is a
probability on the measurable space (E", &°"), and for all A € &%, we have that Px (A) = P

Py (A) = P(X; € A) = P((X,,, ..., X;.) € A).

t

Definition 26 (Realization (or Trajectory) of a S.P.). Let X : Q x T — E a S.P.
For all w € €2, the function

Xw = X|{w}><T T — F
t— Xt(w)
is a realization (or a trajectory) of the S.P.

Definition 27 (Continuity of a S.P.). Let us suppose now that 7" and E are topological
space, and T = B(T) and & = B(FE). Let X be a S.P as above.

X is continuous if every trajectory is a continuous function. It is a.c (almost certain)
continuous if P({w| X, is continuous}) = 1.

Definition 28 (ca’dla’g). If T C [0, +00), a SP is ca’dla’g if his trajectory are right-C°, and
the limit exists and is bounded on the left.

Definition 29 (Measurable Process). Let (T',7) be a measurable space. Let X be a S.P..
We say that X is measurable if the function

X:(TxQT®ZF) —(FEE)
is T ® . % — measurable.
Now, let X and Y be two S.P.

Definition 30 (Equivalent Process). We say that X and Y are equivalent if they have the
same finite dimensional distributions.

Definition 31 (Modification). We say that X and Y are modification one of the another if
for all t € T', we have

P(X,=Y,) =1
Definition 32 (Indistinguishability). We say that X and Y are indistinguishable if

PVEET, X, =Y;) =1

The finite dimensional distribution are linked to the law of the S.P. in the following sense.
Let (Q,.%1,P) and (25, %2, Q) be two probabilistic spaces, let (E, &) be a measurable space
and let T" be a set of indexes. Let

X:Tx —-FE
Y:TXQQ%E
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be two S.P. Let us set

S = {(tl,..,tn)| \V/'L, t,eT and t; 7é t]’ = 1 7&]},
Sx = (Px,)ies
Sy = (Qv)ses

that is S is the set of every tuples of elements of T' that have every element distinct from
each other, Sx is the sequence of finite dimensional distribution of X indexed by & and Sy
is the sequence of finite dimensional distribution of Y indexed by S. Let

Py,
Qo,

be respectively the law of the process X and the process Y on the measurable space

(ET,&9T). This law is defined in Definition (24)).

Lemma 7.2. Let us have (ET,&%T) the product space and let (Q, F,P) be a probabilistic
space. Let us have

o /:TxQ—=FabSP
® Al,..,AnGéa,

t1,..,tn € T that are distinct, that is t; = t; <= i =7, and let us set t := (t1,..,t,),

for all i, let us take 7, : ET — E the canonical projection, that is m,(f) == f(t;) = f

t -

let us define
A= ﬁ ﬁgl(Ai)
i=1
Then we have the following equality,
(ol D) € 4) = o] Ze) € XA

with Zf(‘”) = (Zt1 (w)v 0 Ztn (w))
Proof. Let’s start.

e We remember the following easy equality. Given (fi,...,f,) : @ = C1 x .. x C, a
function and given A; C (', ..., A, C C,, we have

(fi(w), .., falw)) € ;(Ai — Vi=1,.,n, fi(w) € A <~

i=1

Vi=1,.,n ,we€ f1(4) < wc ﬂfi‘l(Ai).
1=1
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e Now, we have the following chain of implication,
Py(w)e A <= Vi=1,..,n m,(Pz(w)) € 4, —
Vi=1,.,n (Pz(w))(t;) € Ay <= Vi=1,..,n Z(tj,w) = Z;,(w) € A; <=

i=1,..,n weZ (4) = wEe ﬂth(A,-) = (Zy, . Zs,)(w) € X Ay,
N’ .

i=1 Zs

SO
(I)Z<W) €A = Z{(O)) c ><Az>

and this conclude.

Proposition 7.3. We have that the following statements are equivalent,

1. P‘I’X = Q‘I’Y'
2. Sx = Sy, that is Vt € S, we have that Px. = Qy;.

That is, the law of a S.P. is uniquely defined by the finite dimensional distribution, and

vice — versa.
Proof. The proof follows from the previous lemma.
o 2) = 1).
— Let us define

A={r, (A t€T and Ac &},
“+oo

B = J{np Al A€ A}
n=1

We remember that &7 = 0(A) = o(B), and B is a 7 — system for &7

— So, since we have the probability spaces (ET, &% Pg, ) and (E7, £%T,Qs,, ), W

have that Ps, = Qg, if they coincide on a 7 — system for Corollary (12.5)).

— Now, let’s take A € B. So by definition, A = N7, '(4;), with ¢; € T and

A; € &, and we have

Po, (A) =P ({®x € A}) = <{X S XA })

~—~

Px; <>n< Ai) < @ <>< Az> =Q <{Yt € ;(Ai}) =

Q({®y € A}) = Qa, (A),

so Py, = Qg,, and this is the thesis.
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o 1) = 2).
— Let us fix t = (ty,..,t,) € S. We have the probabilistic space
(E™, &% Px,),
(E", &%, Qy;)
and we want to prove that Px. = Qy.

— We remember that
C={x_ A A €&}

is a m—system for &%, This is true because we have a finite product of measurable
spaces.

— So, given B = x| A; € C, we can do as above in (1)), and if we set
A= riym (A,

(m;, - ET — E is the projection) we obtain

Px,(B) =Pay(4) =  Qa,(4) =Qu(B).

hypothesis

7.2 Kolmogorv’s Theorems

e Let T be a not empty set.

Let us denote as S == {(t1,..,t,)] t; € T and t; #t; <= 1 # j} the set of tuples
with every element different.

Let us have (E, &) a measurable space.

Let us consider (E7, &®7T) the product space.

Let us have

{n-| 7€ S}

a family of probability. We intend that, if 7 = (¢, ...,¢,), then pu, is a probability on
(E", £9n).

QUESTION: can we find

— (92, #,P) a probabilistic space,
- X:TxQ—FaS.P

such that
VT € 87 ]PXT = W,

that is, X has how finite dimensional distribution the family u.|7 € S.
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8 Filtration

Setting 1. Let us suppose to be in the following setting.
* Let (2,%,P) be a probabilistic space and (E, &) a measurable space.
*Let X :TxQ— EbeaS.P

* Let us suppose in this section that 7" is an interval (unlimited or not) of R or a subset
of N. To fix our ideas, we can suppose that 7' = [0, +00).

Definition 33 (Filtration). Let us have (% )ier a family of o — algebras of set of Q. We
say that this family is a filtration if

e for all t € T, we have that %, C .7,

e for all s <t that are elements of T, we have that ., C .%;.

Definition 34 (.%,,). Given a filtration as the one above, we define
Foo = V Fy, (12)
teT

that is the smallest o — algebra that contains every .%,.

Definition 35 (Adapted). Given a filtration as the one above, we say that X is adapted if
for all t € T', we have that X; is .%; — measurable.

Definition 36 (Progeressively Measurable). The S.P. X is Progressively Measurable if
for every t > 0, we have that

X|[O,t]><Q : ([Oat] X Qa %([07t]) ® ﬁt) — (E7g)
is B([0, t]) ® Z#; — measurable.

Definition 37 (Filtration right-C?). A filtration (%#).er is right-continuous if for all ¢ € T,
we have that

yt = N ﬁtJrﬁ.

e>0

Now, let 7: Q@ — [0, +00] be a r.r.v.
Definition 38 (Stopping Time). 7 is a stopping time if for all ¢ > 0, we have {7 < t} € Z#,.
In the future, we denote a stopping time with S.7T.

Definition 39 (c-algebra associated to a S.T.). If the function T above is a stopping time,
we define

Fr={Aec F | VteT, An{r<t}e F} (13)

as the o — algebra associated to the stopping time.

Definition 40.
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8.1 Null Sets
Let (2,.%#,P) be a probabilistic space.
Definition 41 (Negligible sets). Let us have N C Q. We say that NV is negligible if
inf{P(B): Be.#, NCB}=0.
that is there exists C' € .% such that N C C and P(C') = 0.
Definition 42 (Set of Negligible Sets). We define
N ={NCQ: N is negligible}.
If we want to emphasis the o — algebra and the probability, we can call N as Nz p).
Definition 43 (Complete o — algebra). We say that . is P-complete if Nz p C Z.
Now, let us have (%;);>¢ a filtration with respect to .Z.
Definition 44. We say that (.%;);>0 is complete if for all ¢ > 0,
Nizp C F.

Remark 23. In definition above, we just need that N zpy C .%.

Remark 24. It is important to note that .%; have to contain ./\f( #p) and not /\/( FiPl7,)-

8.1.1 Property of the Null Sets
Let us have (w,.#,P) a probabilistic space. Let N be the set of negligible sets.

Proposition 8.1. The following statements hold true.
I.NeNandAe ¥ — NNAeN.
2 NeNamdMeN = NUMeN and NNM e N.

Proof. Immediate. O

8.1.2 Completion of a Sigma-Algebra

Given our probabilistic space (€2,.%#,P), if the sigma algebra % is just complete we do
nothing. Otherwise, we want to built a complete filtration that is complete with respect to
P (we just say that we want a P — complete filtration).

We proceed in this way.

o We define Z¥ = o(F UN), with N == N5 p).
e We prove the following theorem.

Theorem 8.2. Let us have A C Q). We have that

Ac F¥ <= 3IB,Cc.F: BCACC and P(B) =P(0).
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We can extend P at P* : #T — [0, 1] such that if we have A and B and C' as above,
then P*(A) :=P(B) = P(C).

P* is well defined (it is independent of B and ('), and it is a probability on .#T.
Now we prove the following theorem

Theorem 8.3. Given .#, and F¥, and P and P* as above, we have that

/\/’(J@,P) = -N’(&?P,IP’*)-

We observe in the end that given A € % such that P*(A) = 0, then for all B C A,
we have that B € Z* and our sigma algebra .# is complete.

[ ]
Remark 25. We have that .# UN is a pi — system for .#. This is immediate because
— by definition, it generate. In fact o(F UN) = ZFF.
— It is closed by intersection. In fact for all A;, Ay € % and N;, N, € N, we have
(Al U Nl) ﬂ (AQ U Ng) - \(Al ﬂ AQ)IU\(AI ﬁ Nz) U (Nl ﬂ AQ) U (Nl ﬂ NZ)/
e7 pg
and this conclude.
8.2 Complete and Right Continuous Filtration
e Let us have (Q2,.7,P) a probabilistic space.
e Given a filtration (.%;);>o that is indexed in [0, +00), we want to build a right — C°
filtration.
e Let us have (%):>0 a filtration with respect to ..

Proposition 8.4. Let us define for allt > 0,

then
1.

2.

F = m G\

>0

(Z1)i>0 1s a filtration with respect to .7 .

(F)e> is right — C°.

Proof. The proof is simple.
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o 1.
Let us have 0 <t <t + k, with £ > 0 a real number. Then

Fi = ﬂ%+e = ﬂ G N ﬂ Gye C m Gte—ktk NP, m Gyriry = Pk

o 2.
We just need to observe that, for all t > 0,

ﬂ 3‘}4-5 = m ﬂ g(t-i—&)—l—v = ﬂ %+e+v = m b5 = Fy.

e>0 e0 \v>0 e>0,7>0 6>0

8.2.1 We make a right-continuous and complete filtration

e Now, given a filtration (¥4;);>0, we can have a complete, righ — CY filtration.

