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1 Notation

A little section of notation that we used in all these notes.

• M((Ω,F ), (E,E )) := {f : (Ω,F ) → (E,E ) measurable }. If the sigma algebras are
clear, we indicate this set as M(Ω, E).
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2 General

Let Ω be a set, let F be a σ-algebra of P(Ω), and let P be a probability measure on F .

Definition 1 (Probability Space). (Ω,F ,P) is a probability space.

Definition 2 (Measurable Space). (Ω,F ) is a measurable space.

Let E be a Topological Space (So we have the Open Sets).

Definition 3 (Borelian Sets). B(E) is the littlest σ-algebra that contains the open sets.

Let Y : Ω→ E be a function, with (E,E ) a measurable space.

Definition 4 (Aleatory Variable). Y is an aleatory variable, or a random variable (r.v.), if
Y is measurable, that is

∀A ∈ E , Y −1(A) := {Y ∈ A} ∈ F

If we define

Y −1(E ) := {Y −1(A)|A ∈ E }

we can write definition (4) as Y −1(E ) ⊂ F . We sometimes indicate the σ−algebrbas saying
that Y is (F ,E )−measurable, or if it is clear just as Y is F −measurable.

Definition 5 (Law of a r.v). Let X : Ω→ E a r.v. We define the Law of X as the probability
PX , defined as follow for all A ∈ E .

PX(A) := P(X−1(A)).

Definition 6 (Real Random Variable). Y is a real random variable (r.r.v.) if E = R, and
E = B(R).

Definition 7 (Generated σ − algebra). Let Ω be a set, and let I ⊂ P(Ω) be a class of set
of Ω. We define as σ(I) as the σ − algebra generated by I, that is

σ(I) :=
⋂
γ∈Γ

γ, Γ := {γ | γ is a σ − algebra, γ ⊃ I}

that is σ(I) is the smallest σ − algebra that contains I.

Definition 8 (Product σ− algebra). Let (Ω,F ) and (E,E ) be two measurable spaces. We
define product σ − algebra as the smallest σ − algebra that contains the rectangles, that is

E ⊗F := σ
(
{A×B| A ∈ E , B ∈ F}

)
.

Let (Ω,F ) and (E,E ) be two measurable spaces, and let X : (Ω,F )→ (E,E ) be a r.v.
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Proposition 2.1. X−1(E ) is a σ − algebra.

Proof. Easy check.

Definition 9 (σ − algebra generated by a r.v.). We define the X−1(E ) above as the σ −
algebra generated by the r.v, and we denote it as σ(X).

Remark 1. We observe that σ(X) is the smallest σ − algebra that make X measurable.

Definition 10 (Union σ− algebra). Let Ω be a set and let (Fi)i∈I a family of σ− algebras
of Ω indexed by a set I. We define the smallest σ − algebras that contains every Fi as

∨
i∈I

Fi := σ

⋃
i∈I

Fi

 .

Now, we want to write down a trivial fact, but it may be useful in some observation.

• Let (Ω,F ) and (E,E ) and (T, T ) be measurable spaces.

• Let us have X and Y measurable function defined in this way,

(Ω,F )
X→ (E,E )

Y→ (T, T )

• Let us consider Y ◦X.

Proposition 2.2 (Trivial fact on σ − algebra of r.v.). We have that σ(Y ◦X) ⊆ σ(X).

Proof. Let us have A ∈ σ(Y ◦X). Then we have that we can find B ∈ T such that

A = (Y ◦X)−1(B) = X−1(Y −1(B)) ∈ σ(X)

and we have finished.

Corollary 2.3 (Second trivial fact on σ−algebras of r.v.). Let us suppose that Y is invert-
ible, and its inverse (that we call Z) is measurable. Then σ(Y ◦X) = σ(X).

Proof. We just need to use Proposition (2.2). We have

σ(Y ◦X) ⊆ σ(X) = σ(Z ◦ (Y ◦X)) ⊆ σ(Y ◦X),

and this is the thesis.
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2.1 Independence

Let (Ω,F ,P) a fixed probability space.

Definition 11 (Independence of Events). Let A ∈ F and B ∈ F be two events. We say
that they are independent if

P(A ∩B) = P(A) · P(B).

Let F1, ...,Fn be σ − algebras, and we suppose that Fi ⊂ F for all i.

Definition 12 (Independence of σ−algebras). The σ−algebras F1, ..,Fn are independent
if for all A1 ∈ F1, ..., An ∈ Fn, we have that

P

 n⋂
i=1

Ai

 =
n∏
i=1

P(Ai).

Remark 2. If we have A ∈ F , then σ(A) = {A,Ac,Ω, ∅}

Definition 13. The events A1 ∈ F , .., An ∈ F are independents if the σ − algebras
σ(A1), .., σ(An) are independents.

Let Xi : (Ω,F )→ (E,E ) be r.v for i = 1, .., n, and let P be a probability on (Ω,F ).

Definition 14 (Independence of r.v.). We say that the random variables X1, .., Xn are
independent if σ(X1), .., σ(Xn) are independent.

2.2 Monotone Class Theorem and Its Consequences

Theorem 2.4 (Monotone Class Theorem). Let Ω be a set, let I ⊂ P(Ω) such that

• Ω ∈ I,

• A,B ∈ I =⇒ A ∩B ∈ I.

Let M⊃ I such that

a) ∀n ∈ N we have An ∈M , An ⊆ An+1 =⇒
⋃+∞
n=0An ∈M.

b) A,B ∈M and B ⊆ A =⇒ (A \B) ∈M.

c) M is minimal, that is, if G is another class such that G ⊇ I, and G has the properties
a) and b), then M⊆ G.

Then M is a σ − algebra, and M = σ(I).

Remark 3. This is a really simple but at the same time really important remark, because is
the key to prove many corollaries of (2.4).

I ⊆ A ⊆ P(Ω), A respects a) and b) of (2.4) =⇒ σ(I) ⊆ A.
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The class I of (2.4) is really special, so we give it a special name.

Definition 15 (π−system). Let I ⊆ P(Ω) be a class of sets. We say that I is a π−system
if

• Ω ∈ I,

• A,B ∈ I =⇒ (A ∩B) ∈ I.

If a σ − algebra F is given and σ(I) = F , then we say that I is a π − system for F .

Remark 4. From the definition above, it follows directly that a finite intersection of elements
of I belongs to I (this property is called stability by intersection).

Let (Ω,F ,P) be a probabilistic space, and let Q be another probability on the same space.

Corollary 2.5. If P and Q coincides on a π− system for F , then P coincides to Q on F .

Proof. This is a standard strategy, so we write it just one time.

• Let I be a π − system for F . We observe that we just need that I is stable for
intersection, because otherwise, since P(Ω) = Q(Ω), we can take I ∪ {Ω}.

• Let us set A := {A ∈ F | P(A) = Q(A)}. We observe that I ⊆ A ⊆ F .

• Since I is a π − system, if A respects condition a) and b) of (2.4), then we have that
F = σ(I) ⊆ A ⊆ F , so we have the equality. Let’s check.

• a). Let us have Ai ∈ A for all i ∈ N, and let us suppose that Ai ⊆ Ai+i for all i. Let
us set A :=

⋃+∞
i=0 Ai. We have

P(A) = lim
n→+∞

P(An) = lim
n→+∞

Q(An) = Q(A) =⇒ A ∈ A.

We have used the continuity of probability and that An ∈ A for all n, so condition a)
is true.

• b). Let us have A ∈ A and B ∈ A, with B ⊆ A. We can write

P(A \B) = P(A)− P(B) = Q(A)−Q(A) = Q(A \B) =⇒ (A \B) ∈ A,

so even condition b) holds true.

• Since we have check that a) and b) hold true, we have that A = F , and this is the
thesis.

Let (Ω,F ) and (E,E ) be two measurable spaces.

6



Definition 16. C ∈ E ⊗F . We define Cx as

Cx := {y ∈ F |(x, y) ∈ C} = πF (C ∩ ({x} × F )).

Corollary 2.6. For every C ∈ E ⊗F , for every x ∈ E, we have that Cx ∈ F .

Let (Ω,F ) and (E,E ) be two measurable space and let X : (Ω,F )→ (E,E ) be a function.

Proposition 2.7. Let D ⊆ E a family of subset of E, and let us suppose that

• σ(D) = E ,

• ∀A ∈ D, we have that X−1(A) ∈ F .

Then X is F −measurable, that is σ(X) ⊆ F .

Proof. We can not apply directly the standard strategy because D is not a π − system in
general. This is not a big problem, because given D we can define a π − system for E . Let
us set

L := {A ∈ E | ∃A1, ..., An ∈ D s.t. A =
n⋂
i=1

Ai} ∪ {Ω}.

It is easy to show that this is a π − system, that D ⊆ L and X−1(L) ⊆ F . Now we can
follow the standard strategy, that is an easy check.

Let (Ω,F ) and (E,E ) be two measurable space and let X : (Ω,F )→ (E,E ) be a function.
We remember that X is σ(X)−measurable by definition.

Proposition 2.8. Let I ⊆ E be a π − system for E . Then X−1(I) is a π − system for
σ(X).

Proof. The proof is an easy check that we sketch.

• σ(X−1(I)) = σ(X), that is X−1(I) generate σ(X). Indeed, we just need to consider

A := {A ∈ E | X−1(A) ∈ σ(X−1(I))}.

We have that I ⊆ A, and we can verify that A verify the usual condition, so we have
the searched equality.

• X−1(I) is a π − system. We have

– Ω ∈ X−1(I). We just observe that Ω = X−1(E).

– A,B ∈ X−1(I). Then

A ∩B = X−1(C) ∩X−1(D) = X−1(C ∩D) ∈ X−1(I),

where C and D are elements of I, so their intersection belong to I. We have used
the powerful property of the counter-images.
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Now we want to enunciate a criterion to establish if a finite number of σ-algebras are inde-
pendent. Let’s begin with two sigma − algebras. Let (Ω,F ,P) a fixed probability space.
Let F1 ⊆ F and F2 ⊆ F be two sigma− algebras.

Proposition 2.9. Let us have I1 ⊆ F1 that is a π − system for F1 and I2 ⊆ F2 that is a
π − system for F2. Let us suppose that

∀A1 ∈ I1, ∀A2 ∈ I2, P(A1 ∩ A2) = P(A1)P(A2). (1)

Then F1 and F2 are independents, that is equality (1) holds true for all A1 ∈ F1 and for
all A2 ∈ F2.

Remark 5. As before, we just need that I1 and I2 were stable by intersection, because we
can increase I1 and I2 by adding {Ω}.

Proof. The proof is simple, let us see.

• Let us set A := {A ∈ F1| ∀B ∈ I2, P(A ∩ B) = P(A)P(B)}. We want to check if A
has condition a) and b) of (2.4), so by remembering Remark (3) we conclude.

a) Obvious.

b) A,C ∈ A and C ⊆ A. Then for all B ∈ I2

P((A \ C) ∩B) = P((A ∩B) \ (C ∩B)) = P(A ∩B)− P(C ∩B) =

P(A)P(B)− P(C)P(B) = (P(A)− P(C))P(B) = P(A \ C)P(B) =⇒ (A \ C) ∈ A.

So, we have that I1 ⊆ A ⊆ F1 =⇒ F1 = σ(I1) ⊆ A ⊆ F1, and this implies the
equality.

• Let us set A2 := {A ∈ F2| ∀B ∈ F1, P(A ∩ B) = P(A)P(B)}. The proof that
A2 = F2 is equal to the one above.

Lemma 2.10. Let us have

• F1, ..,Fn σ − algebras, contained in a bigger σ − algebra F .

• for all i, Ii is a π − system for Fi,

• let us define G :=
∨n
i=1 Fi.

Then

L := {A ∈ G| there exist A1 ∈ I1, ..., An ∈ In s.t. A =
n⋂
i=1

Ai}

is a π − system for G.
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Proof. We just check that L has the property of a π − system for G.

• L generate, that is σ(L) = G.

– Clearly, σ(L) ⊆ G.

– for all i, Ii ⊆ L =⇒ Fi ⊆ σ(L) =⇒ G = σ(
⋃n
i=1 Fi) ⊆ σ(L), and this

conclude.

• L is a π − system.

– Clearly, Ω ∈ L (we simply take Ai = Ω).

– A,B ∈ L. Then A =
⋂n
i=1Ai and B =

⋂n
i=1Bi, with Ai ∈ Ii and Bi ∈ Ii for all

i. Then

A ∩B =
n⋂
i=1

Ai ∩Bi︸ ︷︷ ︸
∈Ii

 ∈ L
and Ai ∩Bi ∈ Ii because Ii is closed by intersection.

With this last check we just have concluded.

Corollary 2.11 (general criterion of independence). Let us have

• F1, ..,Fn σ − algebras, contained in a bigger σ − algebra F .

• for all i, we have Ii a π − system for Fi,

• let us suppose that

∀Ai ∈ Ii, P

 ⋂
1≤i≤n

Ai

 =
∏

1≤i≤n

P(Ai). (2)

Then

1. Fn is independent of
∨n−1
i=1 Fi.

2. F1, ..,Fn are independent.

Proof. We prove this corollary by induction.

• n = 2. This is just (2.9).

• n > 2.

– Let us define G :=
∨n−1
i=1 Fi. By (2.10), we have that

L := {A ∈ G| there exist A1 ∈ I1, ..., An−1 ∈ In−1 s.t. A =
n−1⋂
i=1

Ai}

is a π − system for G. Now we want to prove G and Fn are independent.
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– We use again (2.9). We have In a π − system for Fn and L a π − system for G.
We have ∀An ∈ In and B ∈ L

P(An ∩B) = P

An ∩ n−1⋂
i=1

Ai︸︷︷︸
∈Ii

 =
∏

1≤i≤n

P(Ai) = P(An)
∏

1≤i≤n−1

P(Ai) =︸︷︷︸
(∗)

= P(An)P

n−1⋂
i=1

Ai

 = P(An)P(B),

where in (∗) we have used (2) with An = Ω. So for our criterion (2.9), Fn and G
are independents, that is

∀A ∈ Fn, ∀B ∈ G, P(A ∩B) = P(A)P(B).

– Now, let us set B :=
⋂n−1
i=1 Ai, with Ai ∈ Fi. So B ∈ G, and by inductive

hypothesis, we have that

P

n−1⋂
i=1

Ai

 =
n−1∏
i=1

P(Ai).

We conclude observing that for all An ∈ Fn

P

 n⋂
i=1

Ai

 = P(An ∩B) = P(An)P(B) =
n∏
i=1

P(Ai)

and this is the thesis.

Now we have the following criterion,

Corollary 2.12. Let us have n ≥ 2 integer, and let us have

• F1, ..,Fn that are σ − algebras, contained in a bigger σ − algebra F .

• F1, ..,Fn−1 are independent σ − algebras.

Then the following are equivalent,

1. Fn is independent of
∨n−1
i=1 Fi,

2. F1, ..,Fn are independent.

Proof. Let us define

G :=
n−1∨
i=1

Fi.

Let’s see.
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• 1) =⇒ 2).

Let A1 ∈ F1, ..., An ∈ Fn be sets. Then we have

P

An ∩ (
n−1⋂
i=1

Ai)︸ ︷︷ ︸
∈G

 = P(An)P

n−1⋂
i=1

Ai

 =︸︷︷︸
(∗)

n∏
i=1

P(Ai),

Where in (∗) we have used that F1, ...,Fn−1 are independents, and the equality above
is the definition of independence.

• 2) =⇒ 1).

We have that

– for all i = 1, .., n, the σ − algebra Fi is a π − system for Fi.

– for all Ai ∈ Fi, equality (2) hold since F1, ..,Fn are independents.

So by Corollary (2.11), we have that Fn is independent of G , and this is the thesis.

2.2.1 Sigma Algebras Of R.V. and Independence

Now we write some corollaries of the theorems of the above section.

Let us have (E,E ) a measurable space, and let n ≥ 1 be an integer.

Corollary 2.13. Let us consider

• (En,
⊗

n E ) the product space with the product sigma algebra.

• Let I be a π − system for E .
Then

G := {×ni=1Bi : Bi ∈ I} = In.

is a π − system for
⊗

n E

Proof. The proof is simple and follow from Corollary (2.10).

• We have that by definition

⊗
n

E =
n∨
i=1

σ(pi),

with pi : En → E such that p(e1, .., en) = ei the canonical projection. In fact, the
product σ − algebra is the littlest σ − algebra such that the canonical projection are
measurable.
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• Now, we have that

– σ(p1), .., σ(pn) ⊆
⊗

n E are sigma algebras,

– for all i, we have I is a π − system for E =⇒ p−1(I) is a π − system for σ(pi),
thanks to Corollary (2.8).

So we have that

G :=
{
∩ni=1Ai : Ai ∈ p−1

i (I)
}

is a pi−system for
⊗

n E , and this is the thesis because every element of G is a product
between elements of I.

2.3 Product Probability

Let us have (F,F ,Q) and (E,E ,P), that are two probabilistic space. We would like a
probability R, which we denote with P⊗Q, on the space (E × F,E ⊗F ) such that for all
A ∈ F and B ∈ E , we have

(P⊗Q)(A×B) = P(A)Q(B).

Clearly, if such probability exists, it is unique.

Proposition 2.14. Let us have f : E × F → R a measurable function such that f ≥ 0.
Then

1. ∀x ∈ E the function fx : F → R such that fx(y) := f(x, y) is F −measurable.

2. The function g : E → R such that g(x) :=
∫
F
fx(y)dQ(y) is E −measurable.

Proof. Let us prove first 1. and after 2.

1. • f(x, y) = IC(x, y) with C ∈ E ⊗F .

Because of (2.6), we have that the section Cx ∈ F , and it is straightforward to
show that for all x ∈ E fixed, IC(x, y) = ICx(y) = fx(y), so fx is F −measurable.
• If f is a linear combination of indicator function (that is a simple function), we

conclude by linearity.

• f measurable, f ≥ 0. We can find a sequence of simple function (fn)n∈N such
that fn ↑ f , so we can conclude because f = supn(fn), that is F −measurable if
x is fixed.

2. • f(x, y) = IA×B(x, y), with A ∈ F and B ∈ E . We have that fx(y) = IA(x)IB(y),
so

g(x) =

∫
F

fx(y)dQ(y) = IA(x)Q(B),

that is E −measurable.

12



• We define A := {C ∈ E ⊗F |
∫
F
IC(x, y) dQ(y) is E − measurable}, and we

prove thanks to (2.4) that A = E ⊗F .

• Thanks to linearity, we extend the above result to f simple.

• If f is measurable, positive, we find a sequence of simple, increasing function that
approximate f and we conclude by Beppo Levi.

2.3.1 Independence thanks to Product Probability

• Let us have (Ω,F ,P) a probability space.

• Let X : (Ω,F )→ (E1,E1) and Y : (Ω,F )→ (E2,E2) be two r.v.

• We can consider the function (X, Y ) : (Ω,F )→ (E1 × E2,E1 ⊗ E2), such that

(X, Y )(ω) = (X(ω), Y (ω)).

• All these function have a law, that are respectively PX and PY and P(X,Y ).

• We observe that we can consider (E1,E1,PX) and (E2,E2,PY ) as probabilistic space,
and we can build the probability space (E1 × E2,E1 ⊗ E2,PX ⊗ PY ).

Lemma 2.15. X and Y are independent ⇐⇒ P(X,Y ) = PX ⊗ PY .

Proof. We see first one implication, then the another.

• X and Y are independent.

We observe that E × F is a π − system for E ⊗ F . Because of our hypothesis,
P(X,Y ) = PX ⊗ PY on E ×F , so they are equal on E ⊗F thanks to (2.5).