Indeed, let us have (€,.%,P) a probabilistic space.

Let us have (%):>0 a filtration with respect to ..
We define

Now ()i>0 is a complete filtration.

Let us define now

T a
T = ﬂ Fite
e>0

Now we have that (Z;);>¢ is right — C°. It is immediate that it is still complete.

8.2.2 Filtration associated to a Process

e Let us set T = [0,400) (but with slightly changing another interval is ok, even a
discrete set).

e Let us have (2,.7,P) a probability space, and let us have (F, &) a measurable space.
e et X: T xQ— EbealS.P.

Definition 45 (Filtration associated to a S.P.). We define the following filtrations,
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. We define as
FX =0 ({X,:s€T, and s <t})
and we define (ﬁtx)tzo the filtration generated by X.
. We define as
—X

F, :za(cg‘;tXU./\/'),

and we define (& ;X)tzo as the completion of the above filtration.
. We define as

—X
aX . a
F .—| |Jt+ea
e>0

and we define (Z)i>o the right continuous filtration that we obtain from the one

above.

So, in the end, we have that (.%;);>¢ is the filtration complete and right continuous
associated to X.

Definition 46. Given the

We want to prove a theorem that we use in the section of Martingales. Let (2,.%)

and (E, &) be two measurable spaces (domain and codomain of our S.P.), let (.%,)nen be a

filtration.

Lemma 8.5. Let X = (X,,)nen be a S.P. adapted to the filtration above. Let T : € — N=9
be a stopping time and we suppose that T < +o0o. Then X, is .F.-measurable.

Remark 26. (X;)(w) = Xr@)(w).

Proof. Let us have A € &. We need to prove that {X, € A} € .Z,.. We observe that X, is

well defined because 7 < +00. Let’s begin.

o {X, €A} e Z,.

+oo
(X, e A= {XveAIn{r =4k},
k:OA,—/ N
€T, CF oo €FLCF o

so the LHS belong to .Z,, because it is obtained by countable intersection and union.

o foralln >0, {X; € A}n{r <n} e .%,.

n

{(X;eAyn{r<n}e = J{Xs e AAn{r =k},

k=0 cz cz, €FLCTn

so the LHS belong to %, likewise before.

43



9 DMartingales

Let us have (Q,.%# P) a probabilistic space, let us have (E,&) = (R,*B(R)), and let us have
(F1)i>0 a filtration with respect to (2,.%). Let M = (M;);>0 a S.P.

Definition 47 (Martingale). We say that M is a Martingale (with respect to filtration
(:Z¢)i>0) if the following property hold true,

e M is adapted with respect to (%;)>o,
o forallt >0, My € Li(Q,.7,P).
e for all 0 < s <t that are in 7', we have that M, = E[M,;|.%].

if we have (<) in the third condition above, we have a sub — martingale, if we have (>)
we have a super — martingale.

Remark 27. Let us have ¢(t) := E[M,], for all t > 0. We observe that
e M marti. Then we have for all 0 < s < t that
p(s) = E[M,] = E[ E[M,[|.7,] | = E[M] = (1),
that is ¢ is a constant function.
e M sub-marti. Then ¢ is an increasing function.

e M super-marti. Then ¢ is a decreasing function.

In discrete time, that is we have (M, ),en, third condition can be replaced by
Vn €N, E[M,1|Z%,] = M, (14)

in fact, for example

E[Msol Zo] = El ElMoial Foi] | Z2] = ElMuni F) =M,
tower

Proposition 9.1 (Martingle and Convex Function). We have the following statements.
1. if
o (My)i>o is a martingle,

e v:R — R a convex function such that for all t > 0, we have El|p(M,)|] < +oo,

then (@(My))i>0 is a sub-martingle.
2. If

o (M;)i>o is a sub- martingle,
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e v : R — R a convez, increasing function such that for all t > 0, we have

then (p(M;))i>o is a sub-martingle.
Remark 28. We observe that, if
o (My)i>o is a sub-martingle
this does not imply that |M;| and M2 is a sub-martingle. But, if
o (M;)i>0 is a sub-martingle and for every ¢ > 0, we have that M; > 0 (a.s. 77777),

then M? is a sub-martingle.

Lemma 9.2 (Stopped Process). Let us suppose that
o (M, )nen is a marti (sub,super),

e 7 15 a stopping time.

Then (Mpar)nen @s a marti (sub,super).
Proof. The proof is a simple check given the following

Mpe = Mo+ Y Trspy(My — My_y)
k=1

o (r>k}={r<k-1}e P,

Theorem 9.3 (Optional Stopping Theorem). Let M =(M,,)enbe a process and T be a stop-
ping time that can have one of the following properties

a) T is bounded by an integer constant N > 1,
b) T is finite, and M is bounded.
Then we can state
1. M marti, a) orb) hold. Then M, is integrable, and E[M,] = E[M,].
2. M super-marti, a) or b) hold. Then E[M,] < E[M,].
3. M super-marti, M >0, 7 < 400 a.s. Then E[M,;] < E[M,].

4. M sub-marti, a) holds. Then E[M,] < E[My].
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Proof. Let us prove the above statements following the order.
1. Let us assume a).

o |M,| < Zivzo |My| = M, € L' because for all k, M, € L'.

o M, :N v = E[M,] = E[M,,y] (:) E[M,r0] = E[Mp]. In (x) we have
T< *

used that (M, a,), is a martingale because of Lemma (9.2) and Remark .

Let us assume b).

M. is integrable because M is bounded.

Vn € N, E[M,p,] = E[M,] as above.

lim, 100 M:pn = M, a.s. because 0 < 7 < 400 a.s.
E[Mo] = lim, E[ M;n, | = E[ lim, M, | = E[M,].

2. The proof is very similar to the one above.
3. We just need to use Fatou, that is (3.4)).
4. By our hypothesis, we have M,, < E[My|%#,] if n < N, and 7 < N a.s. So we have

N N

E[M,] =Y E[l-nM] =Y E[l;—n}M,] <
n=0 n=0

(A)

e Now we observe that
I{T:n}Mn < E[I{T:n}MN|§n] - E[I{TZTL}MTZ] < E[I{TZTL}MN]

e Now using the inequality above in the sum we obtain

N
(i ;E Iy My] = E[My].

Corollary 9.4. Let M = (M,),>0 be a S.P., let 71 and 1 be two stopping times. Then we
have the following statement.

1. M is a marti, 11 < 79, condition a) orb) in hold true for .
Then E[M.,|%.,] = M,,.

2. M is a sub-marti, Ty is bounded by an integer constant N. Then E[My|.%.] > M,,.

Proof. We prove the above statement following the order.
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1. e We have that 7y < 400 in either cases, a) or b), so by (8.5)), we have that M., is
Fr, — measurable.

e If we prove that for all A € .7, we have that E[M,,I,] = E[M,,14], then we can
conclude by uniqueness of the conditional mean.

e Let us set
T3:IA'T1—|—IAC'T2.

Clearly, if a) or b) holds for 7, then it holds for 73. Moreover, it is easy to show
that 73 is a stopping time.
e So, M marti and 75 and 73 are S.T and a) or b) holds for both = E[M,,| =

©.3)
E[MO] = E[Mm]'

e Now we observe that

M,

=14 M + 1o M,
e So if we take expectation both parts we obtain
E[M:,] = E[la - My, + Lyo - My,| = E[Mo] = E[My,] =
=E[ls- M, + l4c - M,,| = E[M, 14| =E[M,,14] = Thesis.

2. e We just need to prove that for all A € .7, we have E[MyI4] > E[M,, 14].
e Likewise before, by (9.3) we prove that E[M,,] < E[My].

e If we set , = N, we have the following identity
M, =1y -M; + I c- My

and from here the thesis is straightforward.

Now we prove a very important inequalities that hold for (discrete) martingles.
Theorem 9.5 (Doob’s Maximal Inequality). Let us have one of the following,

1. (M,), a martingle.

2. (M,), a positive sub — martingle.
Then for every N > 1 integer and X\ > 0, we have

APl maz [My| > Al < E[|Mn|I{ mag ma223] < E[|Mn].

1<n<N
Proof. We use the stopping theorem.

1. Let us have M a (discrete) martingle.
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e Let us set M* :== max |M,)|.
1<n<N

o Let us set MY = M,,n. We have that this is a martingle (1 = N is S.7T. plus
Lemma (9.2) ), and Mx* = 1@@1}:\{|Mé\7\

o Let usset A(w) == {n:n <N and |[MY(w)| > \}. Let us define

) {mz‘n(A(w)) if A#0,
N+1if A=0.

It is easy to show that 7 is a stopping time.
o It is immediate that {M* > A} = {r < N} € .Z,.
e Now, we have the following implication,

(MM, marti = (|MY|),, sub— marti

thanks to Lemma (9.1) and the fact that | - | is a convex function.

e Now, it is always true that
Marezzy < MY Tz
e Now, |M"| sub-marti and 7 < N + 1 implies thanks to Lemma (9.4) that
(MY <E[ Myl 7] = Lo | MY < ElTeon | My Z]
———
=My |=|My|

since what we have said about {M* > A} some point above.

e Now if we put together the inequalities that we have obtained and we take the
expectation both parts we obtain

AP(M™ > A) < E[[My[Ip->x] < E[[My]].

2. Now let us have a (discrete) positive sub — martingle. The prove is (almost) exactly
the same, because we can put the modulus function on MY for every n.

[
Now we give an easy lemma.

Lemma 9.6. Let X be a non-negative r.r.v. Then

+oo
E[X7] :/ pu T 'P[X > uldu.
0

Now we need a trivial estimate, but that is fundamental to understand the inequalities
in the next section.

Proposition 9.7 (Trivial Estimate). Let us have M = (M,,),>0 a S.P. that can be
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1. a martingale,
2. a positive sub-martingale.
Let us set

M = sup |M,].

" 0<m<n
Then for every p € (1,+00) and for every ng € N, we have that
E[(My,)"] < (n+ DE[| My ["],
that is My, € L <= M,, € L”.

Proof. We prove the proposition for martingles, then with slightly changes we can prove it
even for sub-martingales.

e Let us suppose that M is a martingale, and let us fix ng € N.
o If E[|M,,|P] = 400 there is nothing to prove, so let us suppose that it is < +o00.

e let us set p(x) = |z|?, for every x € R. We have that ¢ is convex because it is C! in
R, and it is increasing.

e Thanks to Proposition (9.1]), we have that (¢(M,)), = (|M,[?), is a sub-martingale.

e Since (|M,|P), is a sub — martingale, its mean-function is increasing, so for every
0 < m < ng we have

E[| My |P] < E[| My, |*).

e Then we can conclude with the following chain of inequalities,
M: )P < Z|M\P = E[(M;)"]<E Z\M\p < (ng + DE[| M, |7,

and this is the thesis.
O

Now we prove the Doob’s Inequality. We keep the notation that we used in Theorem.
Theorem 9.8. Let us have M = (M, )nen that can be

1. a martingle.

2. a positive sub-martingle.

Then, for every p > 1 and for every N > 1 integer, we have

Bi06)) < (S25) Bl
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Remark 29. We observe briefly that

(My)? = (maz [My|)" = maz ([My]").

1<n<N 1<n<N
Proof. We use the Trivial Estimate (9.7) and the trick (9.6).
e Firstly, if E[|Mx|P] = +o0o there is nothing to prove.

e Let us suppose then that E[|My|P] < +oo. Thanks to (9.7), we have that E[(MR)P] <
+00. We can suppose also that E[(M})P] > 0, otherwise the inequality is trivially true.

e Now, using the trick (9.7) we obtain
400
BOGY] = [ pe BOM > W <
0

+o0
< [ b My gl =
0

+oo
= / |MN| (/ pup_zl{u<M;f}du> d]P):
Q 0
My
:/|MN| / puP2du | dP =
Q 0

p * —1
=T\ M| (M) tdp =
Lo [ ayior)

D .\
= LRy | (M) <
p 1 e (p_1). 2 ,2=1
< EEHMNVO]P [ (M)

where the last inequality follow from Holder ( 1 = + + 221 ). Now if we divide for

]E[(Mj“v)p]l_%, we obtain the thesis.

1
p

9.1 Result in Continuous Time
Notation 1. We use the following notations,
* M7 = SUpte[O,THMt’-
* MM = Mg
* T — mMaxy—g, on |M,§n’T)|.
Now, we describe the setting.

o Let M = (M,;)>0 be a martingale.
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e Let T > 0 fixed.

o We observe that (M,gn’T)) k>0 is a discrete martingale, so we can use the theorem for
discrete martingale, in particular Doob.

e We need the following properties

M = lim (M) (15)

everywhere on Q) (or a.c. if the filtration is complete).
Theorem 9.9 (Maximal Inequality). Let us have
1. M a martingale,
2. M a positive sub-martingale.

Let us suppose that condition holds.
Then for every T' > 0 and A > 0, we have that

P(M7 > A) < SE[[Mz]].

> =

Remark 30. We remember (briefly) the theorem in the discrete time.
M = (M,)nen marti/positive sub — marti —>

1
VN > 1 and A >0, P(My > A) <E[Myl]5.

Proof. The proof follows the following steps.

e Let us have T' > 0 a positive real number.

Let A > 0 be a positive real number.

Let 0 < € < X be a real number. Let us set A\ .= XA —¢.

e Vn > 1 integer, let us set A, = {M(”’T)’* > M}
o If N =2" thanks to Doob Inequality we have
n 1
P(A,) < E[| M || —.
—— A1

Mt

We observe that A, C A, for every n, so we have that P(U,A,,) = lim, P(4,).

We claim that
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in fact, let us take w on the LHS. Then

Mi(w) lim M) > N\ + e =

—
Vv >0,3dng: n>ny = M(”’T)’*(w) > A +e—.

So, if ¥ = €, we obtain that for such ny we have
M(nO7T)7*(w> Z >\17
so we have that {M} > A\ +¢} C A,, CU,A,, as we wanted.

e So, we have the following inequalities,
1
P{M; > X\ +€}) <P(U,A,) =1limP(4,) < IEHMTH)\—
n 1

e If we substitute, we obtain that for every 0 < e < A

1
A—e€

P(M7 > (A =€) +¢) > E[|Mr]
—_———

A

So, by taking the limit ¢ — 0T, we obtain the thesis.

Theorem 9.10 (Doob Maximal Inequality). Let M be
1. a martingale,
2. a positive sub-martingale.
Let us suppose that
dp>1 sit. Vt >0, E[|M]P] < +o0.

and that Condition |15 hold. Then for every T > 0, we have that M} € LP, and the following
inequality hold

B0y < (25 ) B

Proof. We write the proof just for the martingale, the case of a positive sub-martingale is
analogous.

e Let us define

=Uyeees
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e Thanks to Doob maximal inequality , since (M, ,En’T)) k>0 1s a martingale (or positive
sub-marti), we have that

p
MXJSWEMthﬁhq=<;%J

where we have use as parameter N = 2". We observe that RHS < 400 because of our

hp.
e Now, we have that
— 0 < X, < X, for every n (it is immediate to see),
= Tim, X, = (lim, M) = (M;)” thanks to Condition .
So, by monotone convergence we have that

E[(M;)") = limE[X,).

e So, from the point above we deduce that
E|(M7)"] < q - E[|Mz|"],
and this is the thesis.
O

Theorem 9.11 (Stopping Theorem Continuous Time). Let us have M = (M;)¢>0 a S.P.

e 3 p>1 such that ¥t > 0 we have E[|M|’] < 4oc.

e M is a right — C° martingale.

e 7 is a bounded Stopping Time.
Then M, is integrable, and E[M,] = E[M,].
Proof. The proof uses and it is made by approximation of 7.

e We observe preliminary that M right — C° implies that holds true, so we can
apply Doob’s theorem above in continuous time.

e [Let ushave 7 < N —1 a.c. in €.
Now we can deduce that M, € £! because M, € LP. In fact,

EMMﬂSH(FWHMmﬂ=HMG4WSC%#HMM4W<+m
te[o,N—1

where we have used (9.10)).

e Let us define

+o00o
k+1
@) =D I g crctiny 5
k=0
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e [t is immediate that 7, is a stopping time for every n.

e We have moreover that 7,, — 7 from the right because for every w, we have

k+1 k 1
< _ < -
0<7(w)—71(w) < o 5% = on

e In addition, we obtain also that
1
To(w) = Th(w) — T7(w) + 7(w) < 2—n+(N—1) <1+N-1=N.

©3)

e So, (M i )k>o marti and 7, limited stopping time =" E[M,, ] = E[My], for every n.

Kk
2”
e Then, we have the following estimate that hold for every n,
|M7'n| S |M;<f|
Since M}, € LP C L' thanks to (9.10)), we have that the r.v. M, are dominated in L'.
e Then, since M is right continuous, we have that M, — M, if n — +o0.
e We can the conclude by dominated convergence, because we have

E[My) = E[M,,] = imE[M,,] = Eflim M,,] = E[M,],

and this is the thesis.

9.2 Doob Decomposition

Now we state and prove a theorem of decomposition for discrete sub-martingale.
Let us begin with a definition.

Definition 48. Let A = (A,,)n>0 be a S.P. in discrete time. We say that A is predictable
(wrt a filtration (%, )n>0) if

vneN, A, is — F,_1measurable.

Remark 31. There is a definition of predictable for S.P. in continuous time but it is more
complicated and we omit it.

Theorem 9.12 (Doob Decomposition). Let X be a sub-martingale in discrete time wrt a
filtration (Z,)n>0. Then there exist

o M = (M,),>0 a martingale, with My = 0.

o A= (A,)n>0 an increasing, predictable process (wrt (Fy,)n>0), with Ag = 0.
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such that for every n € N, we have X,, = Xo + M, + A,. Moreover, the decomposition is
unique, that is if we can find others M’ and A’ with the properties above, then M and M*
are indistinguishable, and the same hold for A and A‘.

Proof. The proof is simple, we just need to find a good decomposition.

e Let us define the following sequence of process.
- MO = 07
- Ml = Xl - E[Xllcgo}’
- Mn+1 =M, + Xn—i—l - E[Xn+1|yn]

Then, we are forced to define A, = X,, — Xy — M,,. Now, let us check that M and A
have the properties that we seek.

e M is a martingale. It is really simple.

— Adaptness is trivial because we have sum of .%,, measurable functions.
— Integrability is trivial for we have sum of integrable functions.

— Martingale property. We just need to write
E[M,11 — M,|Z,] = E[ X411 — E[X,11|-Z0]| %] = 0.
and this conclude.
e A have the properties.
— predictability wrt (%,)n>0. We have
A, =X, — M, =M, 1 —E[X,|Z, 1],

so it is %#,_; measurable because it is sum of .%,_; — measurable function.

— increasingness. For every n, we have
An—i—l = Xn+1 - Mn+1 - XO = E[Xn+1|ﬁn] - Mn - XO > Xn - Mn - XO = An

where in the inequality we used the sub — martingale property.

So we have the thesis.

e We observe that the A is increasing in the set where the sub-martingale property holds
with probability 1.

O
Now we can improve Corollary for discrete sub-martingale.

Corollary 9.13. Let us have the following setting,

o Let X = (X,)n>0 be a sub-martingale in discrete time (wrt a filtration (%,,)n>0)-
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Let 11 and 15 be bounded stopping time (wrt the same filtration for X ) such that 7 < 5.

Then

]E[XT2|97’1] Z XT17

and in particular we obtain

E[X,,] > E[X,,].

Proof. We use Theorem (9.12)) that we have just discover.

Since X is a sub-martingale, thanks to Theorem ({9.12]) we have that X = M + A, with
M a martingale and A a suitable increasing predictable process.

We observe preliminary that 7, < 75 implies that .%,, C .%., (easy to show,) so since

M., is F,, — measurable, it makes sense to compute E[M,,|.%,]. Idem for A,, and

X,
So, we have that

E[X72|£ZTJ = E[Mﬁ’yﬁ] + E[A‘rz|ﬁn]

Now, we have to estimate both the terms above. We have

— M is a martingale,
— 11 < 7y stopping times,

— 79 1s bounded.
So we can apply Corollary (9.4), and we have that E[M.,|.%,, ] = M,,.

Moreover, we have that A, > A, because 7, > 7y a.c. Furthermore, we have that A,
is #,, — measurable.

Then we can conclude that

E[X7'2|y7'1] Z Mﬁ +E[A7'1|g7'1] = XTl’
A
1

and this is the thesis. If we take expectation both part we obtain even the inequality
that we seek.

O
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9.3 Convergence for Sub-Martingale
9.3.1 Criterion of Convergence
e Let us have (x,), a sequence of real number.
e Let us define
—09=1 =0.
— For i > 0, let us define
oir1 =inf{n > 712, <a} 7y =inf{n >0 2z, > b}
Remark 32. inf(0) = +oc.
e We say that there is an upcrossing in [a, b] between o; and 7; if 7; < +00.
o We define v, == Card{i >1 : 7, < +o0}.
The following is a simple result of analisys.
Lemma 9.14. The following fact are equivalent,
1. (xn)n is convergent (to a limit | € RU{£o0}).
2. For every a < b real, we have that v, < +o00.
3. For every a < b rational, we have that v, < 400
Remark 33. We observe that if [a’, '] C [a,b], then v, < Va1

Proof. Exercise.

9.3.2 Doob upcrossing lemma

Now, let us turn to processes. Let (M,,), be a sub martingale in discrete time.
o Let us define

— op(w) = 1p(w) = 0. for every w € Q.
— For ¢ > 0, let us define

oir1(w) = inf{n > 7(w) : M (w) <a} 7i1(w) =inf{n > 0,41 (w) : My(w) > b}

e The r.r.v. above are all stopping times. The proof is a simple induction that lays
on the following lemma. Let us have (Q2,.%,P, (%,).>0) a filtered probabilistic space
and (E,B(F)) a metric space. Let us have also a S.P. (M,,) adapted wrt (.%,),, and

E — valued.
Lemma 9.15. Let us have 7 : Q — [0,4+00] a stopping time. Then
o(w) =inf{n > 7(w) : M,,(w) € B}

with B € B(E) is a stopping time.
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Proof. We just need to observe that for k € N,

{agk}zo {r=i}) U (M, € B}

Now, let us consider the random number of upcrossing.
Yap(w) = Card{i > 1: 1;(w) < +00}.