• P(X,Y ) = PX ⊗ PY .

We just need to observe that {(X, Y ) ∈ A× B} = {X ∈ A, Y ∈ B}, and the thesis is
straightforward if we evaluated the identity in A×B ∈ E ×F .

Remark 6. Of course, the argument is the same, even if we have a finite number (say n) of
random variable.

2.4 Other Independence Criterion

2.4.1 Independence if we have a condition for every C 0 Bounded function

Let us have (Ω,F ,P) a probabilistic space, and let us have (R,B(R)) Let X : Ω→ R be a
r.r.v, and let us have G ⊆ F a σ − algebra.

13



Proposition 2.16. Let us suppose that ∀A ∈ I, and ∀ϕ ∈ C0
B(R) (continuous and bounded

real functions) we have that

E[(ϕ ◦X) · IA] = E[ϕ ◦X]E[IA]︸ ︷︷ ︸
P(A)

, (3)

with I a π − system for G. Then X and G are independent, that is σ(X) and G are
independent.

Proof. We just need to prove that given A ∈ I for all B ∈ B(R) we have that

P
(
{X ∈ B} ∩ A

)
= P(X ∈ B)P(A).

because I is a π − system for G, and σ(X) is a π − system for itself, thanks to (2.9).

• Our strategy is to pass from the continuous and bounded functions to the indicator
function of a π − system of B(R), then thanks to (2.4) we pass to the Borel of R, so
we have the thesis if we take the indicator function of such sets.

• Now, let us fix A ∈ I.

• We define

A = { (−∞, x] : x ∈ R} ∪ {R}.

We remember that B(R) = σ({open set of R}) = σ(A).

• It is immediate that A is stable by finite intersection, so it is a π − system for B(R).

• Let us test formula (3) on the sets of A, that is we want to see if (3) holds true with
ϕ = IB, with B ∈ A.

• If ϕ = IR, then (3) is trivially true because ϕ ∈ C0
B(R).

• We suppose now ϕ = I(−∞,b], with b ∈ R.

• Let us define

ϕn(x) := I(−∞,b](x) + I(b,b+ 1
n

] ·
[
n(b− x) + 1

]
.

that is

ϕn(x) =


1 if x ≤ b

−nx+ nb+ 1 if b < x ≤ b+ 1
n

0 if x > b+ 1
n
.

It is immediate that ϕn is a bounded continuous function and, and ϕn

n→+∞︷︸︸︷→ ϕ point-
wise.

14



• So, we have that

∀ω ∈ Ω, ϕn(X(ω))
n→+∞︷︸︸︷→ ϕ(X(ω)),

and since |ϕn ◦X| ≤ IΩ ∈ L1(Ω), we have that

E[ϕn ◦X]
n→+∞︷︸︸︷→ E[ϕ ◦X],

by dominated convergence.

• Now, we observe moreover that

∀ω ∈ Ω, ϕn(X(ω)) · IA(ω)
n→+∞︷︸︸︷→ ϕ(X(ω)) · IA(ω),

and since |(ϕn ◦X) · IA| ≤ IΩ ∈ L1(Ω), we have that

E[(ϕn ◦X) · IA]
n→+∞︷︸︸︷→ E[(ϕ ◦X) · IA],

by dominated convergence.

• So, if we put everything together and we observe that for all n, we have ϕn ∈ C0
B(R),

we obtain

E[(ϕ ◦X) · IA] = E[lim
n

(ϕn ◦X) · IA] = lim
n

E[(ϕn ◦X) · IA] =

lim
n

E[(ϕn ◦X)]E[IA]︸ ︷︷ ︸
P(A)

= E[ϕ ◦X]P(A).

• So we have discover that (3) hold true for the elements of A.

• Now, let us define

B :=
{
B ∈ B(R) : E[(IB ◦X) · IA] = E[(IB ◦X)] · E[IA]

}
.

• We have that A ⊆ B ⊆ B(R), and A is a π − system for B(R). If we prove that B
respect condition (a) and (b) of (2.4), we have finished.

• This is just a standard check, and we omit it, so we have the thesis.

2.5 Arbitrary Product

Let I be a set of index, and let us consider (Ei,Ei)i∈I a family of measurable space. Let us
define

E =
∏
i∈I

Ei := {f : I →
⋃
i∈I

Ei | ∀i ∈ I, f(i) ∈ Ei}.

15



We consider given j ∈ I the function πj : E → Ej that is the canonical projection on Ej.
So, for all f ∈ E, we have πj(f) = πj((ei)i∈I) = ej = f(j).

We can even consider the following point of view. Given ∅ ⊆ J ⊆ I, not empty, we can
define

πJ :
∏
i∈I

Ei →
∏
j∈J

Ej, such that πJ(f) = f |J .

So, if J = {i} ⊆ I, we can identify the element e ∈ E as the function ê : {i} → Ei such that
ê(i) = e.

Definition 17 (arbitrary product σ − algebra). We define the product σ − algebra on E,
and we indicate it as ⊗i∈IE , as the smallest σ − algebra on which the projection πi are
measurable, that is

E ⊗i∈I = ⊗i∈IE := σ
(
{π−1

i (Ai) | Ai ∈ Ei}
)

=
∨
i∈I

σ(πi).

Remark 7. The above definition goes well even if we have a finite product of probabilities.

Remark 8. We follow the following notation. If we have K ⊆ J ⊆ I, we can consider

π
(J)
K :

∏
j∈J

Ej →
∏
k∈K

Ek, such that π
(J)
K (g) = g|K

that is the projection from a suitable subset of
∏

i∈I Ei to another. Of course, if we have
H ⊆ K ⊆ J ⊆ I, we have the following identity

∏
j∈J

Ej

π
(J)
K︷︸︸︷→ ∏

k∈K

Ek

π
(K)
H︷︸︸︷→ ∏

h∈H

Eh︸ ︷︷ ︸
π
(J)
H

that is π
(K)
H ◦ π(J)

K = π
(J)
H .

We remember the following easy equality that hold true in general and sometimes it is useful.
Let A →f B →g C be two function, and let D ⊆ C be a set. Then the following equality
hold,

(g ◦ f)−1(D) = f−1(g−1(D)).

What are the rectangles in this definition? Given our idea in finite dimension, one can
discover by heuristic that the rectangles are the elements of the form∏

i∈I

Ai =
⋂
i∈I

π−1
i (Ai),
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with (Ai)i∈I a sequence of elements such that for all i ∈ I, we have Ai ∈ Ei. We observe
that in general I is not countable, so in general it is NOT true that

∏
i∈I Ai ∈

⊗
i∈I Ei. In

fact, intersection of too sets can not stay in the σ− algebra, even though the single elments
stay in it.

• Now, let J ⊆ I be a subset, not empty.

• ∀j ∈ J , let us consider Aj ⊆ Ej. It would be better Aj ∈ Ej.

• Let us define

A := {g : J →
⋃
j∈J

Ej : ∀j ∈ J, gj = g|j ∈ Aj} ⊆
∏
j∈J

Ej.

Proposition 2.17. Then we have

A =
⋂
j∈J

(π
(J)
j )−1(Aj).

Proof. It is just a chain of implication. In fact

f ∈ A ⇐⇒ ∀j ∈ J, f |j = π
(J)
j (f) ∈ Aj ⇐⇒

∀j ∈ J, f ∈ (π
(J)
j )−1(Aj) ⇐⇒ f ∈

⋂
j∈J

(π
(J)
j )−1(Aj).

Remark 9. It is straightforward that

(π
(I)
J )−1(A) =

⋂
j∈J

(π
(I)
J )−1

(
(π

(J)
j )−1(Aj)

)
=
⋂
j∈J

(π
(J)
j ◦ π

(I)
J )−1(Aj) =

⋂
j∈J

(π
(I)
j )−1(Aj) =

if it is not ambiguous, for all J ⊆ I we denote π
(I)
J as πJ , that is we don’t write the starting

space if it is I.

Now, let X : (Ω,F )→ (E,⊗i∈IE ) be a function.

Proposition 2.18 (Measurability of a r.v. in the product space). The following fact are
equivalent,

1. X is measurable.

2. ∀i ∈ I, Xi := πi ◦X : (Ω,F )→ (Ei,Ei) is measurable.

Moreover, we have that σ((Xi)i∈I) = σ(X), that is the smallest σ− algebra that make every
Xi measurable and the smallest σ − algebra that make X measurable are the same.

Proof. Let’s see.
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• 1) =⇒ 2). It’s clear, it is composition of measurable functions, and from this it
follows immediately that σ(Xi : i ∈ I) ⊆ σ(X).

• 2) =⇒ 1). We would like to use (2.7), so we have to find A ⊆
⊗

i Ei such that

– σ(A) =
⊗

i Ei.

– ∀A ∈ A, we have that X−1(A) ∈ F .

• Let us consider

A := {π−1
i (Ai)| i ∈ I and Ai ∈ Ei} =

⋃
i∈I

π−1
i (Ei). (4)

We have that
⊗

i Ei = σ(A).

• Now, let A ∈ A be a set. Then there exists i ∈ I and Ai ∈ Ei such that we have
A = π−1

i (Ai). So we have that

X−1(A) = X−1(π−1
i (Ai)) = (πi ◦X)−1(Ai) = X−1

i (Ai) ∈ F .

so we can apply Proposition (2.7), and we have concluded.

In particular if we are more accurate we can observe that

X−1(A) ∈ σ(Xi) ⊆ σ(Xi : i ∈ I),

so the truth is that X is σ(Xi : i ∈ I) measurable, that is σ(X) ⊆ σ(Xi : i ∈ I), and
this conclude.

Remark 10. We observe that, given the set A defined in (4), we have that

B :=
⋃
n∈N

{
∩ni=1Ai| ∀i, Ai ∈ A

}
is a π − system for

⊗
i Ei.

3 Integrals and Convergence Theorems

Let us have a probability space (Ω,F ,P).

Proposition 3.1 (Integration with respect to a Probability Law). Let us have the
following setting,

• let X : (Ω,F ,P)→ (E,E ) be a r.v,

• let µX be the law of X, that is for all A ∈ E , µX(A) = P(X ∈ A),
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• let f : (E,E )→ (R,B(R)) be a measurable function.

Then f is µX − integrable if, and only if f ◦X is P− integrable, and in this case we
have ∫

E

f(x) µX(dx) =

∫
Ω

f ◦X(ω) P (dω).

Let us have (An)n≥1 a sequence of events in (Ω,F ,P). Let us define

lim sup
n→+∞

An = A :=
+∞⋂
n=1

⋃
k≥n

Ak

 ,

that is

A := {ω : ω ∈ An for infinitely many indices n}.

Then the following is true,

Lemma 3.2 (Borel-Cantelli Lemma). We have the following two condition.

1. If
∑+∞

n=1 P(An) < +∞, then P(A) = 0.

2. If
∑+∞

n=1 P(An) = +∞ and An are pairwise independent, then P(A) = 1.

3.1 Convergence Theorem

Lemma 3.3 (Approximating by Simple Function). . Let f : (Ω,F ) → (R,B(R)) be a
positive measurable function. Then we can find a sequence of simple function (fn)n∈N such
that fn ↑ f .

3.2 Switch Limit, Integral Theorem

Lemma 3.4 (Fatou’s Lemma). Let us have

• (Xn)n∈N a sequence of r.r.v. on our probability space.

• ∀n ∈ N, Xn ≥ 0

Then ∫
Ω

(lim inf Xn) dP ≤ lim inf

(∫
Ω

Xn dP
)
.
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3.3 Measure Defined By a Density

Let µ be a probability on (Rm,B(Rm)).

Definition 18 (Density). µ admits a density if there exists a function f : (Rm,B(Rm))→
(R,B(R)) measurable, f ≥ 0, such that for every A ∈ B(R), we have

µ(A) =

∫
A

f(x)dx.

Let us have X : (Ω,F )→ (Rm,B(Rm)) a r.v, let µ be the law of X and we suppose that µ
has density f .

Lemma 3.5. Let a ∈ Rm, and let A a m ×m invertible matrix. Let us set Y := AX + a.
Then Y has density, and the density of Y is given by

g(y) =
1

| detA|
f(A−1(y − a)), ∀y ∈ Rm.

that is for all A ∈ B(Rm), we have µY (A) = P(Y ∈ A) =
∫
A
g(y)dy.

4 Conditional Mean

5 Theorem on r.v.

5.1 Sum of r.r.v.

• Let us have (Ω,F ,P) a probabilistic space.

• Let us have (R,B(R)).

• Let X : Ω→ R and Y : Ω→ R be random variable.

Proposition 5.1. We have that

σ(X + Y ) ⊆ σ(X, Y ) = σ
(
σ(X) ∪ σ(Y )

)
,

that is the sigma algebra generated by the sum is contained in the sigma algebra generated
by both random variables. In particular if X and Y are r.v, then even the sum is a r.v.

Proof. The proof is the following.

• Let us set Z = X + Y .

• We just need to prove thanks to (2.7) that Z−1(A) ∈ F , for all A in a set of generator
of B(R).

• Let us define

A := {(−∞, x) : x ∈ R}.

This is our sets of generator.
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• We have that

Z−1((−∞, c)) = {X + Y < c} =
⋃
q∈Q

{X + q < c} ∩ {Y < q},

and the last inequality hold true because we have that for all a ∈ R and b ∈ R and
c ∈ R,

a+ b < c ⇐⇒ ∃ q ∈ Q s.t. a+ q < c and b < q.

• So Z−1((−∞, c)) ∈ σ(X, Y ) for all c ∈ R, so we have the thesis.

5.2 Topological Results (for vector normed spaces)

• Let us have (E,‖·‖) a Banach space, but completeness.

• E have a topology that is induced by the norm. We indicate as

B(e, r) := {x : ‖x− e‖ < r} = { ‖x− e‖ < r }

the ball centered in e ∈ E of radius r, and it is well known that it is a base of the
topology. we indicate the topology generated by the ball as B (that is the set of the
open sets).

• Let us consider now En. It has by definition a topology, that is the product topology.

• This product topology is defined in this way. Let us consider pi the canonical projec-
tion.

• Let us define

A := {T topology s.t. p1, .., pn : (En, T )→ (E,B) are continuous}.

• Now, let us define

P :=
⋂
T ∈A

T

Well, P is the product topology.

• We can indicate more generally as

T (R)

the littlest topology that contain R, with R ⊆ P(E), in analogy of what we did in
Definition (7).
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• Since we have a finite product, it is immediate to show that

P = T
(
{×ni=1Ai, Ai ∈ B}

)
,

that is the product topology is the smallest topology which contains the product be-
tween the open sets of E.

• Now we want to prove that the product topology on En in this case is given by a norm.

Proposition 5.2. Let us define

n : En → R, n(e1, .., en) = maxi=1,..,n‖ei‖ .

Then n is a norm.

Proof. Obvious.

We indicate as ‖·‖∞ this norm.

• Let us denote as P‖·‖∞ the topology induced by this norm (the one defined by the ball
on En).

•

Proposition 5.3. P = P‖·‖∞.

Proof. The proof is not hard, we prove the double inclusion.

– ⊆:

We just need to prove that projections are continuous functions. Since we have
in this case for all i = 1, .., n that

pi : (En,P‖·‖∞ ,‖·‖∞)→ (E,B,‖·‖)

is a function between normed spaces, we just need to check the ε − δ definition,
and this is immediate.

So we obtain one inclusion.

– ” ⊇ ”:

We just need to see if the ball with respect to ‖·‖∞ are elements of P . We have
for all e = (e1, .., en) ∈ En and for all r > 0 real,

B‖·‖∞(e, r) = {x :‖x− e‖∞ < r} =

= {x = (x1, .., xn) : ∀i = 1, .., n, ‖xi − ei‖ < r} =

= {x1 :‖x1 − e1‖ < r} × · · · × {xn :‖xn − en‖ < r} =

=
n⋂
i=1

p−1
i ({y ∈ E :‖y − ei‖ < r}) ∈ P

and the last set belong to P because is intersection of a finite number of open
sets.
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5.3 Relation product sigma algebra and sigma algebra induced by
the topology

• Let us consider again (E,‖·‖), that is a vectorial normed space.

• Let us consider Open(E) the topology induced by the norm.

• Let us consider Open(En) the topology on En induced by the norm ‖·‖∞, that is the
same as the canonical topology on the product space En.

• As always we denote as B(E) := σ(Open(E)), that is B(E) is the smallest σ−algebra
which contains the open sets of E.

• Now, we want to compare

B(En) := σ(Open(En))

and ⊗
n

B(E) :=
n∨
i=1

p−1
i (B(E)) = σ

(
{×ni=1Ai : Ai ∈ B(E)}

)
= σ(B(E)n).

Proposition 5.4. Let us suppose that E is separable. Then B(En) =
⊗

nB(E).

Proof. We show the double inclusion.

• ” ⊇ ”

Since E is separable, it is base numerable (it’s metric), that is

∃N ⊆ Open(E), countable : ∀A ∈ Open(E), ∃J ⊆ N : A =
⋃
B∈N

B.

• Now, N base for Open(E) =⇒ Nn is a base for Open(En), because the product of
basis is a base for the product space (it is immediate to show).

• So, we have that Open(E) ⊆ σ(Nn) =⇒ B(En) = σ(Nn).

• We define

A :=
{
×ni=1Ai : Ai ∈ B(E)

}
= B(E)n,

so we have that ⊗nB(E) = σ(A).

• Since N ⊆ Open(E) ⊆ B(E), we have that Nn ⊆ A, so we conclude seeing that
B(En) = σ(Nn) ⊆ σ(A) = ⊗nB(E).

• ” ⊆ ”

Since Opens(E) is a π − system for B(E), we have that Open(E)n is a π − system
for ⊗nB(E) because of Corollary (2.13).

• Moreover, Open(E)n ⊆ Open(En), so ⊗nB(E) = σ(Open(E)n) ⊆ σ(Open(En)) =
B(En), so we have finished.
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5.4 Measurability of the sum

Now we can prove some useful theorem.

• Let us have a fixed Measurability Space (Ω.F ).

• Let us consider (E,B(E)), with (E,‖·‖) a separable normed space.

• Let Xi : Ω→ E be a measurable function, for all i = 1, .., n.

• Let us consider the function X defined in this way,

X : (Ω,F ) → (En,
⊗

nB(E))
ω → (X1(ω), .., Xn(ω)).

We know that such function is (F ,
⊗

nB(E))−measurable and σ(X1, .., Xn) = σ(X)
from Proposition (2.18).

• Let us consider (H,Open(H)) another topological space.

• Let us consider f : (E,Open(E))→ (H,Open(H)) a continuous function.

Theorem 5.5. We have that f ◦X is (F ,B(H))−measurable.

Proof. Given our work before, the proof is a simple path.

• We firstly show that f is (B(En),B(H)) measurable. Let’s see.

– We have that σ(Open(H)) = B(H) and

– f−1(Open(H)) ⊆ Open(En) ⊆ B(En).

– Condition above implies that f−1(B(H)) = σ(f) ⊆ B(En) thanks to (2.7).

– So we have proved that f is (B(En),B(H))-measurable, as we wanted.

• Moreover, we have that B(En) =
⊗

nB(E) thanks to Proposition (5.4), so we can
write that f is also (

⊗
nB(E),B(H)) measurable.

• So we have the following composition of function,

(Ω,F )
X→ (En,⊗nB(E))

f→ (H,B(H)),

and since f and X are measurable, we have that f ◦X is measurable, as we wanted.

• Let us suppose now that H = En, with the same topology that we had at the beginning.

• Now f will be a function like f = (f1, .., fn), with fi = πi ◦ f , with π : En → E the
canonical projection such that πi(e1, .., en) = ei.

• In this case we have that f ◦X = (f1 ◦X, .., fn ◦X).
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Corollary 5.6. Let us suppose that f is continuos, invertible, and its inverse is a continuous
function. Then

σ(X1, .., Xn) = σ(f1 ◦X, .., fn ◦X).

Proof. We observe that f and f−1 are measurable function. So we have thanks to Corolllary
(2.3) and Proposition (2.18)

σ(X1, .., Xn) = σ(X) = σ(f ◦X) = σ(π1 ◦ (f ◦X), .., πn ◦ (f ◦X)) = σ(f1 ◦X, ..., fn ◦X),

as we wanted.

Corollary 5.7 (measurability of the sum). Let us suppose that E is a vectorial space. Then
the random variable

Z :=
n∑
i=1

Xi,

is (F ,B(E))−measurable.

Proof. Let us consider

f : (En, Open(En))→ (E,Open(E)), f(e1, .., en) =
n∑
i=1

ei.

It is immediate that this is continuous, so we can apply the Theorem above.

6 Characteristic Function

Let X : (Ω,F ,P)→ (Rm,B(Rm)) be a r.v, let us set µ := PX .

Definition 19. We define for all θ ∈ Rm,

µ̂(θ) =

∫
Rm

ei〈θ,x〉µ(dx) = E[ ei〈θ,X〉 ].

6.1 Property

1. X and Y are r.v. independents. Then µ̂X+Y (θ) = µ̂X(θ)µ̂Y (θ).

2. ∀θ ∈ Rn we have µ̂(θ) = ν̂(θ) =⇒ µ ≡ ν.

3. X1, .., Xn are r.v.′s respectively with law µ1, ..., µn.

We denote as µ the law of (X1, .., Xn).

Then X1, .., Xn are independent if, and only if for all θ = (θ1, .., θn) ∈ Rn, we have

µ̂(θ) =
n∏
i=1

µ̂i(θi).
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4. Let b ∈ Rk be a vector, and let A ∈ Rk×m a matrix. Let us set Y := AX + b. Then for
all θ ∈ Rk we have

µ̂Y (θ) = E[ei〈θ,Y 〉] = E[ei〈θ,AX+b〉] = ei〈θ,b〉E[ei〈A
∗θ,X〉] = ei〈θ,b〉µ̂X(A∗θ).

We remember that A∗ is the transpose of A.

5. X = (X1, .., Xn) a random vector. Then for all i = 1, .., n we have that

µ̂Xi(θ) = µ̂X(0, .., θ︸︷︷︸
i−th

, .., 0).

We prove now a little lemma. Let Y : (Ω,F ,P)→ (Rm,B(Rm)) be a r.v, let us set µ := PY .

Lemma 6.1. We have that Y is constant and Y = a almost certain, with a ∈ Rm if, and
only if for all θ ∈ Rm we have that µ̂Y (θ) = ei〈θ,a〉.

Proof. We prove both implication. We denote as µZ the law of Z and as µY the law of Y .

• If Y = a almost certain, then the thesis is obvious.

• For the other, let us set Z(ω) = a for all ω ∈ Ω.

• Then we have that µ̂Z ≡ µ̂Y , and this implies for our property (6.1) that µZ ≡ µY .

• But then, we have that

1 = P(Z = a) = µZ(a) = µY (a) = P(Y = a)

so Y = a almost certain, and this means that it is constant almost certain.

6.2 Gaussian Law

Let us have µ a probability on (R,B(R)).

Definition 20. We say that µ is N(a, σ2) (normal, with mean a and variance σ2), with
σ > 0 and a ∈ R, if it has density with respect to Lebesgue measure given by

fa,σ2(x) :=
1√
2πσ

e−
(x−a)2

2σ2 .

Remark 11. If we have

f0,1(x) =
1√
2π
e−

x2

2 ,

then we have the following relation,

fa,σ2(x) =
1

σ
f0,1

(
x− a
σ

)
.

26



at this point, we have a probability µ on (R,B(R)), that is

∀A ∈ B(R), µ(A) =

∫
A

fa,σ2(x)dx.

We want to compute its characteristic function µ̂. We have

Proposition 6.2.

∀θ ∈ R, µ̂(θ) = eiθae−
1
2
σ2θ2 .

Remark 12. We observe that, if X ∼ N(a, σ2) and Y ∼ N(b, τ 2) and they are independent,
then X + Y ∼ N(a+ b, σ2 + τ 2). In fact if we denote respectively as µX and µY and µX+Y

their law, we have

µ̂X+Y (θ) = µ̂X(θ)µ̂Y (θ) = eiθ(a+b)e−
1
2

(σ2+τ2)θ2

and this last one is the characteristic function of a r.v. N(a+ b, σ2 + τ 2), so (X +Y ) it have
to be a variable N(a+ b, σ2 + τ 2). We have used our properties in Section (6.1).

Now let’s talk about Gaussian V ectors. We suppose to have a fixed probability space
(Ω,F ,P).

Definition 21 (Standard Gaussian Vectors). Let Z := (Z1, .., Zn) be a random vector. We
say that Z has the Standard Gaussian Distribution if PZ has density

f0,I(x1, .., xn) :=
1

(2π)
n
2

e−
1
2
‖x‖22 =

1

(2π)
n
2

e−
1
2
〈x,x〉.

for all x ∈ Rn.

Remark 13. The definition above is equivalent to ask that the r.v. Z1, ..., Zn are independent
and for all i, we have that Zi ∼ N(0, 1).

Remark 14. Zi ∼ N(0, 1) =⇒ for all θ ∈ R, we have that µ̂Zi(θ) = e−
1
2
θ2 .

Remark 15. For all θ = (θ1, ..., θn) ∈ Rn, properties (6.1) implies that

µ̂Z(θ) =
n∏
i=1

µZi(θi) =
n∏
i=1

e−
1
2
θ2i = e−

1
2
‖θ‖22 = e−

1
2
〈θ,θ〉.

Definition 22. A random vector Y = (Y1, .., Ym) is said to be Gaussian if we can write

Y = AZ + b

where A is a m× n matrix, b ∈ Rm, Z = (Z1, .., Zn) is a n− dimensional standard gaussian
vector.
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Now let us suppose n = m, and det(A) 6= 0. Then (3.5) hold true, and we have that Y
has density. We observe preliminary that for all z, w ∈ Rn

〈A−1z, A−1w〉 = 〈(A−1)∗A−1z, w〉 = 〈(A∗)−1A−1z, w〉 = 〈Γ−1z, w〉.

where we have set Γ = AA∗ in the above equality, so Γ−1 = (A∗)−1A−1. Given this, we can
write down the density of Y as

fb,Γ(y) :=
1

| detA|
f0,I(A

−1(y − b)) = (5)

=
1

(2π)
n
2

1

| detA|
e−

1
2
〈Γ−1(y−b),(y−b)〉 = (6)

=
1

(2π)
n
2

1

| det Γ| 12
e−

1
2
〈Γ−1(y−b),(y−b)〉 (7)

Lemma 6.3. Let Y = (Y1, .., Ym) = AZ + b be a Gaussian V ector, and A is an m × n
matrix, Z is an n-dimensional Standard Gaussian Vector. Then

• b = (E[Y1], ..,E[Ym]).

• Cov(Yi, Yj) = (A · A∗)i,j = Ai · (A∗)j.

Proof. This is a simple check.

• b = E[Y ] is obvious since Zi ∼ N(0, 1).

• This is a simple check. Let i ∈ {1, ..,m} and j ∈ {1, ..,m} be two numbers. Then

Cov(Yi, Yj) =Cov

 n∑
k=1

Ai,kZk + bi,
n∑
h=1

Aj,hZh + bj

 =︸︷︷︸
bilinearity

=
n∑

k,h=1

Ai,kAj,hCov(Zk, Zh)︸ ︷︷ ︸
=0 if h6=k

=

=
n∑
k=1

Ai,kAj,k Cov(Zk, Zk)︸ ︷︷ ︸
=V ar(Zk)=1

= Ai · (Aj)∗ = Ai · (A∗)j = (AA∗)i,j.

Remark 16. Given Y Gaussian Vector, we denote as Cov(Y ) = A · A∗. We observe that it
is positive definite.

Now, given Γ m ×m matrix positive definite and b a vector in Rm, we ask ourselves if we
can find a Gaussian random variable Y = (Y1, .., Ym) such that Cov(Y ) = Γ and E[Y ] = b.

Lemma 6.4. Let us have
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• Γ m×m positive definite matrix.

• b vector in Rm

Then we can find a Gaussian Variable X such that Cov(X) = Γ and E[X] = b.

Proof. This is a linear algebra exercise, because we just need to find a matrix A such that
A · A∗ = Γ. This is possible, and we can find it symmetric. Let’s call such matrix

√
Γ. We

obtain the thesis if we set

X :=
√

ΓZ + b

with Z a Standard Gaussian Vector.

Remark 17. We have seen that given a matrix Q positive definite and a vector b ∈ Rm, we
can find a r.v. Y = (Y1, .., Ym) that is Gaussian, that Cov(Y ) = Q and E[Y ] = b. We
denote this fact saying that Y ∼ N(b,Q), that is Y is normal, with mean b and covariance
matrix Q.

Remark 18. A n − dimensional standard Gaussian Vector Z = (Z1, .., Zn) is denoted by
Z ∼ N(0, I), with 0 the null vector of Rn and I the identical matrix n× n.

Now, let us calculate the characteristic function of Y = (Y1, .., Yk), with Y a Gaussian Vector.
So we have that Y = AZ + b, with A matrix k × m and b ∈ Rk and Z m − dimensional
standard Gaussian Vector. Thanks to Properties (6.1), we have for all θ ∈ Rk.

µ̂Y (θ) = ei〈θ,b〉µ̂Z(A∗θ) = ei〈θ,b〉e−
1
2
〈A∗θ,A∗θ〉 = ei〈θ,b〉e−

1
2
〈Γθ,θ〉. (8)

where we have set Γ := A · A∗, that is Γ = Cov(Y ).

Let us have Y = (Y1, .., Ym) : (Ω,F ,P)→ (Rm,B(Rm)) a r.v. Let µY be the law of Y .

Proposition 6.5. The following statements are equivalent.

1. Y ∼ N(b,Γ), that is Y is Gaussian, b = E[Y ] and Γ = Cov(Y )

2. ∀θ ∈ Rm, µ̂Y (θ) = ei〈θ,b〉e−
1
2
〈Γθ,θ〉, with b ∈ Rm and Γ a m ×m positive semi-definite

matrix.

3. ∀θ ∈ Rm, we have that 〈θ, Y 〉 is a Gaussian r.r.v, that is 〈θ, Y 〉 ∼ N(aθ, σ
2
θ), with

aθ ∈ R and σ2
θ ≥ 0.

Proof. It is easy.

• 1) =⇒ 2). This is the count above in (8).

• 2) =⇒ 1). We suppose det Γ 6= 0. The case det Γ = 0 is degenerate and we study it
another time.

– We can find thanks to (6.4) a Gaussian Variable X = AZ + b, with A m × m
matrix such that AA∗ = Γ and Z ∼ N(0, I) and b ∈ Rm.
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– We see immediately that for all θ ∈ Rm, we have

µ̂X(θ) = µ̂Y (θ).

and thanks to properties (6.1) we have that µX = µY .

– Now we know that X has density that is given by (5), so even Y has the same
density because µX = µY , and this density is fb,Γ.

– Let us consider W := A−1Y −A−1b = A−1(Y − b). Thanks to (3.5), we know that
even W has density, and this density is given by

g(x) =
1

| det(A−1)|
fb,Γ(A(x+ A−1b)) =

=
1

| det(A−1)|
fb,Γ(Ax+ b) =

=
1

| det(A−1)|
1

| det(A)|
f0,I(A

−1([Ax+ b]− b))

= f0,I(x),

so for our definition (21), we have that W is a standard Gaussian Vector, that is
W ∼ N(0, I).

– Then we have

Y = A︸︷︷︸
matrix

(A−1[Y − b]︸ ︷︷ ︸
N(0,I)

) + b︸︷︷︸
vector

,

that is Y ∼ N(b,Γ), and that is the thesis.

– Now we suppose det Γ = 0.

– If Γ = 0, then by Lemma (6.1) we obtain that Y is constant, so it is Gaussian (by
definition (?, that is we don’t know)).

– Otherwise, if rk(Γ) > 0 we firstly suppose that Γ is diagonal, so we have

Γ = diag(γ2
1 , .., γ

2
k, 0, .., 0) with 1 ≤ k < m and γi > 0.

– One of the Properties in (6.1) say us that the marginal law of Y are Gaussian
1-dimensional, so we have that{

Yi ∼ N(bi, γ
2
i ) if 1 ≤ i ≤ k

Yi ≡ bi, that is Yi ∼ N(bi, 0) if k < i ≤ m.

We have used even Lemma (6.1).

– Let use set

Zi =
Yi − bi
γi

for 1 ≤ i ≤ k,

Z = (Z1, .., Zk)
∗,

b = (b1, .., bm)∗,

A =

[
B
C

]
, with B =

γ1 . . . 0
...

. . .
...

0 . . . γk

 ∈ Rk×k and C =

[
0 0 0
0 0 0

]
∈ R(m−k)×k.
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We remember that ∗ means transpose.

– Now it is a little count to show that Y = AZ + b, and Z is a k − dimensional
Standard Gaussian Vector, so Y is a Gaussian Vector.

– If Γ is not diagonal or it is not in our form, we can find an orthogonal matrix
O such that OΓO∗ is diagonal as we want, because by definition Γ is symmetric.
We define Γ̃ = OΓO∗.

– Let us define T = OY . We have that the characteristic function of µT become,
thanks to our property (6.1),

µ̂T (θ) = µ̂Y (O∗θ) = ei〈O
∗θ,b〉e−

1
2
〈ΓO∗θ,O∗θ〉 = ei〈θ,Ob〉e−

1
2
〈Γ̃θ,θ〉, ∀θ ∈ Rm.

– So, we have discovered that T is a vector that has a characteristic function as the
one in hypothesis 2, with Ob ∈ Rm and Γ̃ = OΓO∗ a m×m, positive semi-definite
matrix. So we have, because of what we have just proved that

OY = AZ +Ob,

with A matrix m× k, and Z a k − dimensional Standard Gaussian Vector, with
k = rk(Γ).

– From the last identity, we discover that

Y = [(O∗)A]Z + b,

that is Y is a Gaussian Vector.

• 1) =⇒ 3). Obvious, we just need to observe that a sum of real Gaussian variable is
still Gaussian.

• 3) =⇒ 2). We calculate the characteristic function of Y . We proceed in this way.

– We observe that Yi is Gaussian for all i (take θ = (0, , 1︸︷︷︸
i−th

, ..0)).

– This implies that E[Yi] is well defined (we need Yi ∈ L1), as well Cov(Yi, Yj) (we
need Yi ∈ L2 and Yj ∈ L2).

– Let us set b := (E[Y1], ..,E[Ym]) and Γ := Cov(Y ) = [Cov(Yi, Yj)]i,j=1,..,m.

– It is well known that Cov(Y ) is a positive semi-definite matrix.

– Also, we have that for all θ ∈ Rm,

V ar(〈Y, θ〉) = Cov(〈Y, θ〉, 〈Y, θ〉) = 〈Cov(Y )θ, θ〉 = 〈Γθ, θ〉,
E[〈Y, θ〉] = 〈E[Y ], θ〉 = 〈b, θ〉.

– So, if we recall (6.2), we have for all θ ∈ Rm that

µ̂Y (θ) = E[ei〈Y,θ〉·1] = µ〈Y,θ〉(1) = ei·1E[〈Y,θ〉]e−
1
2
V ar(〈Y,θ〉) = ei·〈b,θ〉e−

1
2
〈Γθ, θ〉

and this is the thesis. We have used the integration with respect to a probability
law, that is (3.1).
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Proposition 6.6 (Normal Law under Affine Trasformation). . Let L(x) := Ax + b be an
affine transformation with C a matrix k ×m and b ∈ Rk a vector and let Y = (Y1, .., Ym) ∼
N(a,Γ) be a Gaussian variable. Then X := L ◦ Y is still Gaussian, and its law is given by
N(Aa+ b, AΓA∗).

Proof. We just need to compute the characteristic function of X. Since L is affine, using a
property in (6.1) we have for all θ ∈ Rk,

µ̂X(θ) = ei〈b,θ〉µ̂Y (A∗θ) = ei〈b,θ〉
(
ei〈a,A

∗θ〉e−
1
2
〈ΓA∗θ,A∗θ〉

)
= ei〈Aa+b,θ〉e−

1
2
〈AΓA∗,θ〉,

so X = AY + b ∼ N(Aa+ b, AΓA∗).

Remark 19. We observe that given Y = (Y1, .., Ym) ∼ N(a,Γ), we have that its k − th
marginal is given by

µYk(θ) = eiakθe−
1
2

Γk,kθ
2

, ∀θ ∈ R

thanks to property (6.1) and the formula (8).

From this remark and from property (6.1), it is straightforward the following

Proposition 6.7. Let Y = (Y1, .., Ym) ∼ N(b,Γ) be a Gaussian Vector. Then the following
statement are equivalent,

1. Y1, .., Ym are independent.

2. Y1, .., Ym are uncorrelated, that is Γ is diagonal.

Proof. we have

• 1) =⇒ 2). It is always true.

• 2) =⇒ 1).

– We just need to check if for all θ = (θ1, .., θm) ∈ Rm, we have

µ̂Y (θ) =
m∏
k=1

µ̂Yk(θk)

because we can conclude thanks to one of our property (6.1).

– But, if Γ is diagonal, then

µ̂Y (θ) = ei〈θ,b〉e−
1
2
〈Γθ,θ〉 = e

∑m
k=1 iθkbke

∑m
k=1−

1
2

Γk,kθ
2
k =

=
m∏
k=1

eibkθke−
1
2

Γk,kθ
2
k =

m∏
k=1

µ̂Yk(θk)

and for what we have said, this implies the thesis.
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7 Stochastic Process

Definition 23 (Stochastic Process). Let X : Ω× T → E be a function.
X is a Stochastic Process (S.P.) if for all t ∈ T , we have that

Xt := X|Ω×{t} : (Ω,F )→ (E,E )

is F -measurable.

We can indicate X as (Xt)t∈T .

7.1 Another Point of View, and the Law of a S.P.

We observe that there is another point of view connected to our definition, that is the
following. We denote as

ET :=
∏
t∈T

Et, E ⊗T :=
⊗
t∈T

Et

where Et = E for all t and Et = E for all t. We remember that ET := {f : T → E}, and for
all t ∈ T , the projection on Et is defined as πt(f) := f(t) = f |t, for all f ∈ ET . We can see
a S.P. X as a F −measurable function

ΦX : (Ω,F )→ (ET ,E
⊗
T )

defined as ΦX(ω)(t) := X(ω, t). The definitions are equivalent in the following sense.
Let (Ω,F ) and (E,E ) be two measurable spaces. Let T be a set of index.

Proposition 7.1. The following statement hold true.

1. Let us consider X : T × Ω → E a S.P, that is ∀t ∈ T , we have that Xt = X|{t}×Ω is
F −measurable.
Then the function

Φ : (Ω,F ) → (ET ,E ⊗T )
ω → Φ(ω) : T → E

t→ X(t, ω)

is F −measurable.

2. Let us consider a function

Φ : (Ω,F )→ (ET ,E ⊗T )

that is F −measurable.
Then the function

X : T × Ω → E
(ω, t) → (Φ(ω))(t)

is a S.P.
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Proof. The proof are simple.

• Let’s start with 1.