For what we have said in the subsubsection above, if 7,,b(w) is bounded for every
a € Qand b € Q with a < b, then we have that the sequence (M, (w)),, converges to a
limit finite or infinite.

Remark 34. We observe that
00 <170 <01 <71 <02<..0; <T; < Oj41...

and we can not have that o; and 7; are bounded from a constant independent of w for
some 7 > 1. Indeed, if it was true we would have

E[M:] <E[M,

Ui+1]'

since Theorem ((9.13)) holds true ( (M,,), is a sub-martingale and 7; < 0;,1 are bounded
stopping times ).

But on the same time, we would have

M,

o1 S a<b< M.,
so if we take expectation both parts we obtain a contradiction.
Now, let us define

Yop(w) = Card{i >1 : 7(w) < N},

that is the number of upcrossing before the instant N.

Now, let us set p(z) = (x — a)4 + a. This is a convex increasing function. Moreover,
we also have that

|o(@)] < laf + [x],

so it is immediate that (¢(M,)), is again a sub-martingale since Proposition (9.1)
holds true.
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e Now we ask ourselves which are the relation between the upcrossing starting and final
times that we have if we consider the r.v. (M,),, and (¢(M,)),. We discover that they
are the same, because it is immediate to show that

M, <a <= ¢(M,) <a,
M, >b < ¢(M,) >b.

Since they are the same, we do not distinguish between the upcrossing of M, and
P(M,).

Now we are ready to state the Doob's upcrossing lemma.

Lemma 9.16 (Doob Upcrossing Lemma). Let us have

o (M,)n>0 a sub-martingale.

e a < b two real numbers.

e N > 1 an integer.

Then we have the estimate

(b= a)E[yay] < E[(My —a)4]

Proof. The proof is divided by steps that simplify the dissertation.

1. First Step.

We omit the random element w when it is not necessary.

We set for simplicity M, = @(M,,).

If 1 <4 <Y, (we suppose 70y, (w) strictly positive) then by definition we have
M., — M,, > (b—a).

So, if we sum we obtain

We remember that i < Vé\fb implies that o; < 7, < N, and ¢Ad = min{c,d}. This
is a bad estimate because the sum depends upon the random variable vi\fb. We
want to put something deterministic, like V.

Let us set for the sake of simplicity & = ’Yé\,[b- Surely we have that 7, < N and
Tr+1 > N by definition, and we remember that

o0 <1< < <. <o, <71 <N

We ask ourselves what o1, can do. We can have
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— 0g+1 > N. Then for every ¢« > k, we have N < 0; < 7;. Then we have

N
+ § MT/\N a,/\N — E MT/\N o‘l/\N

ikt ~

— 011 < N. Then 7, < 01 < N < Tgy1, and

N
Z Mn/\N - 0'1/\N = Z MT AN — a'l/\N + M‘I‘k+1/\N M0k+l/\N +0 = <B>
p —_———  ——

My M0k+1

Now, we observe that for every n we have M, > a, so

MN - M0k+1

>a—a>0
and in conclusion (B) > (A4) > 7Y, (b — a).

e We are happy because we have obtained an estimate independent of the random
variable ’yé\fb, but that is just dependent upon N, that is a fixed constant.

2. Second Step.

e We simply deduce the following inequality that follows from the telescopic series,

MN - Mdl/\N

I
M =

<M0¢+1AN - MG&;/\N) :i: (MTZ'/\N> =

1

-
Il

I
WE

N
<M0'i+1/\N - MTZ'/\N) + Z <MTZ'/\N - Moi/\N) Z
i=1

1

.
I

WE

(M0i+1/\N - MTZ'/\N> + VéYb(b - a) :

J/

1

(.
Il

=(C)

In fact we observe that surely N < oy since k < N and N < 7341 < 0311 <
ON+1-

3. Third Step.

o We firstly observe that
— (Mn>n20 is a sub — martingale,
— AN <o, AN < N are two bounded stopping times,
implies that E[MU7;+1/\N - Mn/\N] > 0, since Lemma, holds true.

e We can also say that

My — Mgan = (My — a)y — (Mogan)+ < (My — a)4.
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e We remember that we have supposed always that ', (w) > 1, that is 7 (w) < +o0
(w was fixed). Moreover, if v}, (w) = 0, that is 71 (w) = 400, We can save ourselves
anyway, because an immediate count show us that

(O)w) =0< (My(w) —a)y,

So we have that (C')(w) < (My(w) — a)+ everywhere in €.

e Now, if we take expectation in what we had obtained in Step 2 we deduce imme-
diately by using what we said above that

(b — a)E[Y,] < E[(My — a)4].
and this is the thesis.

]

Now we are ready to give sufficient condition to have a.c. convergence of the sub-
martingale.

Theorem 9.17 (Doob Convergence Theorem). Let us have (M,), a sub-martingale. Let us
suppose that

sup{E[(M,)]} < +oo.

neN

Then we have that there exists Mo @ (Q, F) — (R, B(R)) measurable such that the sequence
of rorv. (M), converges a.c. to My, and the limit is integrable, that is My, € LY(Q, F,P).

Proof. The proof follows from the above one.

e We firstly observe that, since M is a sub-martingale, we have that

ilelg{ E[(Mn)+] } < +oo <= ilelg{ E[[M,]] } < 4oc.

In fact one arrow is obvious since (M), < |M|. The other is easy since we have the
equality || = 2(z), — z, so if we substitute M,, to = we obtain

E[| M|} < 2E[(M,)+] — E[M,] < 2E[(My)+] — E[My],
where in the last inequality we used that M is a sub-martingale.
e Now, let us enter in the core of the proof.

— Let us fica € Q and € Q with a < .
— Now, we have that for every N > 1 that

Elyap) (b — a) < E[(My — a)+] < E[(M,)4] +|a| < +00
and fyé\fb TN Yap, SO by monotone convergence we obtain
]E[’Va,b] < +OO,

and from this we deduce that 0 < v,;, < 400 a.c.
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— Now, let us set Nyp = {w: 7ap(w) < 400}, and let us set

N= (] N

a,beQ, a<b

Since for every a and b we have P(N,;) = 1, we have also that P(N) = 1.
— Now we just need to observe that, since (9.14) hold true, we have that

N ={w: Va <b rational, v,p(w) < +oo} ={w: I lim M,(w) € RU{£oo}},

so M, converges a.c. to the r.v. My (w) = Iy(w)(lim, M, (w)).

— In a nutshell, it is convenient to see that My, = lim, M, (it is surely measurable),
and that M, — My a.c.

o M, € LYQ,Z,P). We simply use Fatou,

E[ [Ms| | = E[ lim [M,| ] < HmE[ |M,| | <supE[ [M,]| ] < +oo,

So again M., € £, and | M| < +00 a.c.

9.4 Characterization Of Convergence for Martingale

Now we would like to characterize the convergence in mean £! for Martingale. We need
some results and a definition.

Definition 49 (Uniformly Integrable). Let X = (X;);c; be a family of r.v. We say that X
is uniformly integrable (U.L.) if

lim (Sug) {E[ |Xi’I{\Xi\2k} ]})

9.4.1 Family of U.L r.r.v.

Let us have (2,.7,P) a probabilistic space. Let X : Q@ — R be a r.r.v. with X € £! and let
us consider

S=(EX|G] | GC.F is ao— field ).
Lemma 9.18 (Family U.L). It holds true that S is U.1.

Proof. We just give a sketch of the proof.

e Let us fix G C .% a o — field and let us fix k£ a natural number.

e We define as Yy x == E[X|G] (a version of) the conditional expectation of X wrt G.
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e Now, we have

0

IN

E[ Yo,x Lo x 1243 ] <E [‘le{\YQ,XEk}] <
< ElX My, xismngxisvi] T EIXH gy, v sungxi<vm] <
X x5 vmy) + VEP([Yg x| > k) <
VEE[|Yg x|

< B[ X xpvml + ———— <

E[X]]
< E[|X|I + —.

X1 gem] + =

We have used the basic property of the conditional expectation and the Markov in-
equality.

E
E

IA

e We conclude because the last term vanishes thanks to dominated convergence and
because we have a sequence that goes to zero, and this is independent of the sigma-

filed G.

Theorem 9.19 (Vitali’s Convergence Theorem). Let X, be a sequence of r.v. that are
integrable, so X,, € L' and X € L. Then the following statements are equivalents

1. X, = X in L,
2. The following two conditions hold true,

o X, — X in probability.
o (X,)n is UL

Theorem 9.20 (Characterization of U.I. Martingale). Let us have M = (M,), a U.I.
martingale. Then

1. There exists Mo, € L s.t. M,, — My, a.c. and in L.
2. For every n > 1, we have M,, = E[M|-%,].
Proof. The proof is straightforward given the above results.

1. e Let us have K s.t. k > Ky implies that sup,,»q(E[| M|l >xy]) < 1.

e So, we can write that

E[[Xnl] = E[l...[Iyx. = ko)) + Bl 1x.1<K0)] < 1+ Ko.

So we have that sup,,» E[|X,|] < 4o0.

e Now, M is a martingale (so it is a sub-martingale) and the sup-condition hold
true, so by Theorem ((9.17) we have that M, — M., a.c, and M, € L.
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Now, M, — M, a.c. implies that M, — M, in probability, and with the fact
that M is U.I. we have by Theorem (9.19) that M, — M., in L.

We firstly observe that for every n, for every A € .%,,, we have that
E[MmIA] — E[MOOIA].

In fact, | M, — My|I4 < |M,, — M| that goes to zero in £!, so by comparison
we obtain that E[M,,[4] — E[My14] if m T 4.

Now, let us fix n. If we prove that for every A € .%, we have that
E[My14] = E[M,14].

we obtain the thesis, that is E[M|.%,] = M,.

This is simple because, since M is a martingale, for every m > n we obtain that
M, = E[M,,|-Z%,], so for every A € %, we have

E[Mp14] = E[My 4] = E[Moola] if m 1 +o0,

that is the thesis because the sequence become eventually constant.

Corollary 9.21 (Levi Corollary). Let us have the following setting.

o Let X € LY(Q,.Z,P) be arw. and let (%), be a filtration.

o Let us define for every n > 0 the r.v. M, = E[X|.Z,].

Then we have that M = (M,,), is a martingale, and M,, — E[X|Z ] a.c. and in L', with
Foo = 0(UnFy).

Proof. The proof follows in part from Theorem (9.20)) and later from Theorem (2.4)).

e [t is immediate to show that M is a martingale.

It is an exercise to show that M is U.I.
So by Theorem ((9.20) we have that M, — M., a.c. and in £!, and E[M|-Z,| = M,,.
We have to show that M, = E[X|F].

We firstly observe that M, is %, — measurable because it is defined in (9.17)) as lim
of Fo, — measurable function (in fact .%, C Z,, for every n).

We observe that F' = U,.%, is a m — system for o(F') because %, C %, for every n
(easy exercise).
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9.5

Now, let us have A € F. Then we have that A € .%,,, for some ny natural. So, if we
have n > ng, we have that A € .%,,, and we can write

E[X 4] = B[E[X|.F,] I4] = E[M14] = E[MsI4] if n 1 +oo
My

The convergence to E[M14] follows from the convergence in £! of M, to M, so we
have that E[My, 4] = E[X14] because the sequence become eventually constant.

Now, since F' is a m — system for o(F), we have that E[X14] = E[M,14] for every
A € Z,, thanks to a corollary of Theorem ({2.4)), that is E[X|Z ] = M.

]

Quadratic Variation For Martingale Definition

Let’s start with an observation

9.6

Let us have M = (M,,),, a martingale.

By (9.1)), we have that ((M,,)?), is a sub-martingale, so by (9.12)) we have that we can
find (M) = ((M),), an increasing predictable process that bring us to the decomposi-
ton.

Definition 50. We call the process (M), the quadratic variation of M.
We can deduce an explicit formula for (M), that is (M), = 0, and for every n > 1
(M), = E[(My)* = (Mi_y)|Fama] = ) E[(My — My—1)*| Fii],
k=1 k=1

where the last equality follows directly from a direct count.

Quadratic Variation and a.c. limit

Let us have M a discrete time martingale that is square integrable and let us have
(M) its quadratic variation.

We have that (M) is an a.c. increasing process, so there exists the limit of (M), (w)
a.c.

In particular we have that (M), 1 (M) a.c. and we have by monotone convergence

that E[(M),] T E[(M)].

Since (M,,)? = (My)? + N,, + (M), for every n > 0, and N is a martingale, we have
that E[(M,)?] = cost + E[(M),], so we obtain that

sup { E[(M,)?] } < +00 <= E[ (M), ] < +o0.
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9.7 Local Martingale

Definition 51 (Local Martingale). We say that M is a Local Martingale with respect to
(:Z¢)i>0 if the following properties hold true,

e M is adapted with respect to (%;)¢>o,
e there exists (7, )nen ..V such that

— T, is a stopping time for all n,
— Tn /‘ +OO7

— for all n € N, (Myar, )i>0 is a martingale.

9.8 (Quadratic Variation for Martingales
We use the following notation.

e Let us have T' > 0. We indicate as 7 a partition of the interval [0, 7], with 7 defined
as

T={0=to<t1 <teg<..<t,=T}

The size of a partition is defined as

|| = max [tg — tx_1].
1<k<n

e A sequence of partition (m,),en is nested if for all n € N, we have

T g Tp4-1-

If we fix a partition 7, we denote as ((M)]).cjo,7] the process such that

<M>;r = Z (Mti+1 - Mti>2 + (Mt - Mtk)zv

i t'H—l St

with k= max{j : t; <t}. The sum in this way is extended from 0 to k& — 1.

Given (X)i>0 a S.P., we define for all 7 > 0 the following

[ X ooz (W) = sup {[Xi(w)[}.

(The variable w can be omitted if it is not ambiguous).

Theorem 9.22 (Mega Theorem). Let us have (M;);>0 a continuous martingale wrt a filtra-
tion (Fi)i>0. Then

1. we can find (At)i>0 a continuous non-decreasing process, adapted wrt (F)i>o such that
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o for every T >0,

o for every sequence (m,)nen of nested partitions of [0, T] with |m,| — 0,
we have that for every € > 0,

P(|[(M)™ —Al| ;. >¢€)—=0if nt+oo,

that is (M)™ — A in probability, and this limit is independent of the partition.
2. Moreover, we have the following two properties,

o (M? — A0 is a martingale.
o [f (A})i>0 is another process such that
¥ (A{t)tzo is (yt)tzo — adapted,
* (A})i>0 1s continuous,
* (M2 — A)>o is a martingale,
" Ay =0,
then A and A" are indistinguishable.

Definition 52 (Quadratic Variation for Martingle). The process A found above is called
the quadratic variation of the martingle M, and it is denoted by (M) = ((M))i>0-

9.9 Semi-Martingale
9.9.1 BV Function
Let us denote as X the set of all the partitions of [a, b], that is
TeEY = m={a=ty <ty <ty <..<t,1<t,=>b}

for some n € N.

Definition 53 (BV Function). Let f : [a,b] — R be a function. We say that f is of Bounded
Variation (BV) if

sup &7 I (thn) = F(t)] § < oo,

TEY tpen

The following theorem hold true. Sooner or later we prove it.

Theorem 9.23. Let f : [a,b] — R be a function. Then the following statements are equiva-
lent,

1. fis BV.
2. There exist fi : [a,b] = R and f5 : [a,b] — R such that

e f1 and fy are non-decreasing.
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o [ =/fi—fa

Now we give a notion of BV for S.P.
e Let us have (Q,.7,P) and a probabilistic space.
e Let us have (R,B(R)).
e Let X :[0,+00) x Q@ — R be a S.P. We denote X as (X;)>o.
Definition 54 (BV for S.P.). Let us define, for all 0 < a < b < +o00.
N={weQ: V [a,b] C[0,+00), X|gpxiw i BV}
We say that X is BV is P(IV) = 1, that is its trajectory are a.c. BV functions.
Now we can give a new definition. Let us have a filtration (.%;);>o0.

Definition 55 (Semi-Martingale). We say that X is a semi — martingale (wrt filtration
(:Z1)e>0) if there exist

1. (M;)t>0 a local martingale,
2. (Vi)i>0 a BV process,

such that X; = M; +V;. We say that X is a continuous semi — martingale if M and V are
continuous.

Now we enunciate an important theorem that holds for semi — martingles.
Theorem 9.24. Let (Xi)i>0 a continuous semi-martingale. The we have the following facts.

1. The decomposition
Xy = Xo+ M +V;
where

e M, is a continuous local martingale such that My =0,

e V, is a continuous BV process such that Vo = 0,
1S UNLQUE.
2. The following is a statement on the ezistence of a limit (in probability).

o Let us fixt > 0.

o Let us consider (. )ken a sequence of partitions of [0,t] such that
*re={0=1ty <t < ..<t, =t}
lmel =sup{tizs —t; 0 i=0,..,n, — 1} — 0 when k 1T +o0.
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Then the following limits exist in probability (they are independent of the partitions)
and are equal,

ng—1 ng—1

im > X, — X P = lim > M, — M,
=0 =0

2

k—+oo 4 k—+o0 4

Definition 56. The limit quantity of the above theorem is denoted as
ne—1

<X>t = lim Z |Xti+1 — Xy,
1=0

k——+oo 4

2

i

and it is called the Quadratic Variation of X in [0,¢].

10 Brownian Motion

10.1 Gaussian Processes
Let T" be an arbitrary index set.

Definition 57. Let X = (X)ier be a real valued S.P. We say that X is Gaussian if
Vty, .., t, € T, we have that (Xi,,.., X3,) is a Gaussian Vector.

Let X = (X)ier be a Gaussian Process.
Definition 58. We can define
o E(X)(t) =m(t) = E[X,],
o Cov(X)(t,s) =C(t,s) = Cov(Xy, Xs), with s,t € T

Remark 35. We can even highlight the dependence of m and C' from the S.P, so we can call
these function myx and C'x.

Let (£2,.#,P) be a probabilistic space.

Proposition 10.1. Let X = (X})ier and (Yy)ier be two Gaussian S.P. If we have
o mx(t) =my(t) forallt €T,
o Cx(t,s) =Cy(t,s) forallt,s e T.

Then X andY have the same law.

Remark 36. The law of a S.P. is defined in .

Proof. The proof is made in this way.

e Because of Proposition (7.3)), we just need to check that X and Y have the same finite
dimensional distributions.
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e Let us have ¢ = (ty,..,t,) with ¢; € T for all 4, and t; = ¢; if, and only if i = j.

e Since we have that X7 and Y; are Gaussian Vectors, we have that their law is uniquely
determined by the vector of the mean and the matrix of covariance.

e It is a fast check to control that E[X;] = E[Y;] and Cov(X;) = Cov(Y;), so X7 and Y;

have the same law, because they have the same characteristic function.

]

Let T be a set.

Definition 59. Let C' : T'x T — R. We say that C is positive semi-definite if for every
n > 1, for all ¢y,..,t, € T, and for all (&, ..,&,) € R™, we have that

Z C(ti, t5)&&; = 0.
ij=1
Remark 37. In practice, let us have
o ty, ..ty €T, with (t1,...1,).

[ ] (51, 7571) E RTL

If we set
o (= (C(ti7tj))i,j:1,..,n'
o &= (&, 6)"

we have

(€)Cx(¢) = 0.

Remark 38. We remember that C' is symmetric if C(s,t) = C(t,s) forallt € T and s € T'.

Let T be a set of index.
Proposition 10.2 (Existence Gaussian Process). Let us have
e m:T — R,
o C:TxT — R, asymmetric, positive semi-definite function.

Then there ezists a Gaussian process X such that E(X)(t) = m(t) and Cov(X)(t,s) =
C(t,s), with E and Cov defined in (58).

Proof. ON WORK. O]
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10.2 Definitions

Let us set T' = [0, +00). Let (2,.%, (% )i>0,P) be a filtered probabilistic space. Let B :
T xQ— (R,B(R)) be a S.P. (areal one).

Definition 60 (Intrinsic Brownian Motion). We say that B is a (standard) Brownian
Motion (B.m. for friends) if

o P({w: By(w) =0}) =1.
e for all 0 < s < t, we have that B, — By ~ N(0,t — s).
e foralln >1, forall 0 <t; <t, <..<t,, we have that
B, By, — By, By, — By,, ..., Bi, — B, .
are independent random variables.
e B is a.c. continuous, as defined in (27)).

Remark 39. We remember that X ~ .. means "The random variable X has law ..”, and the
law of X is simply the probability Py.

Definition 61. A process that satisfy every condition but continuity of trajectory is called
Brownian Motion in Law.

Definition 62 (Wiener measure).

o Let (2,.%,(F)i>0,P) be a filtered probabilistic space.
o Let B: T xQ — (R,B(R)) be a S.P. (areal one).

Definition 63 (Bm with respect to a given Filtration.). We say that B is a (standard)
Brownian Motion (B.m. for friends), adapted with respect to filtration (.%;):>o if

o P({w: By(w) =0}) =1.

e for all 0 < s < t, we have that By — B; ~ N(0,t — s).

e for all 0 < s < t, the r.v. B, — B, is independent from .%,.
e B is a.c. continuous, as defined in .

Remark 40. We observe that, since B = (By);>0 is adapted, if we have 0 < s < t then we
have

e B, is .%; measurable,
e B, is Z, measurable and .%, C %, —> B, is .%, measurable.

Then B, — B, is .%; measurable.
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Let us have the previous setting.

Proposition 10.3. Let B be a S.P. that is a Bm according to Definition , with respect
to a given filtration (F:)i>0. Then B is a Bm according to .

Proof. The proof is not hard. We just need to prove that the increments are independent
because the other properties remain the same.

o Let 0 <ty <ty <...<t, €T be real numbers. We prove our thesis by induction.
o n=2.

— We have B, and By, — By,.

— We have that By, — By, is independent of .%#;, by our hypothesis, but o(By,) C Ft,
because B is adapted, so B, — By, is independent of o(B,), that is B, — By, are
independent.

o n>2

e B, — By, , is independent of .%; |, and By, , — By, ,,..., By, — By, By, are %,
measurable = B;, — B, , and B, , — By, ,,..., Bi, — By,, B, are independents.

by inductive hypothesis, we have that B;,, , —B,, ,,..., By, — By,, By, are independents.
Thanks to Corollary (2.12), we easily conclude.