For our Lemma (2.18), we just need to check that for all t ∈ T, the function (πt ◦ Φ)
is F −measurable. We have

(πt ◦ Φ)(ω) = πt(Φ(ω)) = (Φ(ω))(t) = X(t, ω) = Xt(ω)

and this last one is measurable because of our hypothesis, so Φ is F −measurable.

• Now we prove 2.

We just need to observe that for all ω ∈ Ω,

Xt(ω) = X|{t}×Ω(t, ω) = X(t, ω) = (Φ(ω))(t) = πt(Φ(ω)) = (πt ◦ Φ)(ω),

and the last function is F − measurable because it is composition of measurable
function, so for all t ∈ T we have that Xt is measurable, so X is a S.P.

Remark 20. Given a S.P., let’s say X, we denote the function Φ defined above as ΦX .

Now, let us suppose that we have a probability measure on (Ω,F ), let’s say P.

Definition 24 (Law of a S.P.). Let X be a S.P. We define the Law of the process as the
measure of probability PΦX on the measurable space (ET ,E ⊗T ).

Remark 21. So, given A ⊆ ET , with A ∈ E ⊗T , we have that

PΦX (A) = P
(
{ω| ΦX(ω) ∈ A}

)
,

that is PΦX calculate the probability that the function ΦX maps some elements of Ω in a
bunch of fixed function, that is A.

Remark 22. Let us consider T = [0,+∞), or [0, t0] with t0 a real number, or let T be a
subset of N. We observe that definition (23) implies that for all t1 < t2... < tn ∈ T , we have

(Xt1 , ..., Xtn) : (Ω,F )→ (En,⊗nE )

(Xt1 , ..., Xtn)(ω) := (Xt1(ω), ..., Xtn(ω))

is F -measurable.

Let us consider

S := {(t1, t2, ..., tn) | t1 < t2 < ..., < tn, ti ∈ T}. (9)

We define for a generic (t1, ..., tn) := t ∈ S the r.v

Xt := (Xt1 , ..., Xtn) (10)
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Definition 25 (Finite Dimensional Distribution). The set

{ PXt | t ∈ S }

Is the set of finite dimensional distribution of the process X. We observe that PXt is a
probability on the measurable space (En,E ⊗

n
), and for all A ∈ E ⊗

n
, we have that PXt(A) = P

PXt(A) = P(Xt ∈ A) = P((Xt1 , .., Xtn) ∈ A).

Definition 26 (Realization (or Trajectory) of a S.P.). Let X : Ω× T → E a S.P.
For all ω ∈ Ω, the function

Xω := X|{ω}×T : T → E

t→ Xt(ω)

is a realization (or a trajectory) of the S.P.

Definition 27 (Continuity of a S.P.). Let us suppose now that T and E are topological
space, and T = B(T ) and E = B(E). Let X be a S.P as above.

X is continuous if every trajectory is a continuous function. It is a.c (almost certain)
continuous if P({ω| Xω is continuous}) = 1.

Definition 28 (ca’dla’g). If T ⊂ [0,+∞), a SP is ca’dla’g if his trajectory are right-C0, and
the limit exists and is bounded on the left.

Definition 29 (Measurable Process). Let (T, T ) be a measurable space. Let X be a S.P..
We say that X is measurable if the function

X : (T × Ω, T ⊗F )→ (E,E )

is T ⊗F −measurable.

Now, let X and Y be two S.P.

Definition 30 (Equivalent Process). We say that X and Y are equivalent if they have the
same finite dimensional distributions.

Definition 31 (Modification). We say that X and Y are modification one of the another if
for all t ∈ T , we have

P(Xt = Yt) = 1

Definition 32 (Indistinguishability). We say that X and Y are indistinguishable if

P(∀t ∈ T, Xt = Yt) = 1

The finite dimensional distribution are linked to the law of the S.P. in the following sense.
Let (Ω1,F1,P) and (Ω2,F2,Q) be two probabilistic spaces, let (E,E ) be a measurable space
and let T be a set of indexes. Let

X : T × Ω1 → E

Y : T × Ω2 → E
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be two S.P. Let us set

S = {(t1, .., tn)| ∀i, ti ∈ T and ti 6= tj ⇐⇒ i 6= j},
SX = (PXt)t∈S
SY = (QYt

)t∈S

that is S is the set of every tuples of elements of T that have every element distinct from
each other, SX is the sequence of finite dimensional distribution of X indexed by S and SY
is the sequence of finite dimensional distribution of Y indexed by S. Let

PΦX

QΦY

be respectively the law of the process X and the process Y on the measurable space
(ET ,E ⊗T ). This law is defined in Definition (24).

Lemma 7.2. Let us have (ET ,E ⊗T ) the product space and let (Ω,F ,P) be a probabilistic
space. Let us have

• Z : T × Ω→ E a S.P.

• A1, .., An ∈ E ,

• t1, .., tn ∈ T that are distinct, that is ti = tj ⇐⇒ i = j, and let us set t := (t1, .., tn),

• for all i, let us take πti : ET → E the canonical projection, that is πti(f) := f(ti) = f |ti.

• let us define

A :=
n⋂
i=1

π−1
ti

(Ai)

Then we have the following equality,

{ω| ΦZ(ω) ∈ A} = {ω| Zt(ω) ∈
n×
i=1

Ai},

with Zt(ω) := (Zt1(ω), .., Ztn(ω)).

Proof. Let’s start.

• We remember the following easy equality. Given (f1, .., fn) : Ω → C1 × .. × Cn a
function and given A1 ⊆ C1, ..., An ⊆ Cn, we have

(f1(ω), .., fn(ω)) ∈
n×
i=1

Ai ⇐⇒ ∀i = 1, .., n , fi(ω) ∈ Ai ⇐⇒

∀i = 1, .., n , ω ∈ f−1
i (Ai) ⇐⇒ ω ∈

n⋂
i=1

f−1
i (Ai).
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• Now, we have the following chain of implication,

ΦZ(ω) ∈ A ⇐⇒ ∀i = 1, .., n πti(ΦZ(ω)) ∈ Ai ⇐⇒
∀i = 1, .., n (ΦZ(ω))(ti) ∈ Ai ⇐⇒ ∀i = 1, .., n Z(ti, ω) = Zti(ω) ∈ Ai ⇐⇒

i = 1, .., n, ω ∈ Z−1
ti

(Ai) ⇐⇒ ω ∈
n⋂
i=1

Z−1
ti

(Ai) ⇐⇒ (Zt1 , .., Ztn)︸ ︷︷ ︸
Zt

(ω) ∈
n×
i=1

Ai,

so

ΦZ(ω) ∈ A ⇐⇒ Zt(ω) ∈
n×
i=1

Ai,

and this conclude.

Proposition 7.3. We have that the following statements are equivalent,

1. PΦX = QΦY .

2. SX = SY , that is ∀t ∈ S, we have that PXt = QYt
.

That is, the law of a S.P. is uniquely defined by the finite dimensional distribution, and
vice− versa.

Proof. The proof follows from the previous lemma.

• 2) =⇒ 1).

– Let us define

A := {π−1
t (A)| t ∈ T and A ∈ E },

B :=
+∞⋃
n=1

{∩ni=1A1| Ai ∈ A}.

We remember that E ⊗T := σ(A) = σ(B), and B is a π − system for E ⊗T .

– So, since we have the probability spaces (ET ,E ⊗T ,PΦX ) and (ET ,E ⊗T ,QΦY ), we
have that PΦX = QΦY if they coincide on a π − system for Corollary (2.5).

– Now, let’s take A ∈ B. So by definition, A = ∩ni=1π
−1
ti (Ai), with ti ∈ T and

Ai ∈ E , and we have

PΦX (A) = P
(
{ΦX ∈ A}

)
=︸︷︷︸

(7.2)

P

(
{Xt ∈

n×
i=1

Ai}

)
= (11)

PXt

(
n×
i=1

Ai

)
=︸︷︷︸

hypothesis

QYt

(
n×
i=1

Ai

)
= Q

(
{Yt ∈

n×
i=1

Ai}

)
=

Q({ΦY ∈ A}) = QΦY (A),

so PΦX = QΦY , and this is the thesis.
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• 1) =⇒ 2).

– Let us fix t = (t1, .., tn) ∈ S. We have the probabilistic space

(En,E ⊗n ,PXt),
(En,E ⊗n ,QYt

)

and we want to prove that PXt = QYt
.

– We remember that

C := {×ni=1Ai| Ai ∈ E }

is a π−system for E ⊗n . This is true because we have a finite product of measurable
spaces.

– So, given B = ×ni=1Ai ∈ C, we can do as above in (11), and if we set

A = ∩ni=1π
−1
ti

(Ai),

(πti : ET → E is the projection) we obtain

PXt(B) = PΦX (A) =︸︷︷︸
hypothesis

QΦY (A) = QYt
(B).

7.2 Kolmogorv’s Theorems

• Let T be a not empty set.

• Let us denote as S := {(t1, .., tn)| ti ∈ T and ti 6= tj ⇐⇒ i 6= j} the set of tuples
with every element different.

• Let us have (E,E ) a measurable space.

• Let us consider (ET , E
⊗
T ) the product space.

• Let us have

{µτ | τ ∈ S}.

a family of probability. We intend that, if τ = (t1, ..., tn), then µτ is a probability on
(En,E

⊗
n).

• QUESTION: can we find

– (Ω,F ,P) a probabilistic space,

– X : T × Ω→ E a S.P.

such that

∀τ ∈ S, PXτ = µτ ,

that is, X has how finite dimensional distribution the family µτ |τ ∈ S.
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8 Filtration

Setting 1. Let us suppose to be in the following setting.

* Let (Ω,F ,P) be a probabilistic space and (E,E ) a measurable space.

* Let X : T × Ω→ E be a S.P.

* Let us suppose in this section that T is an interval (unlimited or not) of R or a subset
of N. To fix our ideas, we can suppose that T = [0,+∞).

Definition 33 (Filtration). Let us have (Ft)t∈T a family of σ − algebras of set of Ω. We
say that this family is a filtration if

• for all t ∈ T , we have that Ft ⊂ F ,

• for all s < t that are elements of T , we have that Fs ⊂ Ft.

Definition 34 (F∞). Given a filtration as the one above, we define

F∞ := ∨
t∈T

Ft, (12)

that is the smallest σ − algebra that contains every Ft.

Definition 35 (Adapted). Given a filtration as the one above, we say that X is adapted if
for all t ∈ T , we have that Xt is Ft −measurable.
Definition 36 (Progeressively Measurable). The S.P. X is Progressively Measurable if
for every t ≥ 0, we have that

X|[0,t]×Ω : ([0, t]× Ω, B([0, t])⊗Ft)→ (E,E )

is B([0, t])⊗Ft −measurable.
Definition 37 (Filtration right-C0). A filtration (Ft)t∈T is right-continuous if for all t ∈ T ,
we have that

Ft = ∩
ε>0

Ft+ε.

Now, let τ : Ω→ [0,+∞] be a r.r.v.

Definition 38 (Stopping Time). τ is a stopping time if for all t ≥ 0, we have {τ ≤ t} ∈ Ft.

In the future, we denote a stopping time with S.T.

Definition 39 (σ-algebra associated to a S.T.). If the function τ above is a stopping time,
we define

Fτ := {A ∈ F∞ | ∀t ∈ T, A ∩ {τ ≤ t} ∈ Ft} (13)

as the σ − algebra associated to the stopping time.

Definition 40.
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8.1 Null Sets

Let (Ω,F ,P) be a probabilistic space.

Definition 41 (Negligible sets). Let us have N ⊆ Ω. We say that N is negligible if

inf{P (B) : B ∈ F , N ⊆ B} = 0.

that is there exists C ∈ F such that N ⊆ C and P(C) = 0.

Definition 42 (Set of Negligible Sets). We define

N := {N ⊆ Ω : N is negligible}.

If we want to emphasis the σ − algebra and the probability, we can call N as N(F ,P).

Definition 43 (Complete σ − algebra). We say that F is P-complete if N(F ,P) ⊆ F .

Now, let us have (Ft)t≥0 a filtration with respect to F .

Definition 44. We say that (Ft)t≥0 is complete if for all t ≥ 0,

N(F ,P) ⊆ Ft.

Remark 23. In definition above, we just need that N(F ,P) ⊆ F0.

Remark 24. It is important to note that Ft have to contain N(F ,P) and not N(Ft,P|Ft
).

8.1.1 Property of the Null Sets

Let us have (ω,F ,P) a probabilistic space. Let N be the set of negligible sets.

Proposition 8.1. The following statements hold true.

1. N ∈ N and A ∈ F =⇒ N ∩ A ∈ N .

2. N ∈ N and M ∈ N =⇒ N ∪M ∈ N and N ∩M ∈ N .

Proof. Immediate.

8.1.2 Completion of a Sigma-Algebra

Given our probabilistic space (Ω,F ,P), if the sigma algebra F is just complete we do
nothing. Otherwise, we want to built a complete filtration that is complete with respect to
P (we just say that we want a P− complete filtration).

We proceed in this way.

• We define F P := σ(F ∪N ), with N := N(F ,P).

• We prove the following theorem.

Theorem 8.2. Let us have A ⊆ Ω. We have that

A ∈ F P ⇐⇒ ∃B,C ∈ F : B ⊆ A ⊆ C and P(B) = P(C).
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• We can extend P at P∗ : F P → [0, 1] such that if we have A and B and C as above,
then P∗(A) := P(B) = P(C).

• P∗ is well defined (it is independent of B and C), and it is a probability on F P .

• Now we prove the following theorem

Theorem 8.3. Given F , and F P , and P and P∗ as above, we have that

N(F ,P) = N(FP ,P∗).

• We observe in the end that given A ∈ F P such that P∗(A) = 0, then for all B ⊆ A,
we have that B ∈ F P , and our sigma algebra F P is complete.

•
Remark 25. We have that F ∪N is a pi− system for F P . This is immediate because

– by definition, it generate. In fact σ(F ∪N ) = F P .

– It is closed by intersection. In fact for all A1, A2 ∈ F and N1, N2 ∈ N , we have

(A1 ∪N1) ∩ (A2 ∪N2) = (A1 ∩ A2)︸ ︷︷ ︸
∈F

∪ (A1 ∩N2) ∪ (N1 ∩ A2) ∪ (N1 ∩N2)︸ ︷︷ ︸
N

.

and this conclude.

8.2 Complete and Right Continuous Filtration

• Let us have (Ω,F ,P) a probabilistic space.

• Given a filtration (Ft)t≥0 that is indexed in [0,+∞), we want to build a right − C0

filtration.

• Let us have (Gt)t≥0 a filtration with respect to F .

Proposition 8.4. Let us define for all t ≥ 0,

Ft :=
⋂
ε>0

Gt+ε.

then

1. (Ft)t≥0 is a filtration with respect to F .

2. (Ft)t≥ is right− C0.

Proof. The proof is simple.
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• 1.

Let us have 0 ≤ t < t+ k, with k > 0 a real number. Then

Ft :=
⋂
ε>0

Gt+ε =
⋂

0<ε≤k

Gt+ε ∩
⋂
ε>k

Gt+ε ⊆
⋂

ε−k>0

Gt+ε−k+k =︸︷︷︸
γ=ε−k

⋂
γ>0

Gt+k+γ = Ft+k.

• 2.

We just need to observe that, for all t ≥ 0,

⋂
ε>0

Ft+ε =
⋂
ε>0

⋂
γ>0

G(t+ε)+γ

 =
⋂

ε>0,γ>0

Gt+ε+γ =
⋂
δ>0

Gδ = Ft.

8.2.1 We make a right-continuous and complete filtration

• Now, given a filtration (Gt)t≥0, we can have a complete, righ− C0 filtration.

• Indeed, let us have (Ω,F ,P) a probabilistic space.

• Let us have (Gt)t≥0 a filtration with respect to F .

• We define

F̃t := σ(Gt ∪NF )

• Now (F̃t)t≥0 is a complete filtration.

• Let us define now

Ft :=
⋂
ε>0

F̃t+ε

• Now we have that (Ft)t≥0 is right− C0. It is immediate that it is still complete.

8.2.2 Filtration associated to a Process

• Let us set T = [0,+∞) (but with slightly changing another interval is ok, even a
discrete set).

• Let us have (Ω,F ,P) a probability space, and let us have (E,E ) a measurable space.

• Let X : T × Ω→ E be a S.P.

Definition 45 (Filtration associated to a S.P.). We define the following filtrations,
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1. We define as

F̃X
t := σ

(
{Xs : s ∈ T, and s ≤ t}

)
and we define (F̃X

t )t≥0 the filtration generated by X.

2. We define as

F
X

t := σ
(
F̃X
t ∪N

)
,

and we define (F
X

t )t≥0 as the completion of the above filtration.

3. We define as

FX
t :=

⋂
ε>0

F
X

t+ε,

and we define (FX
t )t≥0 the right continuous filtration that we obtain from the one

above.

So, in the end, we have that (Ft)t≥0 is the filtration complete and right continuous
associated to X.

Definition 46. Given the

We want to prove a theorem that we use in the section of Martingales. Let (Ω,F )
and (E,E ) be two measurable spaces (domain and codomain of our S.P.), let (Fn)n∈N be a
filtration.

Lemma 8.5. Let X = (Xn)n∈N be a S.P. adapted to the filtration above. Let τ : Ω → N≥0

be a stopping time and we suppose that τ < +∞. Then Xτ is Fτ -measurable.

Remark 26. (Xτ )(ω) := Xτ(ω)(ω).

Proof. Let us have A ∈ E . We need to prove that {Xτ ∈ A} ∈ Fτ . We observe that Xτ is
well defined because τ < +∞. Let’s begin.

• {Xτ ∈ A} ∈ F∞.

{Xτ ∈ A} =
+∞⋃
k=0

{Xk ∈ A}︸ ︷︷ ︸
∈Fk⊂F∞

∩{τ = k}︸ ︷︷ ︸
∈Fk⊂F∞

,

so the LHS belong to F∞ because it is obtained by countable intersection and union.

• for all n ≥ 0, {Xτ ∈ A} ∩ {τ ≤ n} ∈ Fn.

{Xτ ∈ A} ∩ {τ ≤ n} ∈ Fn =
n⋃
k=0

{Xk ∈ A}︸ ︷︷ ︸
∈Fk⊂Fn

∩{τ = k}︸ ︷︷ ︸
∈Fk⊂Fn

,

so the LHS belong to Fn likewise before.
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9 Martingales

Let us have (Ω,F ,P) a probabilistic space, let us have (E,E ) = (R,B(R)), and let us have
(Ft)t≥0 a filtration with respect to (Ω,F ). Let M := (Mt)t≥0 a S.P.

Definition 47 (Martingale). We say that M is a Martingale (with respect to filtration
(Ft)t≥0) if the following property hold true,

• M is adapted with respect to (Ft)t≥0,

• for all t ≥ 0, Mt ∈ L1(Ω,F ,P).

• for all 0 ≤ s < t that are in T , we have that Ms = E[Mt|Fs].

if we have (≤) in the third condition above, we have a sub−martingale, if we have (≥)
we have a super −martingale.

Remark 27. Let us have ϕ(t) := E[Mt], for all t ≥ 0. We observe that

• M marti. Then we have for all 0 ≤ s < t that

ϕ(s) = E[Ms] = E[ E[Mt|Fs] ] = E[Mt] = ϕ(t),

that is ϕ is a constant function.

• M sub-marti. Then ϕ is an increasing function.

• M super-marti. Then ϕ is a decreasing function.

In discrete time, that is we have (Mn)n∈N, third condition can be replaced by

∀n ∈ N, E[Mn+1|Fn] = Mn (14)

in fact, for example

E[Mn+2|Fn] =︸︷︷︸
tower

E[ E[Mn+2|Fn+1] |Fn] =︸︷︷︸
(14)

E[Mn+1|Fn] =︸︷︷︸
(14)

Mn

Proposition 9.1 (Martingle and Convex Function). We have the following statements.