]

Now we want to prove that Definition = Deﬁnition if we chose a proper
filtration.

Remark 41. Let X = (X})i>0 be a S.P. We recall that in Section ({8.2.2)) we have introduced
o the filtration (.#¥);0, where ZX = o(X,: 0 < s <),
e the filtration (?f()tz(), that is the completion of the above filtration,

e the filtration (.%;*) that is the right continuous filtration associated to the one above.
This is the filtration right — C° generated by the process.

Proposition 10.4 (Bm with respect to generated filtration). Let us have
e B = (B)=0 a Bm according to De finition (60)).
Then B is a Bm with respect to (ﬁtB)tzg, according to Definition @
Proof. The proof is this.
e B is adapted with respect to (%), by definition.

e The only non trivial property is the one on the independence. Let’s see.
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e Let us define

ﬂ{BSi €A} 0<5s5 <$9..<s,<s and A; € B[R) ;,

+oo
A= U A,
n=1

We say that A is a m — system for FP

— It is trivially closed by intersection and it contains €.

— It generate, that is o(A) = ﬁSB . In fact, we have

Vst 0<s<s 0(Bg;)) CA CA =

FP=c| |J o(B,) | Co(A) CZL.

s
0<s51<s

e Now, thanks to Corollary ([2.9 , since

a B
S’

— Ais a m — system for .F

— o(B; — By) is a ™ — system for itself.
If we prove that

VAl € O'(Bt — Bs) and VAQ € ./4 ,then ]P)(Al N AQ) = ]P)(Al)P(AQ) (16)

then we have that B; — B, and Z SB are independent, as we wanted.

e We proceed in this way.

— Let us fix A € A.

So we have that A = ()_{Bs, € A}, with 0 < 57 < 55 < ... < s, < s and
A; € B(R) for all 1.

— Now, we have that B;,, By, — Bs,, .., Bs
we have assumed Definition .

— Thanks to Corollary (2.12)), we have that (if we indicate as By, = 0),

— B, _,, By — B are independent since

n

o(B,— Bs) L \/ — Si1)
( s1, B

51’ "’Bsn - Bsnfl)\ — ,

*
~

= O-(B81’ BSQ? "7B5n)’

where in (%) we have used what we have discover with Corollary (5.6)) (it is easy
to fix the detail, given the Corollary).
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— Now, A € 0(By,, Bs,, .., Bs, ), so for all B € 0(B; — B,) we have that
P(AN B) =P(A)P(B),
and this is what we wanted to obtain the thesis, because we have obtained (|16)).

O

Corollary 10.5 (Bm with respect to the completion of the filtration above.). Let us have

B = (By)i=0 a Bm according to De finition (60).

Then B is a Bm with respect to (?f)tzo, according to De finition (@)

Proof. The proof uses Proposition (2.16]). As before we just need to check the independence

condition.

Let us have s < ¢, and and let us consider o(B; — By) and ?5. We want to show that
they are independent.

we remember that ?5 = o(FLPUN), with N = Nz p) the P—null sets with respect
to .#.

~B . FB
Thanks to Remark , we know that .Z;” UN is a m — system for % .

Now we want to use (2.16) with Z =P UN and X = B, — B,.

So, let us have A € .Z2 and N € N. Then, for all ¢ € C%(R) we have

E[@(Bt - BS)]AUN] - E[QD(Bt - BS)]A] + E[@(Bt - BS)‘[N\A] -
Elp(B: — Bs)Ia] = Elp(B; — B,)|P(A) = E[p(B; — B,)[P(AUN).

We have used that o(B; — B;) and Z, are independents thanks to the Proposition
above, and N\ A € N (so the integral on it is equal to zero) and P(A) = P(AU N).

We have concluded because we have the hypothesis of Proposition ([2.16}).
[

Corollary 10.6 (Bm with respect to the completion Right-C? filtration above.). Let us have

B = (By)i>0 a Bm according to De finition .

Then B is a Bm with respect to (F)i>0, according to Definition (@)

Proof. The proof is not hard and it follows from the previous one by using an argument of
continuity.

e As before, we just need to check the independence condition.

e So, let us have s < t. We want to show that B; — B, L.ZP and we remember that

—=B
B __
FE =N Z oy,
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We want to use Proposition (2.16)) with Z = .%, and X = B; — B,, that is we want to
prove that

VAe FP, Vo e CLR), Elp(B; — B,)l] = E[p(B; — B,)|P(A).

So, let us have A € ZP and p € CL(R).

We have for all € > 0 such that s+¢ < t, that A € ?ig, so thanks to Corollary above

we have that (B; — Bgye) L ?SBJFE, and this implies that

Elp(Br — Baye)la] = E[p(B; — By |P(A).

Now, we have
+
— @(By — Bsie)1a 29 ©(By — Bs)I4 a.s. w € Q, because B is a continuous process
and ¢ is a continuous function.

— for all € > 0, we have that ¢(B; — Bsi)I4 is dominated by a constant.

Analogously, we have that

+
— @(By — Bgye) 29 ©(By — Bs) a.s. w € €, because B is a continuous process and
© is a continuous function.

— for all € > 0, we have that ¢(B; — Bs.) is dominated by a constant.

So thanks to dominated convergence, we have that

e—0T

Elp(B; —|’Bs+e)IA] — E[o(B; — Bg)14]
Elo(B, — By )P(A) % Elp(B; — B,)|P(A),

so the limit have to be equal, that is what we wanted to prove.

]

Remark 42 (Property of Markov Process). We have that the Bm ha centered and indepen-
dents increments so it is a Martingle and a Markov Process.

11 Stochastic Integral

We would like to generalize the notion of integrals using as integrator the Brownian motion.
I don’t know why we are doing this yet, but when I discover it I write something more in
this introuduction.
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11.1 Why it is difficult to define SI

It is hard to define the Stochastic Integrals (S.I.) with respect to Bm because it is not stable
by approximation. In fact one can imagine to define S.I. starting by the Rieman Integrals,
that is

e We have a function f : [a,b] — R that we want to integrate.

e We have a function g : [a,b] — R that we want to use as integrator, that is ¢ has the
role of identity in Rieman Integral.

e So, let us have m, = {t, < ... < t,,} a partition of [a, b], so we have that {; = a and
t, =b.

e we can define

i
L

X, = F@)(g(tiz1) — g(t)), ti € [ti,tiv1) a generic point.

i

I
=)

e Now we take the sup when we vary the partition and the points.

e We hope that this limit , if the partition is dense enough, does not depend upon the
partition itself and the point that we choose.

e unfortunately, if g is a B,,, we have many problem.

11.1.1 Proof that our definition does not work with Bm

e Let us have B = (2, .%#,P, (F)i>0) a standard Bm (that is according to Definition

63))-
e Let us consider the dyadic partition
T = {t5, ., ton },
and for all k € {0,1,...,2"}, we define t} = 2%

e Let us consider the three following approximation,

2" —1
X, =Y B (Bui—By)
k=0
2" —1
Yo= D Bua(Bya —By)
k=0
2n—1
1 X,+Y,
Zn=§ (B&%—B%)(B%—B;): 5
k=0

Now we prove the following claim.
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Proposition 11.1. The sequence (X,,)n>0 converges in L*(2) to a rv. X, and we have
that E[X ] = 0.

Proof. Let us define A} := Bu — B .

e Now we write in a proper way X, .1 — X,,. We have

antl.o—1 2m—1
X, - X, = E B« (Bkyi — B k) — Bk (Brr — B ).
n+1 n 2n+1( on Tl 2n+1) Tn( on Tn)
k=0 —_—— k=0 —_—
Ant Ay
e Now we observe that
on.2—1
Xps1= » B A=
n+1 2n’fH k
k=0
on—1 on 1
= B o An+1 -+ Boki1 An+1
E : S2hr B2k E , 204} S2k+1
k=0 k=0

e Now we substitute and with a little algebra we obtain

2" —1

o n+l n n+1

Xpp1 — X = E B%(Azk Af) + Bijﬁﬁ A2k+1
k=0

e Now we observe that

AZ = A = (Bagy = B s ) = (Bigy — B) = A7

on+1 2n 2n

o If we substitute again, we obtain

2n—1 2n -1
X, — X, = § A" (Bogss — B ok ) = § CAREL AL
n+1 n 2k+1( Sl 72n+1) 2k+172k
k=0 N ~~ - k=0
ARt

e [t is immediate to see that {Ag,j 1A§,j +11}k:0,..,2"—1 are orthogonal, so we have that

271

n n 1

E[(Xn1 — Xn)2] = Z = E[(A2i::1>2(A2;1)2] =4- on
k=0

We have used that Ay LAZF! | and they are N(0, 5:+).

e Now it is an easy exercise to show that (X, ).eny is a Cauchy sequence and thus it
converges in L*(Q) to X, € L*(9).

]
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Now we make the math with the sequence (Y;,),>0.

Proposition 11.2. The sequence (Y,)n>0 converges in L*(Q) to a r.v. Y such that X, #
Y., = B}.

Proof. The proof lays on the above Proposition. We use the same notations that we have
used in that proposition.

e We firstly observe that for all m € N, we have

om_q
Y, = Biii(Brin — B ) =
27” 27” 2m
k=0 \W—/
AR
27”_1 2'"L_1
= BQLHAZL_'_E (B’;ﬁll_BQLm) ZL:
k=0 k=0 “>——~——
AR
om_1
_ m\2
=Xm + § (AF)
k=0
e S0, we can write
on_q
_ n\2
Y, =X, + E (A})7,
k=0

antl_q

Y1 = Xop + Z (AFH)?
k=0

and this implies that

antl_q 2n—1
Yn+1 - Yn - Xn+1 - Xn + Z (AZ+1)2 - ( 2)27
k=0 k=0
and now it is easy to show that
ontl_1 2n—1
Z (AZ+1)2 - (AZ)2 = 2(Xy — Xpt1),
k=0 k=0

so we conclude that
Yn+1 - Yn - Xn - Xn+17
for all n € N.

e From the last equality above, we have that (Y,),>o is a Cauchy sequence in L*(12),
because || Yoi1 — Yol = | Xni1 — Xal|, so we can find Y, € L*(Q) that is the limit of
the sequence.

78



e Now, we have that for all n € N9,

Vo=Yo+ ) (Vi =Yim) =Yo— Y (X;— X;01) = Yo + Xo — X,

j=1 Jj=1
Now, if we take the limit as n T oo, we obtain that

and the last equality holds true by trivial substitution.

Remark 43. We have obtained in particular that X, # Y.

Now let’s see what is the behaviour of Z.
Proposition 11.3. The sequence (Z,), converges to 5B}.

Proof. We just need to observe that for every n,

Yo+ X, Xo+Yy 1,
prm— = = Bl?

Z, ==
2 2 2

so it trivially converges to the limit that we claimed. O]

11.2 Definition of Stochastic Integral (for E.P.)

We want the uniqueness of the limit, so we have to operate some ”choice” in the definition
of the integral wrt (with respect to) a Bm.

Setting 2. We put ourselves in the following setting.
* Let us have B = (Q, #, P, (%)i>0) a Bm, with (% ):>0 a generic filtration.

* Let X @ (Q,.F) — (RO+®) B(R)®O+2)) be a S.P.