1. if

• (Mt)t≥0 is a martingle,

• ϕ : R→ R a convex function such that for all t ≥ 0, we have E[|ϕ(Mt)|] < +∞,

then (ϕ(Mt))t≥0 is a sub-martingle.

2. If

• (Mt)t≥0 is a sub- martingle,
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• ϕ : R → R a convex, increasing function such that for all t ≥ 0, we have
E[|ϕ(Mt)|] < +∞,

then (ϕ(Mt))t≥0 is a sub-martingle.

Remark 28. We observe that, if

• (Mt)t≥0 is a sub-martingle

this does not imply that |Mt| and M2
t is a sub-martingle. But, if

• (Mt)t≥0 is a sub-martingle and for every t ≥ 0, we have that Mt ≥ 0 (a.s. ?????),

then M2
t is a sub-martingle.

Lemma 9.2 (Stopped Process). Let us suppose that

• (Mn)n∈N is a marti (sub,super),

• τ is a stopping time.

Then (Mn∧τ )n∈N is a marti (sub,super).

Proof. The proof is a simple check given the following

•

Mn∧τ = M0 +
n∑
k=1

I{τ≥k}(Mk −Mk−1)

• {τ ≥ k} = {τ ≤ k − 1}c ∈ Fk−1

Theorem 9.3 (Optional Stopping Theorem). Let M=(Mn)n∈Nbe a process and τ be a stop-
ping time that can have one of the following properties

a) τ is bounded by an integer constant N ≥ 1,

b) τ is finite, and M is bounded.

Then we can state

1. M marti, a) or b) hold. Then Mτ is integrable, and E[Mτ ] = E[M0].

2. M super-marti, a) or b) hold. Then E[Mτ ] ≤ E[M0].

3. M super-marti, M ≥ 0, τ < +∞ a.s. Then E[Mτ ] ≤ E[M0].

4. M sub-marti, a) holds. Then E[Mτ ] ≤ E[MN ].
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Proof. Let us prove the above statements following the order.

1. Let us assume a).

• |Mτ | ≤
∑N

k=0 |Mk| =⇒ Mτ ∈ L1 because for all k, Mk ∈ L1.

• Mτ =︸︷︷︸
τ≤N

Mτ∧N =⇒ E[Mτ ] = E[Mτ∧N ] =︸︷︷︸
(∗)

E[Mτ∧0] = E[M0]. In (∗) we have

used that (Mτ∧n)n is a martingale because of Lemma (9.2) and Remark (27).

Let us assume b).

• Mτ is integrable because M is bounded.

• ∀n ∈ N, E[Mτ∧n] ≡ E[M0] as above.

• limn→+∞Mτ∧n = Mτ a.s. because 0 ≤ τ < +∞ a.s.

• E[M0] = limn E[ Mτ∧n ] = E[ limnMτ∧n ] = E[Mτ ].

2. The proof is very similar to the one above.

3. We just need to use Fatou, that is (3.4).

4. By our hypothesis, we have Mn ≤ E[MN |Fn] if n ≤ N , and τ ≤ N a.s. So we have

•

E[Mτ ] =
N∑
n=0

E[I{τ=n}Mτ ] =
N∑
n=0

E[I{τ=n}Mn] ≤︸︷︷︸
(A)

• Now we observe that
I{τ=n}Mn ≤ E[I{τ=n}MN |Fn] =⇒ E[I{τ=n}Mn] ≤ E[I{τ=n}MN ].

• Now using the inequality above in the sum we obtain

≤︸︷︷︸
(A)

N∑
n=0

E[I{τ=n}MN ] = E[MN ].

Corollary 9.4. Let M = (Mn)n≥0 be a S.P., let τ1 and τ2 be two stopping times. Then we
have the following statement.

1. M is a marti, τ1 ≤ τ2, condition a) or b) in (9.3) hold true for τ2.

Then E[Mτ2|Fτ1 ] = Mτ1.

2. M is a sub-marti, τ1 is bounded by an integer constant N . Then E[MN |Fτ1 ] ≥Mτ1.

Proof. We prove the above statement following the order.
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1. • We have that τ1 < +∞ in either cases, a) or b), so by (8.5), we have that Mτ1 is
Fτ1 −measurable.
• If we prove that for all A ∈ Fτ1 , we have that E[Mτ2IA] = E[Mτ1IA], then we can

conclude by uniqueness of the conditional mean.

• Let us set

τ3 = IA · τ1 + IAC · τ2.

Clearly, if a) or b) holds for τ2, then it holds for τ3. Moreover, it is easy to show
that τ3 is a stopping time.

• So, M marti and τ2 and τ3 are S.T and a) or b) holds for both =⇒︸ ︷︷ ︸
(9.3)

E[Mτ3 ] =

E[M0] = E[Mτ2 ].

• Now we observe that

Mτ3 = IA ·Mτ1 + IAC ·Mτ2

• So if we take expectation both parts we obtain

E[Mτ3 ] = E[IA ·Mτ1 + IAC ·Mτ2 ] = E[M0] = E[Mτ2 ] =

= E[IA ·Mτ2 + IAC ·Mτ2 ] =⇒ E[Mτ1IA] = E[Mτ2IA] =⇒ Thesis.

2. • We just need to prove that for all A ∈ Fτ1 , we have E[MNIA] ≥ E[Mτ1IA].

• Likewise before, by (9.3) we prove that E[Mτ3 ] ≤ E[MN ].

• If we set τ2 ≡ N , we have the following identity

Mτ3 = IA ·Mτ1 + IAC ·MN

and from here the thesis is straightforward.

Now we prove a very important inequalities that hold for (discrete) martingles.

Theorem 9.5 (Doob’s Maximal Inequality). Let us have one of the following,

1. (Mn)n a martingle.

2. (Mn)n a positive sub−martingle.

Then for every N ≥ 1 integer and λ > 0, we have

λP[ max
1≤n≤N

|Mn| ≥ λ] ≤ E[|MN |I{ max
1≤n≤N

|Mn|≥λ}] ≤ E[|MN |].

Proof. We use the stopping theorem.

1. Let us have M a (discrete) martingle.
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• Let us set M∗ := max
1≤n≤N

|Mn|.

• Let us set MN
n := Mn∧N . We have that this is a martingle (τ ≡ N is S.T. plus

Lemma (9.2) ), and M∗ = max
1≤n≤N

|MN
n |.

• Let us set A(ω) := {n : n ≤ N and |MN
n (ω)| ≥ λ}. Let us define

τ(ω)

{
min(A(ω)) if A 6= ∅,
N + 1 if A = ∅.

It is easy to show that τ is a stopping time.

• It is immediate that {M∗ ≥ λ} = {τ ≤ N} ∈ Fτ .

• Now, we have the following implication,

(MN
n )n marti =⇒ (|MN

n |)n sub−marti

thanks to Lemma (9.1) and the fact that | · | is a convex function.

• Now, it is always true that

λI{M∗≥λ} ≤ |MN
τ |I{M∗≥λ}

• Now, |MN | sub-marti and τ ≤ N + 1 implies thanks to Lemma (9.4) that

|MN
τ | ≤ E[ |MN

N+1|︸ ︷︷ ︸
=|MN

N |=|MN |

|Fτ ] =⇒ I{M∗≥λ}|MN
τ | ≤ E[I{M∗≥λ}|MN ||Fτ ]

since what we have said about {M∗ ≥ λ} some point above.

• Now if we put together the inequalities that we have obtained and we take the
expectation both parts we obtain

λP(M∗ ≥ λ) ≤ E[|MN |I{M∗≥λ}] ≤ E[|MN |].

2. Now let us have a (discrete) positive sub−martingle. The prove is (almost) exactly
the same, because we can put the modulus function on MN

N for every n.

Now we give an easy lemma.

Lemma 9.6. Let X be a non-negative r.r.v. Then

E[Xp] =

∫ +∞

0

pup−1P[X ≥ u]du.

Now we need a trivial estimate, but that is fundamental to understand the inequalities
in the next section.

Proposition 9.7 (Trivial Estimate). Let us have M = (Mn)n≥0 a S.P. that can be

48



1. a martingale,

2. a positive sub-martingale.

Let us set

M∗
n := sup

0≤m≤n
|Mm|.

Then for every p ∈ (1,+∞) and for every n0 ∈ N, we have that

E[(M∗
n0

)p] ≤ (n+ 1)E[|Mn0|p],

that is M∗
n0
∈ Lp ⇐⇒ Mn0 ∈ Lp.

Proof. We prove the proposition for martingles, then with slightly changes we can prove it
even for sub-martingales.

• Let us suppose that M is a martingale, and let us fix n0 ∈ N.

• If E[|Mn0|p] = +∞ there is nothing to prove, so let us suppose that it is < +∞.

• let us set ϕ(x) := |x|p, for every x ∈ R. We have that ϕ is convex because it is C1 in
R, and it is increasing.

• Thanks to Proposition (9.1), we have that (ϕ(Mn))n = (|Mn|p)n is a sub-martingale.

• Since (|Mn|p)n is a sub − martingale, its mean-function is increasing, so for every
0 ≤ m ≤ n0 we have

E[|Mm|p] ≤ E[|Mn0|p].

• Then we can conclude with the following chain of inequalities,

(M∗
n0

)p ≤
n0∑
i=0

|Mi|p =⇒ E[(M∗
n0

)p] ≤ E

 n0∑
i=0

|Mi|p
 ≤ (n0 + 1)E[|Mn0|p],

and this is the thesis.

Now we prove the Doob’s Inequality. We keep the notation that we used in Theorem(9.5).

Theorem 9.8. Let us have M = (Mn)n∈N that can be

1. a martingle.

2. a positive sub-martingle.

Then, for every p > 1 and for every N ≥ 1 integer, we have

E[(M∗
N)p] ≤

(
p

p− 1

)p
E[|MN |p].
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Remark 29. We observe briefly that

(M∗
N)p = ( max

1≤n≤N
|Mn|)p = max

1≤n≤N
(|Mn|p).

Proof. We use the Trivial Estimate (9.7) and the trick (9.6).

• Firstly, if E[|MN |p] = +∞ there is nothing to prove.

• Let us suppose then that E[|MN |p] < +∞. Thanks to (9.7), we have that E[(M∗
N)p] <

+∞. We can suppose also that E[(M∗
N)p] > 0, otherwise the inequality is trivially true.

• Now, using the trick (9.7) we obtain

E[(M∗
N)p] =

∫ +∞

0

pup−1P(M∗
N ≥ u)du ≤

≤
∫ +∞

0

pup−2E[|MN |I{M∗N≥u}]du =

=

∫
Ω

|MN |

(∫ +∞

0

pup−2I{u≤M∗N}du

)
dP =

=

∫
Ω

|MN |

(∫ M∗N

0

pup−2du

)
dP =

=
p

p− 1

∫
Ω

|MN |(M∗
N)p−1dP =

=
p

p− 1
E[|MN |(M∗

N)p−1] ≤

≤ p

p− 1
E[|MN |p]

1
p · E[|(M∗

N)(p−1)· p
p−1 |]

p−1
p ,

where the last inequality follow from Holder ( 1 = 1
p

+ p−1
p

). Now if we divide for

E[(M∗
N)p]1−

1
p , we obtain the thesis.

9.1 Result in Continuous Time

Notation 1. We use the following notations,

* M∗
T = supt∈[0,T ]|Mt|.

* M
(n,T )
k := M kT

2n
.

* M (n,T ),∗ = maxk=0,..,2n |M (n,T )
k |.

Now, we describe the setting.

• Let M = (Mt)t≥0 be a martingale.
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• Let T > 0 fixed.

• We observe that (M
(n,T )
k )k≥0 is a discrete martingale, so we can use the theorem for

discrete martingale, in particular Doob.

• We need the following properties

M∗
T = lim

n
(M (n,T ),∗) (15)

everywhere on Ω (or a.c. if the filtration is complete).

Theorem 9.9 (Maximal Inequality). Let us have

1. M a martingale,

2. M a positive sub-martingale.

Let us suppose that condition (15) holds.
Then for every T > 0 and λ > 0, we have that

P(M∗
T ≥ λ) ≤ 1

λ
E[|MT |].

Remark 30. We remember (briefly) the theorem in the discrete time.

M = (Mn)n∈N marti/positive sub−marti =⇒

∀N ≥ 1 and λ > 0, P(M∗
N ≥ λ) ≤ E[|MN |]

1

λ
.

Proof. The proof follows the following steps.

• Let us have T > 0 a positive real number.

• Let λ > 0 be a positive real number.

• Let 0 < ε < λ be a real number. Let us set λ1 := λ− ε.

• ∀n ≥ 1 integer, let us set An := {M (n,T ),∗ ≥ λ1}.

• If N = 2n, thanks to Doob Inequality we have

P(An) ≤ E[|M (n,T )
2n︸ ︷︷ ︸
MT

|] 1

λ1

.

• We observe that An ⊆ An+1 for every n, so we have that P(∪nAn) = limn P(An).

• We claim that

{M∗
T ≥ λ1 + ε} ⊆ ∪nAn.
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in fact, let us take ω on the LHS. Then

M∗
T (ω) =︸︷︷︸

(15)

lim
n
M (n,T ),∗(ω) ≥ λ1 + ε =⇒

∀γ > 0,∃n0 : n ≥ n0 =⇒ M (n,T ),∗(ω) ≥ λ1 + ε− γ.

So, if γ = ε, we obtain that for such n0 we have

M (n0,T ),∗(ω) ≥ λ1,

so we have that {M∗
T ≥ λ1 + ε} ⊆ An0 ⊆ ∪nAn, as we wanted.

• So, we have the following inequalities,

P({M∗
T ≥ λ1 + ε}) ≤ P(∪nAn) = lim

n
P(An) ≤ E[|MT |]

1

λ1

.

• If we substitute, we obtain that for every 0 < ε < λ

P(M∗
T ≥ (λ− ε) + ε︸ ︷︷ ︸

λ

) ≥ E[|MT |]
1

λ− ε
.

So, by taking the limit ε→ 0+, we obtain the thesis.

Theorem 9.10 (Doob Maximal Inequality). Let M be

1. a martingale,

2. a positive sub-martingale.

Let us suppose that

∃p > 1 s.t. ∀t ≥ 0, E[|Mt|p] < +∞.

and that Condition 15 hold. Then for every T > 0, we have that M∗
T ∈ Lp, and the following

inequality hold

E[(M∗
T )p] ≤

(
p

p− 1

)p
E[|MT |p].

Proof. We write the proof just for the martingale, the case of a positive sub-martingale is
analogous.

• Let us define

Xn :=
(
M (n,T ),∗

)p
=

(
max

k=0,...,2n
|M kT

2n
|
)p

= max
k=0,...,2n

(
|M kT

2n
|p
)
.
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• Thanks to Doob maximal inequality (9.8), since (M
(n,T )
k )k≥0 is a martingale (or positive

sub-marti), we have that

E[Xn] ≤ q · E[|MT |p], with q =

(
p

p− 1

)p
where we have use as parameter N = 2n. We observe that RHS < +∞ because of our
hp.

• Now, we have that

– 0 ≤ Xn ≤ Xn+1 for every n (it is immediate to see),

– limnXn =
(

limnM
(n,T ),∗

)p
=
(
M∗

T

)p
thanks to Condition 15.

So, by monotone convergence we have that

E[(M∗
T )p] = lim

n
E[Xn].

• So, from the point above we deduce that

E[(M∗
T )p] ≤ q · E[|MT |p],

and this is the thesis.

Theorem 9.11 (Stopping Theorem Continuous Time). Let us have M = (Mt)t≥0 a S.P.

• ∃ p > 1 such that ∀t ≥ 0 we have E[|Mt|p] < +∞.

• M is a right− C0 martingale.

• τ is a bounded Stopping Time.

Then Mτ is integrable, and E[Mτ ] = E[M0].

Proof. The proof uses (9.10) and it is made by approximation of τ .

• We observe preliminary that M right − C0 implies that (15) holds true, so we can
apply Doob’s theorem above in continuous time.

• Let us have τ ≤ N − 1 a.c. in Ω.

Now we can deduce that Mτ ∈ L1 because Mτ ∈ Lp. In fact,

E[|Mτ |p] ≤ E[( sup
t∈[0,N−1]

|Mt|)p] = E[(M∗
N−1)p] ≤ Cost · E[|MN−1|p] < +∞

where we have used (9.10).

• Let us define

τn(ω) :=
+∞∑
k=0

I{ k
2n
<τ≤ k+1

2n
}
k + 1

2n
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• It is immediate that τn is a stopping time for every n.

• We have moreover that τn → τ from the right because for every ω, we have

0 ≤ τn(ω)− τ(ω) ≤ k + 1

2n
− k

2n
=

1

2n
.

• In addition, we obtain also that

τn(ω) = τn(ω)− τ(ω) + τ(ω) ≤ 1

2n
+ (N − 1) ≤ 1 +N − 1 = N.

• So, (M k
2n

)k≥0 marti and τn limited stopping time

(9.3)︷ ︸︸ ︷
=⇒ E[Mτn ] = E[M0], for every n.

• Then, we have the following estimate that hold for every n,

|Mτn| ≤ |M∗
N |.

Since M∗
N ∈ Lp ⊆ L1 thanks to (9.10), we have that the r.v. Mτn are dominated in L1.

• Then, since M is right continuous, we have that Mτn →Mτ if n→ +∞.

• We can the conclude by dominated convergence, because we have

E[M0] = E[Mτn ] = lim
n

E[Mτn ] = E[lim
n
Mτn ] = E[Mτ ],

and this is the thesis.

9.2 Doob Decomposition

Now we state and prove a theorem of decomposition for discrete sub-martingale.
Let us begin with a definition.

Definition 48. Let A = (An)n≥0 be a S.P. in discrete time. We say that A is predictable
(wrt a filtration (Fn)n≥0) if

∀n ∈ N, An is −Fn−1measurable.

Remark 31. There is a definition of predictable for S.P. in continuous time but it is more
complicated and we omit it.

Theorem 9.12 (Doob Decomposition). Let X be a sub-martingale in discrete time wrt a
filtration (Fn)n≥0. Then there exist

• M = (Mn)n≥0 a martingale, with M0 = 0.

• A = (An)n≥0 an increasing, predictable process (wrt (Fn)n≥0), with A0 = 0.
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such that for every n ∈ N, we have Xn = X0 + Mn + An. Moreover, the decomposition is
unique, that is if we can find others M ′ and A′ with the properties above, then M and M ‘
are indistinguishable, and the same hold for A and A‘.

Proof. The proof is simple, we just need to find a good decomposition.

• Let us define the following sequence of process.

– M0 = 0,

– M1 = X1 − E[X1|F0],

– Mn+1 = Mn +Xn+1 − E[Xn+1|Fn].

Then, we are forced to define An := Xn −X0 −Mn. Now, let us check that M and A
have the properties that we seek.

• M is a martingale. It is really simple.

– Adaptness is trivial because we have sum of Fn measurable functions.

– Integrability is trivial for we have sum of integrable functions.

– Martingale property. We just need to write

E[Mn+1 −Mn|Fn] = E[Xn+1 − E[Xn+1|Fn]|Fn] = 0.

and this conclude.

• A have the properties.

– predictability wrt (Fn)n≥0. We have

An = Xn −Mn = Mn−1 − E[Xn|Fn−1],

so it is Fn−1 measurable because it is sum of Fn−1 −measurable function.

– increasingness. For every n, we have

An+1 = Xn+1 −Mn+1 −X0 = E[Xn+1|Fn]−Mn −X0 ≥ Xn −Mn −X0 = An.

where in the inequality we used the sub−martingale property.