Definition 64 (Elementary Process). We say that X = (X;);>o is an Elementary Process
(E.P.) if

e X is adapted with respect to (:#)s>o,
e There exist

— 0=t <ty <..<t, asequence of real numbers, with n > 2,
— X4y, -, X3, a sequence of rv. with Xy, € M((Q, %), (R, B(R)),
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such that for all ¢ > 0, we have

n—1
Xt = ZXtiI[tiati+1)(t)'
i=1
Remark 44. We observe that the sequence of real numbers have to be fixed for every w € €2,
that is this sequence is independent of w.

Definition 65 (Square Integrable E.P.). Given X a E.P. according to Definition (64)), we
say that X is square integrable if for all = 1,...,n, we have that

E[X]] < +o0

Remark 45. Let us have a € R, and X an E.P. Starting by this, we can represent X by
adding the point a. In fact,

e if a € {t,..,t,} there is nothing to do.

e Otherwise, we have that a € (¢, tx41), for some index k. In this case we can write

n—1
Xy = ZXtiI[ti,ti-y-l)(t) = ZXti][tthl)(t) + th[[tkikﬂ) .
i=1 itk T

Now, we can break (A) in the following way,
(A) - thl[tk,a) + thj[a,tk+1)'

Since %, C .%,, we have that X, is .%, — measurable, so if we reorganize the point
and the r.v. we obtain a new representation of X with the set of points {t1, .., t,}U{a}.
We remark that the r.v. that correspond to a is Xy, .

e if a > t,, we simply observe that

Xt — Xt + O . I[tn,a)-

Definition 66 (Stochastic Integral for E.P.). Let us have
e X an elementary process as in Definition (64)).

e 0 <a <btwo real numbers.

We define the Stochastic Integral (S.1.) of X (with respect to the fixed Bm of Setting (2))
as

n—1

b
/ XSst = Z Xti<B(a\/ti+1)/\b - B(thi)/\b)' (17)
a =1
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11.2.1 Good Definition of SI (To improve the notation of this subsubsection)

In this moment, we don’t know if we have given a good definition for our S.1. of E.P. because
different representation could give different values of Formula (17). Given X an E.P. such
that

n—1
Xt = ZXti[[ti,t¢+1)(t)
=1

we denote in this little subsubsection as S(X,7) the r.v. f; X.dB,, with X = (Xy,,.., Xs,)
and = (t1,..,t,), and we denote as X (X,?) the E.P., because we want to highlight the
random variables and the partition. We can do even more, we can define S(X,#) even if
t; > 0. This is useful to simplify the notation (that is already very heavy).

We have to prove that

n—1
Xy = Z Xtij[ti,tiJrl Z pz Pit1) = S(Y, E) = S(?, 2_9)
i=1
Our strategy is this. We prove that the integrals does not change if we add one point, then

we use a lemma that we are going to prove.

Lemma 11.4 (Equality Lemma). Let X = X(X,t) = (Y,p) be an E.P. Let us suppose that
t=p. Then X =Y, that is for all k, X, =Y,

P

Proof. We have that for all k =1,..,n —1,

ZXt Tyt (tk) = ZYt Lyt () = Y.

Lemma 11.5 (Addition Lemma). Let us have the following setting.
o Let X = X(X,%) be an E.P. witht = (t1,..,t,) and X = (X4, .., Xy, ,) and n > 2.
o Letc € R, withc >0, and ¢ # ty,..,t, and ¢ < t,.
o Let us consider m the highest index such that t,, < ¢ < t,41.
o Let us consider i = (1, .., tm, €, tmi1s s ) and X = (X, s Xts Xts Xtirs -0 X))
Then S(X,1) = S(X,1).
Proof. We have that

5(77 z) :S<<Xt17 s Xtm71)7 (tlv s tm))+
S(Xtm7 (tma tm-i—l))“‘
S(<Xm+17 ) th)a (tm—‘rh ) tn))

81



Now it is immediate (trivial substitution) to show that

S(Xi,,, (tmytms1)) = S(Xy,,, (tm, 0) + S( X, (¢, tms1)) = S((Xy,,, Xt (Emy € tmg1))-

Now, if we substitute we obtain

(Xtm+17' 7th) ( m+1; --7tn>> =

and this is the thesis. O
Remark 46. It is immediate that, if we have ¢ > t,,, then
SU( Xy X)), (b1, oy t)) = S((Xyy, oy Xoy 1, 0), (B2, -y Ty €©)).
From the above lemmas it follows immediately that

Theorem 11.6. Formula 1s well defined, that is it does not depend from the represen-
tation.

Proof. Let us have X = X(X,%) = X(Y,p) our usual E.P. with two representations. From
now till the end of the proof, every union must be intended as an ordered union (for example,
(1,3,4)U(2,3) = (1,2,3,4)). We have that

X=XX,1)=XX,tU{p})=..=X(X,TUp).
but it is also true that
X=X(Y,p)=X(Y1,pu{t:}) =..= X(X,pUd),
so thanks to Lemma , we have that X =Y. Now, it is straightforward that

S(X,1)=S(X,pul) =S(Y,puUl) = S(Y,p).

11.3 Property of S.I.

Remark 47. What does the above definition mean? We simply have the following cases. Let
us fix an index k.

1.t <tgy1 <a<b Then

mazx min
(@ V tgy1)) Nb=aNb=a,
max

(a Vv tk)m/i\nb:a/\b:a.

So we have to compute B, — B,, that is equal to 0.
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. agbétk < tgt1- Then

ma

(@™ tip1) A b=t Ab=b,
(@ V t) Ab=t, Ab=Db.
So we have to compute B, — By, that is equal to 0.

Lt <a<tpy < b. Then

(a V tk-l—l) AN b:tk+1/\b=tk+1,

max

(a V tk)n}l\nb:a/\b:a.
So we have to compute By, , — B,.

a <ty <b<tpy. Then

ma

(@ V tes1) A b=t Ab=D,

ma

(@™ 1) N b =ty Ab =ty
So we have to compute By, — By, .
ca <ty <tpi1 <b. Then
(a hva tht1) N b = L1 AN b= tpq,
(@™ 1) A b=ty Ab =ty
So we have to compute By, ,, — By, .

We observe that the significant points are those in [a, b].

Remark 48. We want to simplify Formula , by eliminating case 3 and 4 in the above

remark. We proceed in this way.

e We have X our E.P. We have associated to it a sequence 0 = t;, < t; < ...

points and a sequence Xy, .., X;, of r.v.

e We add by following Remark the numbers a and b to the sequence {t;}. Now

Formula that defines S.I. become

b
/ Xsst = Z Xti(BtH—l - Btz)

1:a<t;<t;11<b

We observe that one of the point is a, and another one is b.

Lemma 11.7 (Splitting Formula). Let X be an E.P. and let us consider the S.1. fab XdBs.

Let us have ¢ € R such that a < ¢ <b. Then

b c b
/XSdBS:/ XSst—i—/ X, dB;.
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Proof. The proof is easy and it’s done by adding to the partition the points a and b and
c. O

Remark 49. We can define
Jop={1€{l,.,n}  a<t; <t <b},
and in this way, we have

b
/ XsdBS - Z Xti(Bti.H - Btz)

iEJa,b

Lemma 11.8 (Linearity). Let X and Y be E.P. and let 0 < a < b and let A € R Then
b b b
/ (X, +Y,)dB, = / X,dB, + / Y,dB,,

b b
/ (AX.)dB, = \( / X.dB.)
Proof. The proof is immediate if we represent X and Y with the same partition, and this is
always possible, so we do not write every detail. O
11.3.1 Ito isometry for E.P.

Proposition 11.9 (Ito Isometry for E.P.). Let X = (X});>0 be an square integrable process.
Then the following facts hold true.

1. The r.v. f: X,dB, € L*(Q), that is it has first and second moment finite.

/abXSdBS
E (/:Xsst>2 :/abE[(Xs)z]ds.

Proof. We firstly prove that our S.I. belong to L?*(f2), so it has first e second moment well
defined.

e We denote for every index 4, the variable A; = By, | — B;,. We observe that A; L%,
by the properties of our Bm.

2.

E = 0.

e First of all, we compute the following
2

2
(/bXSdBS> =1 Y XA =) (XA +2 Y X AX A

i€Jap i€Jap 1,5 € Jabyi<]

We have to prove that every term is integrable that is it belong to L'(€2).
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e We remember that, if X € L}(Q) and Y € L'(Q2) and X LY, then XY € L'(Q).

e S0, let us consider ¢ € Jgp,.
Thanks to our hypothesis we have that X;, € L*(Q) for every i. But then
X, € L*(Q) = (X3,)? € LY(Q),
Ai S LQ(Q) — (AZ)Q € LI(Q)
XtZJ—Az — (XtZ')QJ—(Ai)z;
where the last implication holds true because Xy, is .%#;, — measurable. Now we can

conclude that (X;,)?(A;)? € LY(9Q).

e On the other and, let us consider i, j € J, 3, with ¢ < j. So we have t; < t;,41 < t;, and
we have

Xy, is Fy, C© Fy; — measurable,

A; = By, — By, F,,, € F, —measurable.

So the product A;X;, is ﬁtj — measurable, and we proved some lines above that
A Xy, € L*(Q).

e Now, we have that

XA € L*(), and it is F; — measurable,
X, € L*(Q), and it is F, — measurable.

Then we can conclude that X; X; A; € LY(Q), and it is Fy, — measurable. (It is well
known that X,V € [? = XY € L').

e In the end, we have that

Xy, Xy, A € LYQ), and it is F, — measurable,
Aj e’ (Q),
Aj LT,

So we can conclude that A; X, X;,A; € L'(2), as we wanted to prove.

Now we know that f; X,dB, has first and second moments finite, so we can compute them.

b
/ XdBy

e For the second moment, we just need to compute the following.

E = Z E[Xti}E[BtiJrl - Bti] =0

i€Jap

E[(Xe,)*(A:)*] = EIXZIE[(A)*] = E[XE] (tir1 — ta),
——

=0
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So we have that

: </b XSdBS) B Z E[(X¢,)?](tigr — i) =

1€Ja b

S [ B

ZEJa b
Now, we observe that for all s € [t;,¢;11), we have
E[(X.)?] = E[(X,,)?],

so if we substitute above we obtain

S [ () = [ 3 BIOGP g o)is = [ BIOG a5

i€Jap @ i€dap

and this is the thesis.

We can improve the above result.

Proposition 11.10 (Ito Isometry for E.P. Improved). Let X = (X})i>0 be a square integrable
E.P. The following facts hold true.

1.

t
E / X,dB,|Z,

t 2 t
E (/ erBT> |Z,| =E /(Xr)erL%].

Proof. The proof is a little bit tricky with respect to the above one because we do not know
that some r.v. are measurable with respect .%;, but we can save ourselves.

e Let us denote as Jyp == {i:s <t; <t;1 <t}

e We remember that

with Al = Bti+1 — Bt

i

e We denote fst X,dB, as [ X (this is simply a notation).
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e From Ito Isometry, we know that [ X is square integrable, so the conditional expecta-
tion is well defined both ([ X) and ([ X)?

e Let us compute the first conditional expectatoin. We have

(/X) |3§] = Z E[X, A;|.Z,].