So we have the thesis.

• We observe that the A is increasing in the set where the sub-martingale property holds
with probability 1.

Now we can improve Corollary 9.4 for discrete sub-martingale.

Corollary 9.13. Let us have the following setting,

• Let X = (Xn)n≥0 be a sub-martingale in discrete time (wrt a filtration (Fn)n≥0).
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• Let τ1 and τ2 be bounded stopping time (wrt the same filtration for X) such that τ1 ≤ τ2.

Then

E[Xτ2|Fτ1 ] ≥ Xτ1 ,

and in particular we obtain

E[Xτ2 ] ≥ E[Xτ1 ].

Proof. We use Theorem (9.12) that we have just discover.

• Since X is a sub-martingale, thanks to Theorem (9.12) we have that X = M +A, with
M a martingale and A a suitable increasing predictable process.

• We observe preliminary that τ1 ≤ τ2 implies that Fτ1 ⊆ Fτ2 (easy to show,) so since
Mτ2 is Fτ2 − measurable, it makes sense to compute E[Mτ2|Fτ1 ]. Idem for Aτ2 and
Xτ2 .

• So, we have that

E[Xτ2|Fτ1 ] = E[Mτ2|Fτ1 ] + E[Aτ2|Fτ1 ]

• Now, we have to estimate both the terms above. We have

– M is a martingale,

– τ1 ≤ τ2 stopping times,

– τ2 is bounded.

So we can apply Corollary (9.4), and we have that E[Mτ2 |Fτ1 ] = Mτ1 .

• Moreover, we have that Aτ2 ≥ Aτ1 because τ2 ≥ τ1 a.c. Furthermore, we have that Aτ1
is Fτ1 −measurable.

• Then we can conclude that

E[Xτ2|Fτ1 ] ≥Mτ1 + E[Aτ1|Fτ1 ]︸ ︷︷ ︸
Aτ1

= Xτ1 ,

and this is the thesis. If we take expectation both part we obtain even the inequality
that we seek.
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9.3 Convergence for Sub-Martingale

9.3.1 Criterion of Convergence

• Let us have (xn)n a sequence of real number.

• Let us define

– σ0 = τ0 = 0.

– For i ≥ 0, let us define

σi+1 := inf{n > τi : xn ≤ a} τi+1 := inf{n > σi+1 : xn ≥ b}

Remark 32. inf(∅) = +∞.

• We say that there is an upcrossing in [a, b] between σi and τi if τi < +∞.

• We define γa,b := Card{i ≥ 1 : τi < +∞}.

The following is a simple result of analisys.

Lemma 9.14. The following fact are equivalent,

1. (xn)n is convergent (to a limit l ∈ R ∪ {±∞}).

2. For every a < b real, we have that γa,b < +∞.

3. For every a < b rational, we have that γa,b < +∞

Remark 33. We observe that if [a′, b′] ⊆ [a, b], then γa,b ≤ γa′,b′ .

Proof. Exercise.

9.3.2 Doob upcrossing lemma

Now, let us turn to processes. Let (Mn)n be a sub martingale in discrete time.

• Let us define

– σ0(ω) = τ0(ω) = 0. for every ω ∈ Ω.

– For i ≥ 0, let us define

σi+1(ω) := inf{n > τi(ω) : Mn(ω) ≤ a} τi+1(ω) := inf{n > σi+1(ω) : Mn(ω) ≥ b}

• The r.r.v. above are all stopping times. The proof is a simple induction that lays
on the following lemma. Let us have (Ω,F ,P, (Fn)n≥0) a filtered probabilistic space
and (E,B(E)) a metric space. Let us have also a S.P. (Mn) adapted wrt (Fn)n and
E − valued.

Lemma 9.15. Let us have τ : Ω→ [0,+∞] a stopping time. Then

σ(ω) := inf{n > τ(ω) : Mn(ω) ∈ B}

with B ∈ B(E) is a stopping time.

57



Proof. We just need to observe that for k ∈ N,

{σ ≤ k} =
k−1⋃
i=0

{τ = i}
⋂ k⋃

h=i+1

{Mh ∈ B}


 .

• Now, let us consider the random number of upcrossing.

γa,b(ω) := Card{i ≥ 1 : τi(ω) < +∞}.

For what we have said in the subsubsection above, if γa, b(ω) is bounded for every
a ∈ Q and b ∈ Q with a < b, then we have that the sequence (Mn(ω))n converges to a
limit finite or infinite.

•
Remark 34. We observe that

σ0 ≤ τ0 ≤ σ1 ≤ τ1 ≤ σ2 ≤ ...σi ≤ τi ≤ σi+1...

and we can not have that σi and τi are bounded from a constant independent of ω for
some i ≥ 1. Indeed, if it was true we would have

E[Mτi ] ≤ E[Mσi+1
].

since Theorem (9.13) holds true ( (Mn)n is a sub-martingale and τi ≤ σi+1 are bounded
stopping times ).

But on the same time, we would have

Mσi+1
≤ a < b ≤Mτi ,

so if we take expectation both parts we obtain a contradiction.

• Now, let us define

γNa,b(ω) := Card{i ≥ 1 : τi(ω) ≤ N},

that is the number of upcrossing before the instant N .

• Now, let us set ϕ(x) := (x− a)+ + a. This is a convex increasing function. Moreover,
we also have that

|ϕ(x)| ≤ |a|+ |x|,

so it is immediate that (ϕ(Mn))n is again a sub-martingale since Proposition (9.1)
holds true.
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• Now we ask ourselves which are the relation between the upcrossing starting and final
times that we have if we consider the r.v. (Mn)n and (ϕ(Mn))n. We discover that they
are the same, because it is immediate to show that

Mn ≤ a ⇐⇒ ϕ(Mn) ≤ a,

Mn ≥ b ⇐⇒ ϕ(Mn) ≥ b.

Since they are the same, we do not distinguish between the upcrossing of Mn and
ϕ(Mn).

Now we are ready to state the Doob′s upcrossing lemma.

Lemma 9.16 (Doob Upcrossing Lemma). Let us have

• (Mn)n≥0 a sub-martingale.

• a < b two real numbers.

• N ≥ 1 an integer.

Then we have the estimate

(b− a)E[γNa,b] ≤ E[(MN − a)+]

Proof. The proof is divided by steps that simplify the dissertation.

1. First Step.

• We omit the random element ω when it is not necessary.

• We set for simplicity M̃n := ϕ(Mn).

• If 1 ≤ i ≤ γNa,b, (we suppose γNa,b(ω) strictly positive) then by definition we have

M̃τi − M̃σi ≥ (b− a).

• So, if we sum we obtain

(A) :=

γNa,b∑
i=1

( M̃τi︸︷︷︸
M̃τi∧N

− M̃σi︸︷︷︸
M̃σi∧N

) ≥ γNa,b(b− a).

We remember that i ≤ γNa,b implies that σi ≤ τi ≤ N , and c∧d = min{c, d}. This
is a bad estimate because the sum depends upon the random variable γNa,b. We
want to put something deterministic, like N .

• Let us set for the sake of simplicity k = γNa,b. Surely we have that τk ≤ N and
τk+1 > N by definition, and we remember that

σ0 ≤ τ0 ≤ σ1 ≤ τ1 ≤ ... ≤ σk ≤ τk ≤ N.

• We ask ourselves what σk+1 can do. We can have
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– σk+1 > N . Then for every i > k, we have N < σi < τi. Then we have

(A) = (A) +
N∑

i=k+1

M̃τi∧N − M̃σi∧N︸ ︷︷ ︸
=0

=
N∑
i=1

M̃τi∧N − M̃σi∧N .

– σk+1 ≤ N . Then τk < σk+1 ≤ N < τk+1, and

N∑
i=1

M̃τi∧N − M̃σi∧N =

γNa,b∑
i=1

M̃τi∧N − M̃σi∧N + M̃τk+1∧N︸ ︷︷ ︸
M̃N

− M̃σk+1∧N︸ ︷︷ ︸
M̃σk+1

+0 = (B).

Now, we observe that for every n we have M̃n ≥ a, so

M̃N − M̃σk+1︸ ︷︷ ︸
=a

≥ a− a ≥ 0

and in conclusion (B) ≥ (A) ≥ γNa,b(b− a).

• We are happy because we have obtained an estimate independent of the random
variable γNa,b, but that is just dependent upon N , that is a fixed constant.

2. Second Step.

• We simply deduce the following inequality that follows from the telescopic series,

M̃N − M̃σ1∧N =
N∑
i=1

(
M̃σi+1∧N − M̃σi∧N

)
±
(
M̃τi∧N

)
=

=
N∑
i=1

(
M̃σi+1∧N − M̃τi∧N

)
+

N∑
i=1

(
M̃τi∧N − M̃σi∧N

)
≥

≥
N∑
i=1

(
M̃σi+1∧N − M̃τi∧N

)
+ γNa,b(b− a)︸ ︷︷ ︸

:=(C)

.

In fact we observe that surely N ≤ σN+1 since k ≤ N and N ≤ τk+1 ≤ σk+1 ≤
σN+1.

3. Third Step.

• We firstly observe that

– (M̃n)n≥0 is a sub−martingale,
– τi ∧N ≤ σi+1 ∧N ≤ N are two bounded stopping times,

implies that E[M̃σi+1∧N − M̃τi∧N ] ≥ 0, since Lemma (9.13) holds true.

• We can also say that

M̃N − M̃σ1∧N = (MN − a)+ − (Mσ1∧N)+ ≤ (MN − a)+.
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• We remember that we have supposed always that γNa,b(ω) ≥ 1, that is τ1(ω) < +∞
(ω was fixed). Moreover, if γNa,b(ω) = 0, that is τ1(ω) = +∞, we can save ourselves
anyway, because an immediate count show us that

(C)(ω) = 0 ≤ (MN(ω)− a)+,

So we have that (C)(ω) ≤ (MN(ω)− a)+ everywhere in Ω.

• Now, if we take expectation in what we had obtained in Step 2 we deduce imme-
diately by using what we said above that

(b− a)E[γNa,b] ≤ E[(MN − a)+].

and this is the thesis.

Now we are ready to give sufficient condition to have a.c. convergence of the sub-
martingale.

Theorem 9.17 (Doob Convergence Theorem). Let us have (Mn)n a sub-martingale. Let us
suppose that

sup
n∈N
{E[(Mn)+]} < +∞.

Then we have that there exists M∞ : (Ω,F )→ (R,B(R)) measurable such that the sequence
of r.r.v. (Mn)n converges a.c. to M∞, and the limit is integrable, that is M∞ ∈ L1(Ω,F ,P).

Proof. The proof follows from the above one.

• We firstly observe that, since M is a sub-martingale, we have that

sup
n∈N
{ E[(Mn)+] } < +∞ ⇐⇒ sup

n∈N
{ E[|Mn|] } < +∞.

In fact one arrow is obvious since (M)+ ≤ |M |. The other is easy since we have the
equality |x| = 2(x)+ − x, so if we substitute Mn to x we obtain

E[|Mn|] ≤ 2E[(Mn)+]− E[Mn] ≤ 2E[(Mn)+]− E[M0],

where in the last inequality we used that M is a sub-martingale.

• Now, let us enter in the core of the proof.

– Let us fic a ∈ Q and ∈ Q with a < b.

– Now, we have that for every N ≥ 1 that

E[γNa,b](b− a) ≤ E[(MN − a)+] ≤ E[(Mn)+] + |a| < +∞

and γNa,b ↑N γa,b, so by monotone convergence we obtain

E[γa,b] < +∞,

and from this we deduce that 0 ≤ γa,b < +∞ a.c.
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– Now, let us set Na,b := {ω : γa,b(ω) < +∞}, and let us set

N :=
⋂

a,b∈Q, a<b

Na,b.

Since for every a and b we have P(Na,b) = 1, we have also that P(N) = 1.

– Now we just need to observe that, since (9.14) hold true, we have that

N = {ω : ∀a < b rational, γa,b(ω) < +∞} = {ω : ∃ lim
n
Mn(ω) ∈ R ∪ {±∞}},

so Mn converges a.c. to the r.v. M∞(ω) = IN(ω)(limnMn(ω)).

– In a nutshell, it is convenient to see that M∞ = limnMn (it is surely measurable),
and that Mn →M∞ a.c.

• M∞ ∈ L1(Ω,F ,P). We simply use Fatou,

E[ |M∞| ] = E[ lim |Mn| ] ≤ limE[ |Mn| ] ≤ sup
n

E[ |Mn| ] < +∞,

So again M∞ ∈ L1, and |M∞| < +∞ a.c.

9.4 Characterization Of Convergence for Martingale

Now we would like to characterize the convergence in mean L1 for Martingale. We need
some results and a definition.

Definition 49 (Uniformly Integrable). Let X = (Xi)i∈I be a family of r.v. We say that X
is uniformly integrable (U.I.) if

lim
k→+∞

(
sup
i∈I
{E[ |Xi|I{|Xi|≥k} ]}

)
.

9.4.1 Family of U.I. r.r.v.

Let us have (Ω,F ,P) a probabilistic space. Let X : Ω→ R be a r.r.v. with X ∈ L1 and let
us consider

S := ( E[X|G] | G ⊆ F is a σ − field ).

Lemma 9.18 (Family U.I.). It holds true that S is U.I.

Proof. We just give a sketch of the proof.

• Let us fix G ⊆ F a σ − field and let us fix k a natural number.

• We define as YG,X := E[X|G] (a version of) the conditional expectation of X wrt G.
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• Now, we have

0 ≤ E
[
|YG,X |I{|YG,X |≥k}

]
≤ E

[
|X|I{|YG,X |≥k}

]
≤

≤ E[|X|I{|YG,X |≥k}∩{|X|≥√k}] + E[|X|I{|YG,X |≥k}∩{|X|<√k}] ≤

≤ E[|X|I{|X|≥√k}] +
√
kP(|YG,X | ≥ k) ≤

≤ E[|X|I{|X|≥√k}] +

√
kE[|YG,X |]

k
≤

≤ E[|X|I{|X|≥√k}] +
E[|X|]√

k
.

We have used the basic property of the conditional expectation and the Markov in-
equality.

• We conclude because the last term vanishes thanks to dominated convergence and
because we have a sequence that goes to zero, and this is independent of the sigma-
filed G.

Theorem 9.19 (Vitali’s Convergence Theorem). Let Xn be a sequence of r.v. that are
integrable, so Xn ∈ L1 and X ∈ L1. Then the following statements are equivalents

1. Xn → X in L1,

2. The following two conditions hold true,

• Xn → X in probability.

• (Xn)n is U.I.

Theorem 9.20 (Characterization of U.I. Martingale). Let us have M = (Mn)n a U.I.
martingale. Then

1. There exists M∞ ∈ L1 s.t. Mn →M∞ a.c. and in L1.

2. For every n ≥ 1, we have Mn = E[M∞|Fn].

Proof. The proof is straightforward given the above results.

1. • Let us have K0 s.t. k ≥ K0 implies that supn≥0(E[|Mn|I{|Mn|≥K}]) ≤ 1.

• So, we can write that

E[|Xn|] = E[|...|I{|Xn|≥K0}] + E[|...|I{|Xn|≤K0}] ≤ 1 +K0.

• So we have that supn≥0 E[|Xn|] < +∞.

• Now, M is a martingale (so it is a sub-martingale) and the sup-condition hold
true, so by Theorem (9.17) we have that Mn →M∞ a.c, and M∞ ∈ L1.
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• Now, Mn → M∞ a.c. implies that Mn → M∞ in probability, and with the fact
that M is U.I. we have by Theorem (9.19) that Mn →M∞ in L1.

2. • We firstly observe that for every n, for every A ∈ Fn, we have that

E[MmIA]→ E[M∞IA].

In fact, |Mm −M∞|IA ≤ |Mm −M∞| that goes to zero in L1, so by comparison
we obtain that E[MmIA]→ E[M∞IA] if m ↑ +∞.

• Now, let us fix n. If we prove that for every A ∈ Fn we have that

E[M∞IA] = E[MnIA].

we obtain the thesis, that is E[M∞|Fn] = Mn.

• This is simple because, since M is a martingale, for every m ≥ n we obtain that
Mn = E[Mm|Fn], so for every A ∈ Fn we have

E[MnIA] = E[MmIA]→ E[M∞IA] if m ↑ +∞,

that is the thesis because the sequence become eventually constant.

Corollary 9.21 (Levi Corollary). Let us have the following setting.

• Let X ∈ L1(Ω,F ,P) be a r.v. and let (Fn)n be a filtration.

• Let us define for every n ≥ 0 the r.v. Mn = E[X|Fn].

Then we have that M = (Mn)n is a martingale, and Mn → E[X|F∞] a.c. and in L1, with
F∞ = σ(∪nFn).

Proof. The proof follows in part from Theorem (9.20) and later from Theorem (2.4).

• It is immediate to show that M is a martingale.

• It is an exercise to show that M is U.I.

• So by Theorem (9.20) we have that Mn →M∞ a.c. and in L1, and E[M∞|Fn] = Mn.

• We have to show that M∞ = E[X|F∞].

• We firstly observe that M∞ is F∞ −measurable because it is defined in (9.17) as lim
of F∞ −measurable function (in fact Fn ⊆ F∞ for every n).

• We observe that F = ∪nFn is a π − system for σ(F ) because Fn ⊆ Fn+1 for every n
(easy exercise).
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• Now, let us have A ∈ F . Then we have that A ∈ Fn0 for some n0 natural. So, if we
have n ≥ n0, we have that A ∈ Fn, and we can write

E[XIA] = E[E[X|Fn]︸ ︷︷ ︸
Mn

IA] = E[MnIA]→ E[M∞IA] if n ↑ +∞

The convergence to E[M∞IA] follows from the convergence in L1 of Mn to M∞, so we
have that E[M∞IA] = E[XIA] because the sequence become eventually constant.

• Now, since F is a π − system for σ(F ), we have that E[XIA] = E[M∞IA] for every
A ∈ F∞ thanks to a corollary of Theorem (2.4), that is E[X|F∞] = M∞.

9.5 Quadratic Variation For Martingale Definition

Let’s start with an observation

• Let us have M = (Mn)n a martingale.

• By (9.1), we have that ((Mn)2)n is a sub-martingale, so by (9.12) we have that we can
find 〈M〉 = (〈M〉n)n an increasing predictable process that bring us to the decomposi-
ton.

•

Definition 50. We call the process 〈M〉n the quadratic variation of M .

• We can deduce an explicit formula for 〈M〉, that is 〈M〉0 = 0, and for every n ≥ 1

〈M〉n =
n∑
k=1

E[(Mk)
2 − (M2

k−1)|Fk−1] =
n∑
k=1

E[(Mk −Mk−1)2|Fk−1],

where the last equality follows directly from a direct count.

9.6 Quadratic Variation and a.c. limit

• Let us have M a discrete time martingale that is square integrable and let us have
〈M〉 its quadratic variation.

• We have that 〈M〉 is an a.c. increasing process, so there exists the limit of 〈M〉n(ω)
a.c.

• In particular we have that 〈M〉n ↑ 〈M〉∞ a.c. and we have by monotone convergence
that E[〈M〉n] ↑ E[〈M〉∞].

• Since (Mn)2 = (M0)2 + Nn + 〈M〉n for every n ≥ 0, and N is a martingale, we have
that E[(Mn)2] = cost+ E[〈M〉n], so we obtain that

sup
n
{ E[(Mn)2] } < +∞ ⇐⇒ E[ 〈M〉∞ ] < +∞.
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9.7 Local Martingale

Definition 51 (Local Martingale). We say that M is a Local Martingale with respect to
(Ft)t≥0 if the following properties hold true,

• M is adapted with respect to (Ft)t≥0,

• there exists (τn)n∈N r.r.v such that

– τn is a stopping time for all n,

– τn ↗ +∞,

– for all n ∈ N, (Mt∧τn)t≥0 is a martingale.

9.8 Quadratic Variation for Martingales

We use the following notation.

• Let us have T > 0. We indicate as π a partition of the interval [0, T ], with π defined
as

π = {0 = t0 < t1 < t2 < ... < tn = T}.

• The size of a partition is defined as

|π| = max
1≤k≤n

|tk − tk−1|.

• A sequence of partition (πn)n∈N is nested if for all n ∈ N, we have

πn ⊆ πn+1.

• If we fix a partition π, we denote as (〈M〉πt )t∈[0,T ] the process such that

〈M〉πt :=
∑

i: ti+1≤t

(Mti+1
−Mti)

2 + (Mt −Mtk)
2,

with k := max{j : tj ≤ t}. The sum in this way is extended from 0 to k − 1.

• Given (Xt)t≥0 a S.P., we define for all T > 0 the following

‖X‖∞,T (ω) := sup
t∈[0,T ]

{|Xt(ω)|}.

(The variable ω can be omitted if it is not ambiguous).

Theorem 9.22 (Mega Theorem). Let us have (Mt)t≥0 a continuous martingale wrt a filtra-
tion (Ft)t≥0. Then

1. we can find (At)t≥0 a continuous non-decreasing process, adapted wrt (Ft)t≥0 such that
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• for every T > 0,

• for every sequence (πn)n∈N of nested partitions of [0, T ] with |πn| → 0,

we have that for every ε > 0,

P(
∥∥〈M〉πn − A∥∥∞,T ≥ ε )→ 0 if n ↑ +∞,

that is 〈M〉πn → A in probability, and this limit is independent of the partition.

2. Moreover, we have the following two properties,

• (M2
t − At)t≥0 is a martingale.

• If (A′t)t≥0 is another process such that

* (A′t)t≥0 is (Ft)t≥0 − adapted,

* (A′t)t≥0 is continuous,

* (M2
t − A′t)t≥0 is a martingale,

* A′0 = 0,

then A and A′ are indistinguishable.

Definition 52 (Quadratic Variation for Martingle). The process A found above is called
the quadratic variation of the martingle M , and it is denoted by 〈M〉 = (〈M〉t)t≥0.

9.9 Semi-Martingale

9.9.1 BV Function

Let us denote as Σ the set of all the partitions of [a, b], that is

π ∈ Σ =⇒ π = {a = t0 < t1 < t2 < ... < tn−1 < tn = b}.

for some n ∈ N.

Definition 53 (BV Function). Let f : [a, b]→ R be a function. We say that f is of Bounded
V ariation (BV ) if

sup
π∈Σ

∑
tk∈π

|f(tk+1)− f(tk)|

 < +∞.

The following theorem hold true. Sooner or later we prove it.

Theorem 9.23. Let f : [a, b]→ R be a function. Then the following statements are equiva-
lent,

1. f is BV .

2. There exist f1 : [a, b]→ R and f2 : [a, b]→ R such that

• f1 and f2 are non-decreasing.
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• f = f1 − f2.

Now we give a notion of BV for S.P.

• Let us have (Ω,F ,P) and a probabilistic space.

• Let us have (R,B(R)).

• Let X : [0,+∞)× Ω→ R be a S.P. We denote X as (Xt)t≥0.

Definition 54 (BV for S.P.). Let us define, for all 0 ≤ a < b < +∞.

N := {ω ∈ Ω : ∀ [a, b] ⊆ [0,+∞), X|[a,b]×{ω} is BV }.

We say that X is BV is P(N) = 1, that is its trajectory are a.c. BV functions.

Now we can give a new definition. Let us have a filtration (Ft)t≥0.

Definition 55 (Semi-Martingale). We say that X is a semi − martingale (wrt filtration
(Ft)t≥0) if there exist

1. (Mt)t≥0 a local martingale,

2. (Vt)t≥0 a BV process,

such that Xt = Mt + Vt. We say that X is a continuous semi−martingale if M and V are
continuous.

Now we enunciate an important theorem that holds for semi−martingles.

Theorem 9.24. Let (Xt)t≥0 a continuous semi-martingale. The we have the following facts.

1. The decomposition

Xt = X0 +Mt + Vt

where

• Mt is a continuous local martingale such that M0 = 0,

• Vt is a continuous BV process such that V0 = 0,

is unique.

2. The following is a statement on the existence of a limit (in probability).

• Let us fix t > 0.

• Let us consider (πk)k∈N a sequence of partitions of [0, t] such that

* πk = {0 = t0 < t1 < ... < tnk = t},
* |πk| = sup{ti+1 − ti : i = 0, .., nk − 1} → 0 when k ↑ +∞.
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Then the following limits exist in probability (they are independent of the partitions)
and are equal,

lim
k→+∞

nk−1∑
i=0

|Xti+1
−Xti|2 = lim

k→+∞

nk−1∑
i=0

|Mti+1
−Mti |2.

Definition 56. The limit quantity of the above theorem is denoted as

〈X〉t := lim
k→+∞

nk−1∑
i=0

|Xti+1
−Xti |2,

and it is called the Quadratic V ariation of X in [0, t].

10 Brownian Motion

10.1 Gaussian Processes

Let T be an arbitrary index set.

Definition 57. Let X = (Xt)t∈T be a real valued S.P. We say that X is Gaussian if
∀t1, .., tn ∈ T , we have that (Xt1 , .., Xtn) is a Gaussian V ector.

Let X = (X)t∈T be a Gaussian Process.

Definition 58. We can define

• E(X)(t) := m(t) := E[Xt],

• Cov(X)(t, s) := C(t, s) := Cov(Xt, Xs), with s, t ∈ T .

Remark 35. We can even highlight the dependence of m and C from the S.P, so we can call
these function mX and CX .

Let (Ω,F ,P) be a probabilistic space.

Proposition 10.1. Let X = (Xt)t∈T and (Yt)t∈T be two Gaussian S.P. If we have

• mX(t) = mY (t) for all t ∈ T ,

• CX(t, s) = CY (t, s) for all t, s ∈ T .

Then X and Y have the same law.

Remark 36. The law of a S.P. is defined in (24).

Proof. The proof is made in this way.

• Because of Proposition (7.3), we just need to check that X and Y have the same finite
dimensional distributions.
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• Let us have t = (t1, .., tn) with ti ∈ T for all i, and ti = tj if, and only if i = j.

• Since we have that Xt and Yt are Gaussian V ectors, we have that their law is uniquely
determined by the vector of the mean and the matrix of covariance.

• It is a fast check to control that E[Xt] = E[Yt] and Cov(Xt) = Cov(Yt), so Xt and Yt
have the same law, because they have the same characteristic function.

Let T be a set.

Definition 59. Let C : T × T → R. We say that C is positive semi-definite if for every
n ≥ 1, for all t1, .., tn ∈ T , and for all (ξ1, .., ξn) ∈ Rn, we have that

n∑
i,j=1

C(ti, tj)ξiξj ≥ 0.

Remark 37. In practice, let us have

• t1, .., tn ∈ T , with (t1, .., tn).

• (ξ1, .., ξn) ∈ Rn.

If we set

• Ct =
(
C(ti, tj)

)
i,j=1,..,n

.

• ξ = (ξ1, .., ξn)T .

we have

(ξT )Ct(ξ) ≥ 0.

Remark 38. We remember that C is symmetric if C(s, t) = C(t, s) for all t ∈ T and s ∈ T .

Let T be a set of index.

Proposition 10.2 (Existence Gaussian Process). Let us have

• m : T → R,

• C : T × T → R, a symmetric, positive semi-definite function.

Then there exists a Gaussian process X such that E(X)(t) = m(t) and Cov(X)(t, s) =
C(t, s), with E and Cov defined in (58).

Proof. ON WORK.
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10.2 Definitions

Let us set T = [0,+∞). Let (Ω,F , (Ft)t≥0,P) be a filtered probabilistic space. Let B :
T × Ω→ (R,B(R)) be a S.P. (a real one).

Definition 60 (Intrinsic Brownian Motion). We say that B is a (standard) Brownian
Motion (B.m. for friends) if

• P
(
{ω : B0(ω) = 0}

)
= 1.

• for all 0 ≤ s < t, we have that Bt −Bs ∼ N(0, t− s).

• for all n ≥ 1, for all 0 ≤ t1 ≤ t2 ≤ ... ≤ tn, we have that

Bt1 , Bt2 −Bt1 , Bt3 −Bt2 , ..., Btn −Btn−1 .

are independent random variables.

• B is a.c. continuous, as defined in (27).

Remark 39. We remember that X ∼ .. means ”The random variable X has law ..”, and the
law of X is simply the probability PX .

Definition 61. A process that satisfy every condition but continuity of trajectory is called
Brownian Motion in Law.

Definition 62 (Wiener measure).

• Let (Ω,F , (Ft)t≥0,P) be a filtered probabilistic space.

• Let B : T × Ω→ (R,B(R)) be a S.P. (a real one).

Definition 63 (Bm with respect to a given Filtration.). We say that B is a (standard)
Brownian Motion (B.m. for friends), adapted with respect to filtration (Ft)t≥0 if

• P
(
{ω : B0(ω) = 0}

)
= 1.

• for all 0 ≤ s < t, we have that Bt −Bs ∼ N(0, t− s).

• for all 0 ≤ s < t, the r.v. Bt −Bs is independent from Fs.

• B is a.c. continuous, as defined in (27).

Remark 40. We observe that, since B = (Bt)t≥0 is adapted, if we have 0 ≤ s < t then we
have

• Bt is Ft measurable,

• Bs is Fs measurable and Fs ⊆ Ft =⇒ Bs is Ft measurable.

Then Bt −Bs is Ft measurable.
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Let us have the previous setting.

Proposition 10.3. Let B be a S.P. that is a Bm according to Definition (63), with respect
to a given filtration (Ft)t≥0. Then B is a Bm according to (60).

Proof. The proof is not hard. We just need to prove that the increments are independent
because the other properties remain the same.

• Let 0 ≤ t1 ≤ t2 ≤ ... ≤ tn ∈ T be real numbers. We prove our thesis by induction.

• n = 2.

– We have Bt1 and Bt2 −Bt1 .

– We have that Bt2−Bt1 is independent of Ft1 by our hypothesis, but σ(Bt1) ⊆ F t1
because B is adapted, so Bt2 −Bt1 is independent of σ(Bt1), that is Bt2 −Bt1 are
independent.

• n > 2

• Btn − Btn−1 is independent of Ftn−1 and Btn−1 − Btn−2 ,..., Bt2 − Bt1 , Bt1 are Ftn−1

measurable =⇒ Btn −Btn−1 and Btn−1 −Btn−2 ,..., Bt2 −Bt1 , Bt1 are independents.

• by inductive hypothesis, we have that Btn−1−Btn−2 ,..., Bt2−Bt1 , Bt1 are independents.
Thanks to Corollary (2.12), we easily conclude.

Now we want to prove that Definition (60) =⇒ Definition(63) if we chose a proper
filtration.

Remark 41. Let X = (Xt)t≥0 be a S.P. We recall that in Section (8.2.2) we have introduced

• the filtration (F̃X
t )t≥0, where F̃X

t := σ(Xs : 0 ≤ s ≤ t),

• the filtration (F
X

t )t≥0, that is the completion of the above filtration,

• the filtration (FX
t ) that is the right continuous filtration associated to the one above.

This is the filtration right− C0 generated by the process.

Proposition 10.4 (Bm with respect to generated filtration). Let us have

• B = (Bt)t≥0 a Bm according to Definition (60).

Then B is a Bm with respect to (F̃B
t )t≥0, according to Definition (63).

Proof. The proof is this.

• B is adapted with respect to (F̃B
t )t≥0 by definition.

• The only non trivial property is the one on the independence. Let’s see.
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• Let us define

An :=


n⋂
i=1

{Bsi ∈ Ai} : 0 ≤ s1 < s2... < sn ≤ s and Ai ∈ B(R)

 ,

A :=
+∞⋃
n=1

An.

We say that A is a π − system for F̃B
s .

– It is trivially closed by intersection and it contains Ω.

– It generate, that is σ(A) = F̃B
s . In fact, we have

∀ s1 : 0 ≤ s1 ≤ s, σ(Bs1) ⊆ A1 ⊆ A =⇒

F̃B
s = σ

 ⋃
0≤s1≤s

σ(Bs1)

 ⊆ σ(A) ⊆ F̃B
s .

• Now, thanks to Corollary (2.9), since

– A is a π − system for F̃B
s ,

– σ(Bt −Bs) is a π − system for itself.

If we prove that

∀A1 ∈ σ(Bt −Bs) and ∀A2 ∈ A , then P(A1 ∩ A2) = P(A1)P(A2) (16)

then we have that Bt −Bs and F̃B
s are independent, as we wanted.

• We proceed in this way.

– Let us fix A ∈ A.

So we have that A =
⋂n
i=1{Bsi ∈ Ai}, with 0 ≤ s1 < s2 < ... < sn ≤ s and

Ai ∈ B(R) for all i.

– Now, we have that Bs1 , Bs2 − Bs1 , .., Bsn − Bsn−1 , Bt − Bs are independent since
we have assumed Definition (60).

– Thanks to Corollary (2.12), we have that (if we indicate as Bs0 = 0),

σ(Bt −Bs) ⊥
n∨
i=1

σ(Bsi − si−1) =

= σ(Bs1 , Bs2 −Bs1 , .., Bsn −Bsn−1) =︸︷︷︸
(∗)

= σ(Bs1 , Bs2 , .., Bsn),

where in (∗) we have used what we have discover with Corollary (5.6) (it is easy
to fix the detail, given the Corollary).
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– Now, A ∈ σ(Bs1 , Bs2 , .., Bsn), so for all B ∈ σ(Bt −Bs) we have that

P(A ∩B) = P(A)P(B),

and this is what we wanted to obtain the thesis, because we have obtained (16).

Corollary 10.5 (Bm with respect to the completion of the filtration above.). Let us have

• B = (Bt)t≥0 a Bm according to Definition (60).

Then B is a Bm with respect to (F
B

t )t≥0, according to Definition (63).

Proof. The proof uses Proposition (2.16). As before we just need to check the independence
condition.

• Let us have s < t, and and let us consider σ(Bt−Bs) and F
B

s . We want to show that
they are independent.

• we remember that F
B

s = σ(F̃B
s ∪N ), with N = N(F ,P) the P−null sets with respect

to F .

• Thanks to Remark (25), we know that F̃B
s ∪N is a π − system for F

B

s .

• Now we want to use (2.16) with I = F̃B
s ∪N and X = Bt −Bs.

• So, let us have A ∈ F̃B
s and N ∈ N . Then, for all ϕ ∈ C0

B(R) we have

E[ϕ(Bt −Bs)IA∪N ] = E[ϕ(Bt −Bs)IA] + E[ϕ(Bt −Bs)IN\A] =

E[ϕ(Bt −Bs)IA] = E[ϕ(Bt −Bs)]P(A) = E[ϕ(Bt −Bs)]P(A ∪N).

We have used that σ(Bt − Bs) and F̃s are independents thanks to the Proposition
above, and N \ A ∈ N (so the integral on it is equal to zero) and P(A) = P(A ∪N).

• We have concluded because we have the hypothesis of Proposition (2.16).

Corollary 10.6 (Bm with respect to the completion Right-C0 filtration above.). Let us have

• B = (Bt)t≥0 a Bm according to Definition (60).

Then B is a Bm with respect to (FB
t )t≥0, according to Definition (63).

Proof. The proof is not hard and it follows from the previous one by using an argument of
continuity.

• As before, we just need to check the independence condition.

• So, let us have s < t. We want to show that Bt − Bs⊥FB
s , and we remember that

FB
s = ∩ε>0F

B

s+ε.
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• We want to use Proposition (2.16) with I = Fs and X = Bt −Bs, that is we want to
prove that

∀A ∈ FB
s , ∀ϕ ∈ C0

B(R), E[ϕ(Bt −Bs)IA] = E[ϕ(Bt −Bs)]P(A).

• So, let us have A ∈ FB
s and ϕ ∈ C0

B(R).

• We have for all ε > 0 such that s+ ε < t, that A ∈ F
B

s+ε, so thanks to Corollary above

we have that (Bt −Bs+ε) ⊥ F
B

s+ε, and this implies that

E[ϕ(Bt −Bs+ε)IA] = E[ϕ(Bt −Bs+ε)]P(A).

• Now, we have

– ϕ(Bt −Bs+ε)IA
ε→0+→ ϕ(Bt −Bs)IA a.s. ω ∈ Ω, because B is a continuous process

and ϕ is a continuous function.

– for all ε > 0, we have that ϕ(Bt −Bs+ε)IA is dominated by a constant.

Analogously, we have that

– ϕ(Bt −Bs+ε)
ε→0+→ ϕ(Bt −Bs) a.s. ω ∈ Ω, because B is a continuous process and

ϕ is a continuous function.

– for all ε > 0, we have that ϕ(Bt −Bs+ε) is dominated by a constant.

So thanks to dominated convergence, we have that

E[ϕ(Bt −Bs+ε)IA]
ε→0+→ E[ϕ(Bt −Bs)IA]

||
E[ϕ(Bt −Bs+ε)]P(A)

ε→0+→ E[ϕ(Bt −Bs)]P(A),

so the limit have to be equal, that is what we wanted to prove.

Remark 42 (Property of Markov Process). We have that the Bm ha centered and indepen-
dents increments so it is a Martingle and a Markov Process.

11 Stochastic Integral

We would like to generalize the notion of integrals using as integrator the Brownian motion.
I don’t know why we are doing this yet, but when I discover it I write something more in
this introuduction.
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11.1 Why it is difficult to define SI

It is hard to define the Stochastic Integrals (S.I.) with respect to Bm because it is not stable
by approximation. In fact one can imagine to define S.I. starting by the Rieman Integrals,
that is

• We have a function f : [a, b]→ R that we want to integrate.

• We have a function g : [a, b] → R that we want to use as integrator, that is g has the
role of identity in Rieman Integral.

• So, let us have πn := {t0 < ... < tn} a partition of [a, b], so we have that t0 = a and
tn = b.

• we can define

Xπn :=
n−1∑
i=0

f(t̃i)(g(ti+1)− g(ti)), t̃i ∈ [ti, ti+1] a generic point.

• Now we take the sup when we vary the partition and the points.

• We hope that this limit , if the partition is dense enough, does not depend upon the
partition itself and the point that we choose.

• unfortunately, if g is a Bm, we have many problem.

11.1.1 Proof that our definition does not work with Bm

• Let us have B = (Ω,F ,P, (Ft)t≥0) a standard Bm (that is according to Definition
(63)).

• Let us consider the dyadic partition

πn := {tn0 , ..., tn2n},

and for all k ∈ {0, 1, ..., 2n}, we define tnk = k
2n

.

• Let us consider the three following approximation,

Xn =
2n−1∑
k=0

B k
2n

(B k+1
2n
−B k

2n
)

Yn =
2n−1∑
k=0

B k+1
2n

(B k+1
2n
−B k

2n
)

Zn =
1

2

2n−1∑
k=0

(B k
2n

+B k+1
2n

)(B k+1
2n
−B k

2n
) =

Xn + Yn
2

.

Now we prove the following claim.
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Proposition 11.1. The sequence (Xn)n≥0 converges in L2(Ω) to a r.v. X∞, and we have
that E[X∞] = 0.

Proof. Let us define ∆m
h := Bh+1

2m
−B h

2m
.