ZGJS,T

E

if every term of the above sum is zero, we conclude. This is true because of the followin
trick,

E[X,AdZ) = E[ E[X, Al | 7] = BIX.EALF)1F] = EIX,EA]|F)] =

tower A LTy, -0

We have use moreover thar Xy, is .%;, — measurable, and that for all i, we have that
Fs C Fy,.

e Now let us compute the second conditional expectation. We have

/ X)? () (A AF)+2 Y XX AMN|F.

zEJé t 1€J5,4,1<]

e If we can compute the single elements, we complete easily. We have
E[(Xy,)*(A0)*1 7] = E[(X,)’E[(A0)*)|F] = E[(X0,)*[Fe(tin — ti)-

We have used the tower property with .%;,, then that A; 1.%; and in the end that
E[A;| %] = E[A)].

On the other and, we obtain for ¢ < j that

=0

where we have used the tower property wrt .7, and that A; 1.7, .
If we put everything together we obtain

BI( [ 20212 =B 3 (4Pt — 1|7 B[S / (X0 Tt ()| 7] =

ZEJ .t Zert

| / 3 (X (1017 = B[ ()

a ’LEJ.s t a

and this conclude. O
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Corollary 11.11. Let X = (X})i>0 be a square integrable process. Then
t t
M, ::/ X,dB; and N; := Mf —/ des
0 0

are martingle wrt (with respect to) the Brownian Filtration () in Setting (9).

Proof. We firstly consider M, then N; but it is all really easy. We begin remembering that
Vt Z 0, Xt — ZXti][tiyti+l)(t)
i=1

for some n > 2, and X;, a .%#;, — measurable r.v.

e We have for every t > 0 that

Mt = Z Xti(BtiJrl - Bti)7

i€Jo,t
so adaptness is immediate.
e We have thanks to Proposition ((11.9)) (Ito Isometry) that M, is integrable for every t.

e [t remain to prove the martingles property, but this is just an immediate application

of Proposition (11.10)) and the splitting formula ([11.7]), because we have
t
E[M, — M.|7,) = E[/ X,dB,| ] =0,

so we have that M; is a martingle.
Now we prove the same result for N;.
o It is immediate that IV, is adapted wrt (%), (we can write explicitly who is [ (X,)2ds).

e Thanks to ((11.9)), we have that M? is integrable for every ¢, so we just need to check
that [)(X,)?ds is integrable. This is true thanks to Fubini’ theorem. In fact

E[ /0 X2ds] = /0 E[(X,)2]ds = E[(M,)?] < +oc.

e Now we have to prove the martingles equality. We have

E[N,%.] = E[(M,)* / (X, )2dr| 7] =

NPy

= E[(M,)? — /S(XT)erL%] — E[/ (X,)%ds| 7]
0 s (A

N
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By Proposition (11.10) we have E[[(X,)2ds|.Z,] = E[(M; — M,)?|.%,], so if we substi-
tute we obtain

iﬁwmyifumwgwwmm—mﬂ%]
(A4)

= —(M,)? — / X,.dr + E2M,M,|.%,] =
0 (B)

Now we have proved some lines above that M, is a martingle, so E[M,|.%] = M, and
if we substitue we obtain

= — /Xdr—i—Q /Xdr—
(B)

So we have the thesis.

11.4 TIto Integrals
o Let B = (B)i>0 = (0,7, (Z%)>0,P) be a Bm.
e Let us consider (R, B(R)).
o Let X :[0,4+00) x 2 - R be a S.P.
Definition 67. We denote as M%(a, b) the set of S.P. X = (X;);>0 such that
1. X is progressively measurable in [a,b]. (Definition [36).
2. B[[*(X;)%dl] < +oo.
Remark 50. We observe that the hypotheses of Fubini’s theorem hold true, in fact
o X progressively measurable = X|ap)xq is B([a,b]) ® F, — measurable.
e (X)? is always positive.

So we can write that

b b
SYRCORTE /[ DR | Bl an

2
[x07]] 2

where £ denote the Lebesgue measure of [a, b].

More generally, the following proposition holds.

e Let us have (F,B(FE)) a topological space (but in my opinion metric is more under-
standable).
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e Let us have X = (Q,.F, (%1)>0,P) an (E,B(FE)) — S.P.
Proposition 11.12. If
o X is adapted (wrt (F)i>0),
o X is right (or left) continuous (everywhere, not only a.c.).
Then X is progressively measurable (Definition (36])).
Remark 51. We have that
{square integrable E.P.} C M3(a,b).

In fact E.P. are right continuous everywhere (wrt the Brownian — Filtration).

Remark 52. We can define on M3(a,b) the following scalar product,
b
(X,Y)ype = E / X.Yuds].

Remark 53. We denote as || X||,,, = ((X, X))z, that is

XI5, =B( | (X.7as)

In this exact moment, THIS IS NOT A NORM because we have not identified two r.v. that
are equal a.c.

Remark 54. We could make the identification with the following equivalence relation. For
all X € M%(a,b) and Y € M%(a,b),

b
X2V e [X =Y. = E[/ (X, — Y,)2ds)]
Though it would be nice, we don’t follow this convention, every element is in
relation just with itself.
Theorem 11.13 (Approximation Theorem in M3). Let (X;)i>0 € M3(a,b) be a S.P. Then

e There is (X™),>1 a sequence of E.P. such that

— for all n, we have that X™ € M%(a,b),
_ H X _ x®

— 0 ifn T +o0.
M

e We can find even a sequence of continuous processes that converges to X in Mz(a,b).

Proof. We do not prove this theorem (so this is not a proof). O
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Remark 55. More general, if we have a sequence (X™),cy of elements of M3(a,b) that
converges to an element of X € M3(a,b), we write that

X () mEee x
M3 (ah)

We do not write n — 400 or the space M3(a,b) if it is clear what we are saying.

Now, we introduce this notation to simplify the following theorems. We remember that we
are always in Setting , so if we speak about €2 and .# we know what we are referring to.

e We denote as E'P the set of all the elementary processes.
e Now, let us fix 0 < a <b.

e We define the following function,
b
0: EP — L*(Q,F,P), o(X):= / X,dBs,

that is we associate to every E'P its SI, that we remember briefly it is the following
Xy = ZXti[[thtiH)(t) = SO(X) = Z Xti(Bti+1 - Bti)
i=1 i€Jap

For more detail, see De finition . We note that, since Linearity of ST (Lemma
(11.8)), we have that o(X +Y) = ¢o(X) + ¢(Y).

e We observe that Ito Isometry (Proposition ((11.9)) become, thanks also to Remark ([50)),
b
2
Bl (0] = e[ =11 = [ 1XIs s

Now we are ready to enunciate and prove the theorem that also defines the Ito Integral.
Proposition 11.14. Let us have

o (X™), a sequence of E.P. in M3(a,b),

o X € M3(a,b),
and let us suppose that X — X in M%(a,b). Then

1. the sequence (p(X™)), is Cauchy in L*(Q, Z,P).

2. If (Y™),, is another sequence of E.P. such that Y™ — X, then

lim (X ™) = lim (Y ™).

Proof. We prove first point 1.and then point 2.

91



1. We have for all m € N and n € N that
W%XM»W%XW> :W%XW_XWO

and this implies immediately that (¢(X™)) is Cauchy in L*(Q,.7,P).

fxo-x)
L2 L2 M

2. We have, for all n € N that

o (x0) - ()

and this permit us to conclude.

)

2
MB

_ HX(R) _y®
L2

<|lx® - x|, +[r -]
w3 w3

]

Remark 56. So, given the proposition above, we can extend ¢ to a new function ¢ defined
in this way,

¢ Mi(a,b) — L*(Q, F,P), $(X) = limp(X™),

with (X (™) a sequence that converges to X in M3. We observe that @|zp = . From now
on, we make no difference between ¢ and .

Definition 68 (Stochastic Integral in M%). Given X € MP, we define p(X) the Stochastic
Integral (S.1.) of X (wrt the fixed Bm in Setting (2)).

Remark 57. Given X € M,, we have that X is a measurable function, but ¢(X) is a class
of equivalence of measurable function, so expression like ¢ (X )(w) make no sense.

11.5 Property of SI
Theorem 11.15 (Ito Isometry in M3(a,b)). Let us have X € M3. Then

o IfT >0, we have

T
E[[ X,dB] =0,
0
T

Bl X.aB.)) -] / (X.)%ds].

e More generally, if 0 < s <t <T, we have

t

E[| X,dB,] =0,
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e Moreover,
. t
M, = / X,dB,, and N, = (M,)* — / (X,)*ds,
0 0

are martingles wrt (F;)i>o-

Proof. Da fare. ]

Remark 58. If it is not obvious the interval of integration in fab XsdBg, we denote it as
Spa,b(X ).

Remark 59. Let us have X,Y € M2(0,T). Then by Ito Isometry and the polarization
formula (cool name)

(X+Y)?— (X -Y)? =4XY

we obtain

T
4X,Y )z = 4]E[/ XY, =
0

=X+ Y —1X =Y} =
=[le(X + Y. = e = V)| =
= 4(p(X), p(Y)) r2.

So the Ito Isometry conserves the scalar products.

11.5.1 Continuous Version of S.I.

e We have the following family of class of equivalence { fot XsdBs, te[0,T]}.
e We would like to find a S.P. M = (M;):>o that has the following properties,

1. For every t > 0, we have that M, € fg X.dB,.

2. M is a.c. continuous.

One day we find it. Now We give this result without proof.

11.6 More general class of processes which we want to integrate

Let us have B = (2, #,P, (%#;)1>0). Let us have 0 < a < b, and let us have (X;);>0 a S.P.
Definition 69. We say that a X € A%(a,b) if

e X is progressively measurable,

o P({w: [’ X,(w)ds < +00}) = 1.

Definition 70 (Convergence in A%(a,b)). Let us suppose to have the following setting.

93



e Let us have (X)), a sequence of S.P. in A%(a,b).

e Let us have X € A%(a,b).
We have that X — X in A%(a,b) if

P ({w lim HX(")(w) - X(w)‘ LQ(@)}) ~1.

with

HXM(M) - X(w)’

L2(a,b)

Remark 60. WE DO NOT CONSIDER A%(a,b) AS A CLASS OF EQUIVALENCE
CLASSES, EVEN THOUGH WE COULD DO SO. In this case the relation would
be

b
X =Y in A(a,b) < / (X (w) = Yy(w))? < 40 a.5. w € Q.

Theorem 11.16 (Approximation Theorem). Let us have X = (X;);>0 € A%(a,b). Then
o We can find (X™),, a sequence of E.P. such that X™ — X in A%(a,b).

e We can find a sequence of continuous processes tha converges to X in A%(a,b).

Proof. 1t is just a technical lemma, so we do not prove this. O]

Now we want to prove a crucial lemma that we use to define the S.I. of a function in

A%(a,b).
Lemma 11.17. Let X be an E.P. Then for every e > 0 and p > 0, we have

b b
IP’<|/ XSdBS|Ze>§IP’</ deszp>+ﬁ2.
a a €

Proof. The proof follow the following steps.

e Let us define
b b
A= {/ X2%ds > p}, so that A° = {/ X2ds < p}.
Moreover, let us set

b
B = {|/ X,dBs| > €}.

e We have the simple estimate
P(B) =P(BNA)+P(BNA°) <P(A) + P(Bn A°).
If we prove that P(B N AY) < 4, we finish.
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