• Now we write in a proper way Xn+1 −Xn. We have

Xn+1 −Xn =
2n+1·2−1∑
k=0

B k
2n+1

(B k+1

2n+1
−B k

2n+1︸ ︷︷ ︸
∆n+1
k

)−
2n−1∑
k=0

B k
2n

(B k+1
2n
−B k

2n︸ ︷︷ ︸
∆n
k

).

• Now we observe that

Xn+1 =
2n·2−1∑
k=0

B k
2n+1

∆n+1
k =

=
2n−1∑
k=0

B 2k
2n+1

∆n+1
2k +

2n−1∑
k=0

B 2k+1

2n+1
∆n+1

2k+1

• Now we substitute and with a little algebra we obtain

Xn+1 −Xn =
2n−1∑
k=0

B k
2n

(∆n+1
2k −∆n

k) +B 2k+1

2n+1
∆n+1

2k+1

• Now we observe that

∆n+1
2k −∆n

k = (B 2k+1

2n+1
−B 2k

2n+1
)− (B k+1

2n
−B k

2n
) = −∆n+1

2k+1

• If we substitute again, we obtain

Xn+1 −Xn =
2n−1∑
k=0

∆n+1
2k+1(B 2k+1

2n+1
−B 2k

2n+1
)︸ ︷︷ ︸

∆n+1
2k

=
2n−1∑
k=0

∆n+1
2k+1∆n+1

2k .

• It is immediate to see that {∆n+1
2k ∆n+1

2k+1}k=0,..,2n−1 are orthogonal, so we have that

E[(Xn+1 −Xn)2] =
2n−1∑
k=0

= E[(∆n+1
2k+1)2(∆n+1

2k )2] = 4 · 1

2n

We have used that ∆n+1
2k ⊥∆n+1

2k+1, and they are N(0, 1
2n+1 ).

• Now it is an easy exercise to show that (Xn)n∈N is a Cauchy sequence and thus it
converges in L2(Ω) to X∞ ∈ L2(Ω).
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Now we make the math with the sequence (Yn)n≥0.

Proposition 11.2. The sequence (Yn)n≥0 converges in L2(Ω) to a r.v. Y∞ such that X∞ 6=
Y∞ = B2

1 .

Proof. The proof lays on the above Proposition. We use the same notations that we have
used in that proposition.

• We firstly observe that for all m ∈ N, we have

Ym =
2m−1∑
k=0

B k+1
2m

(B k+1
2m
−B k

2m︸ ︷︷ ︸
∆m
k

) =

=
2m−1∑
k=0

B k
2n

∆m
k +

2m−1∑
k=0

(B k+1
2m
−B k

2m︸ ︷︷ ︸
∆m
k

)∆m
k =

=Xm +
2m−1∑
k=0

(∆m
k )2.

• So, we can write

Yn = Xn +
2n−1∑
k=0

(∆n
k)2,

Yn+1 = Xn+1 +
2n+1−1∑
k=0

(∆n+1
k )2

and this implies that

Yn+1 − Yn = Xn+1 −Xn +
2n+1−1∑
k=0

(∆n+1
k )2 −

2n−1∑
k=0

(∆n
k)2,

and now it is easy to show that

2n+1−1∑
k=0

(∆n+1
k )2 −

2n−1∑
k=0

(∆n
k)2 = 2(Xn −Xn+1),

so we conclude that

Yn+1 − Yn = Xn −Xn+1,

for all n ∈ N.

• From the last equality above, we have that (Yn)n≥0 is a Cauchy sequence in L2(Ω),
because ‖Yn+1 − Yn‖ = ‖Xn+1 −Xn‖, so we can find Y∞ ∈ L2(Ω) that is the limit of
the sequence.
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• Now, we have that for all n ∈ N≥0,

Yn = Y0 +
n∑
j=1

(Yj − Yj−1) = Y0 −
n∑
j=1

(Xj −Xj−1) = Y0 +X0 −Xn.

Now, if we take the limit as n ↑ ∞, we obtain that

X∞ + Y∞ = X0 + Y0 = B2
1 ,

and the last equality holds true by trivial substitution.

Remark 43. We have obtained in particular that X∞ 6= Y∞.

Now let’s see what is the behaviour of Z.

Proposition 11.3. The sequence (Zn)n converges to 1
2
B2

1 .

Proof. We just need to observe that for every n,

Zn =
Yn +Xn

2
=
X0 + Y0

2
=

1

2
B2

1 ,

so it trivially converges to the limit that we claimed.

11.2 Definition of Stochastic Integral (for E.P.)

We want the uniqueness of the limit, so we have to operate some ”choice” in the definition
of the integral wrt (with respect to) a Bm.

Setting 2. We put ourselves in the following setting.

* Let us have B = (Ω,F ,P, (Ft)t≥0) a Bm, with (Ft)t≥0 a generic filtration.

* Let X : (Ω,F )→ (R[0,+∞),B(R)
⊗

[0,+∞)) be a S.P.

Definition 64 (Elementary Process). We say that X = (Xt)t≥0 is an Elementary Process
(E.P.) if

• X is adapted with respect to (Ft)t≥0,

• There exist

– 0 = t1 < t2 < ... < tn a sequence of real numbers, with n ≥ 2,

– Xt1 , ..., Xtn a sequence of r.v. with Xti ∈M((Ω,Fti), (R,B(R)),
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such that for all t ≥ 0, we have

Xt =
n−1∑
i=1

XtiI[ti,ti+1)(t).

Remark 44. We observe that the sequence of real numbers have to be fixed for every ω ∈ Ω,
that is this sequence is independent of ω.

Definition 65 (Square Integrable E.P.). Given X a E.P. according to Definition (64), we
say that X is square integrable if for all i = 1, ..., n, we have that

E[X2
ti

] < +∞

Remark 45. Let us have a ∈ R, and X an E.P. Starting by this, we can represent X by
adding the point a. In fact,

• if a ∈ {t1, .., tn} there is nothing to do.

• Otherwise, we have that a ∈ (tk, tk+1), for some index k. In this case we can write

Xt =
n−1∑
i=1

XtiI[ti,ti+1)(t) =
∑
i 6=k

XtiI[ti,ti+1)(t) +XtkI[tk,tk+1)︸ ︷︷ ︸
(A)

.

Now, we can break (A) in the following way,

(A) = XtkI[tk,a) +XtkI[a,tk+1).

Since Ftk ⊆ Fa, we have that Xtk is Fa −measurable, so if we reorganize the point
and the r.v. we obtain a new representation of X with the set of points {t1, .., tn}∪{a}.
We remark that the r.v. that correspond to a is Xtk .

• if a > tn, we simply observe that

Xt = Xt + 0 · I[tn,a).

Definition 66 (Stochastic Integral for E.P.). Let us have

• X an elementary process as in Definition (64).

• 0 ≤ a ≤ b two real numbers.

We define the Stochastic Integral (S.I.) of X (with respect to the fixed Bm of Setting (2))
as ∫ b

a

XsdBs :=
n−1∑
i=1

Xti(B(a∨ti+1)∧b −B(a∨ti)∧b). (17)
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11.2.1 Good Definition of SI (To improve the notation of this subsubsection)

In this moment, we don’t know if we have given a good definition for our S.I. of E.P. because
different representation could give different values of Formula (17). Given X an E.P. such
that

Xt =
n−1∑
i=1

XtiI[ti,ti+1)(t),

we denote in this little subsubsection as S(X, t) the r.v.
∫ b
a
XsdBs, with X = (Xt1 , .., Xtn)

and t = (t1, .., tn), and we denote as X(X, t) the E.P., because we want to highlight the
random variables and the partition. We can do even more, we can define S(X, t) even if
t1 > 0. This is useful to simplify the notation (that is already very heavy).

We have to prove that

Xt =
n−1∑
i=1

XtiI[ti,ti+1)(t) =
n−1∑
i=1

YpiI[pi,pi+1)(t) =⇒ S(X, t) = S(Y , p).

Our strategy is this. We prove that the integrals does not change if we add one point, then
we use a lemma that we are going to prove.

Lemma 11.4 (Equality Lemma). Let X = X(X, t) = (Y , p) be an E.P. Let us suppose that
t = p. Then X = Y , that is for all k, Xtk = Ytk .

Proof. We have that for all k = 1, .., n− 1,

Xtk =
n−1∑
i=1

XtiI[ti,ti+1)(tk) =
n−1∑
i=1

YtiI[ti,ti+1)(tk) = Ytk .

Lemma 11.5 (Addition Lemma). Let us have the following setting.

• Let X = X(X, t) be an E.P. with t = (t1, .., tn) and X = (Xt1 , .., Xtn−1) and n ≥ 2.

• Let c ∈ R, with c ≥ 0, and c 6= t1, .., tn and c < tn.

• Let us consider m the highest index such that tm < c < tm+1.

• Let us consider t̂ = (t1, .., tm, c, tm+1, .., tn) and X̂ = (Xt1 , .., Xtm , Xtm , Xtm+1 , .., Xtn).

Then S(X, t) = S(X̂, t̂).

Proof. We have that

S(X, t) =S((Xt1 , .., Xtm−1), (t1, .., tm))+

S(Xtm , (tm, tm+1))+

S((Xm+1, .., Xtn), (tm+1, .., tn)).
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Now it is immediate (trivial substitution) to show that

S(Xtm , (tm, tm+1)) = S(Xtm , (tm, c)) + S(Xtm , (c, tm+1)) = S((Xtm , Xtm , (tm, c, tm+1)).

Now, if we substitute we obtain

S(X, t) =S((Xt1 , .., Xtm−1), (t1, .., tm))+

S((Xtm , Xtm , (tm, c, tm+1))+

S((Xtm+1 , .., Xtn), (tm+1, .., tn)) =

=S(X̂, t̂),

and this is the thesis.

Remark 46. It is immediate that, if we have c > tn, then

S((Xt1 , .., Xtn−1), (t1, .., tn)) = S((Xt1 , .., Xtn−1 , 0), (t1, .., tn, c)).

From the above lemmas it follows immediately that

Theorem 11.6. Formula (17) is well defined, that is it does not depend from the represen-
tation.

Proof. Let us have X = X(X, t) = X(Y , p) our usual E.P. with two representations. From
now till the end of the proof, every union must be intended as an ordered union (for example,
(1, 3, 4) ∪ (2, 3) = (1, 2, 3, 4)). We have that

X = X(X, t) = X(X1, t ∪ {p1}) = ... = X(X̂, t ∪ p).

but it is also true that

X = X(Y , p) = X(Y 1, p ∪ {t1}) = ... = X(X̂, p ∪ t),

so thanks to Lemma (11.4), we have that X̂ = Ŷ . Now, it is straightforward that

S(X, t) = S(X̂, p ∪ t) = S(Ŷ , p ∪ t) = S(Y , p).

11.3 Property of S.I.

Remark 47. What does the above definition mean? We simply have the following cases. Let
us fix an index k.

1. tk < tk+1 ≤ a ≤ b. Then

(a
max
∨ tk+1)

min
∧ b = a ∧ b = a,

(a
max
∨ tk)

min
∧ b = a ∧ b = a.

So we have to compute Ba −Ba, that is equal to 0.
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2. a ≤ b ≤ tk < tk+1. Then

(a
max
∨ tk+1)

min
∧ b = tk+1 ∧ b = b,

(a
max
∨ tk)

min
∧ b = tk ∧ b = b.

So we have to compute Bb −Bb, that is equal to 0.

3. tk < a < tk+1 ≤ b. Then

(a
max
∨ tk+1)

min
∧ b = tk+1 ∧ b = tk+1,

(a
max
∨ tk)

min
∧ b = a ∧ b = a.

So we have to compute Btk+1
−Ba.

4. a ≤ tk < b < tk+1. Then

(a
max
∨ tk+1)

min
∧ b = tk+1 ∧ b = b,

(a
max
∨ tk)

min
∧ b = tk ∧ b = tk.

So we have to compute Bb −Btk .

5. a ≤ tk < tk+1 ≤ b. Then

(a
max
∨ tk+1)

min
∧ b = tk+1 ∧ b = tk+1,

(a
max
∨ tk)

min
∧ b = tk ∧ b = tk.

So we have to compute Btk+1
−Btk .

We observe that the significant points are those in [a, b].

Remark 48. We want to simplify Formula (17), by eliminating case 3 and 4 in the above
remark. We proceed in this way.

• We have X our E.P. We have associated to it a sequence 0 = t0 < t1 < ... < tn of
points and a sequence Xt1 , .., Xtn of r.v.

• We add by following Remark (45) the numbers a and b to the sequence {ti}. Now
Formula (17) that defines S.I. become∫ b

a

XsdBs =
∑

i:a≤ti≤ti+1≤b

Xti(Bti+1
−Bti). (18)

We observe that one of the point is a, and another one is b.

Lemma 11.7 (Splitting Formula). Let X be an E.P. and let us consider the S.I.
∫ b
a
XsdBs.

Let us have c ∈ R such that a ≤ c ≤ b. Then∫ b

a

XsdBs =

∫ c

a

XsdBs +

∫ b

c

XsdBs.
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Proof. The proof is easy and it’s done by adding to the partition the points a and b and
c.

Remark 49. We can define

Ja,b := {i ∈ {1, .., n} : a ≤ ti ≤ ti+1 ≤ b},

and in this way, we have ∫ b

a

XsdBs =
∑
i∈Ja,b

Xti(Bti+1
−Bti).

Lemma 11.8 (Linearity). Let X and Y be E.P. and let 0 ≤ a ≤ b and let λ ∈ R Then∫ b

a

(Xs + Ys)dBs =

∫ b

a

XsdBs +

∫ b

a

YsdBs,∫ b

a

(λXs)dBs = λ(

∫ b

a

XsdBs)

Proof. The proof is immediate if we represent X and Y with the same partition, and this is
always possible, so we do not write every detail.

11.3.1 Ito isometry for E.P.

Proposition 11.9 (Ito Isometry for E.P.). Let X = (Xt)t≥0 be an square integrable process.
Then the following facts hold true.

1. The r.v.
∫ b
a
XsdBs ∈ L2(Ω), that is it has first and second moment finite.

2.

E

[∫ b

a

XsdBs

]
= 0.

3.

E

(∫ b

a

XsdBs

)2
 =

∫ b

a

E[(Xs)
2]ds.

Proof. We firstly prove that our S.I. belong to L2(Ω), so it has first e second moment well
defined.

• We denote for every index i, the variable ∆i = Bti+1
− Bti . We observe that ∆i⊥Fti

by the properties of our Bm.

• First of all, we compute the following(∫ b

a

XsdBs

)2

=

∑
i∈Ja,b

Xti∆i

2

=
∑
i∈Ja,b

(Xti)
2(∆i)

2 + 2
∑

i,j∈Ja,b,i<j

Xti∆iXtj∆j.

We have to prove that every term is integrable that is it belong to L1(Ω).
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• We remember that, if X ∈ L1(Ω) and Y ∈ L1(Ω) and X⊥Y , then XY ∈ L1(Ω).

• So, let us consider i ∈ Ja,b.
Thanks to our hypothesis we have that Xti ∈ L2(Ω) for every i. But then

Xti ∈ L2(Ω) =⇒ (Xti)
2 ∈ L1(Ω),

∆i ∈ L2(Ω) =⇒ (∆i)
2 ∈ L1(Ω)

Xti⊥∆i =⇒ (Xti)
2⊥(∆i)

2,

where the last implication holds true because Xti is Fti −measurable. Now we can
conclude that (Xti)

2(∆i)
2 ∈ L1(Ω).

• On the other and, let us consider i, j ∈ Ja,b, with i < j. So we have ti < ti+1 ≤ tj, and
we have

Xti is Fti ⊆ Ftj −measurable,
∆i = Bti+1

−Bti Fti+1
⊆ Ftj −measurable.

So the product ∆iXti is Ftj − measurable, and we proved some lines above that
∆iXti ∈ L2(Ω).

• Now, we have that

Xti∆i ∈ L2(Ω), and it is Ftj −measurable,
Xtj ∈ L2(Ω), and it is Ftj −measurable.

Then we can conclude that XtjXti∆i ∈ L1(Ω), and it is Ftj −measurable. (It is well
known that X, Y ∈ L2 =⇒ XY ∈ L1).

• In the end, we have that

XtjXti∆i ∈ L1(Ω), and it is Ftj −measurable,
∆j ∈ L1(Ω),

∆j⊥Ftj .

So we can conclude that ∆jXtjXti∆i ∈ L1(Ω), as we wanted to prove.

Now we know that
∫ b
a
XsdBs has first and second moments finite, so we can compute them.

•

E

[∫ b

a

XsdBs

]
=
∑
i∈Ja,b

E[Xti ]E[Bti+1
−Bti ] = 0

• For the second moment, we just need to compute the following.

E[(Xti)
2(∆i)

2] = E[X2
ti

]E[(∆i)
2] = E[X2

ti
](ti+1 − ti),

E[XtiXtj∆i∆j] = E[XtiXtj∆i]E[∆j]︸ ︷︷ ︸
=0

= 0.
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So we have that

E

(∫ b

a

XsdBs

)2
 =

∑
i∈Ja,b

E[(Xti)
2](ti+1 − ti) =

=
∑
i∈Ja,b

∫ b

a

E[(Xti)
2]I[ti,ti+1)(s)ds.

Now, we observe that for all s ∈ [ti, ti+1), we have

E[(Xs)
2] = E[(Xti)

2],

so if we substitute above we obtain∑
i∈Ja,b

∫ b

a

E[(Xs)
2]I[ti,ti+1)(s)ds =

∫ b

a

∑
i∈Ja,b

E[(Xs)
2]I[ti,ti+1)(s)ds =

∫ b

a

E[(Xs)
2]ds,

and this is the thesis.

We can improve the above result.

Proposition 11.10 (Ito Isometry for E.P. Improved). Let X = (Xt)t≥0 be a square integrable
E.P. The following facts hold true.

1.

E

[∫ t

s

XrdBr|Fs

]
= 0.

2.

E

(∫ t

s

XrdBr

)2

|Fs

 = E

[∫ t

s

(Xr)
2dr|Fs

]
.

Proof. The proof is a little bit tricky with respect to the above one because we do not know
that some r.v. are measurable with respect Fs, but we can save ourselves.

• Let us denote as Js,t := {i : s ≤ ti ≤ ti+1 ≤ t}.

• We remember that ∫ t

s

XrdBr =
∑
i∈Js,r

Xti∆i.

with ∆i = Bti+1
−Bti .

• We denote
∫ t
s
XrdBr as

∫
X (this is simply a notation).
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• From Ito Isometry, we know that
∫
X is square integrable, so the conditional expecta-

tion is well defined both (
∫
X) and (

∫
X)2.

• Let us compute the first conditional expectatoin. We have

E

[(∫
X

)
|Fs

]
=
∑
i∈Js,r

E[Xti∆i|Fs].

if every term of the above sum is zero, we conclude. This is true because of the followin
trick,

E[Xti∆i|Fs] =︸︷︷︸
tower

E[ E[Xti∆i|Fti ] |Fs] = E[XtiE[∆i|Fti ]|Fs] =︸︷︷︸
∆i⊥Fti

E[Xti E[∆i]︸ ︷︷ ︸
=0

|Fs] = 0.

We have use moreover thar Xti is Fti −measurable, and that for all i, we have that
Fs ⊆ Fti .

• Now let us compute the second conditional expectation. We have

E[(

∫
X)2|Fs] =

∑
i∈Js,t

E[(Xti)
2(∆ti)

2|Fs] + 2
∑

i∈Js,t,i<j

E[XiXj∆i∆j|Fs].

• If we can compute the single elements, we complete easily. We have

E[(Xti)
2(∆i)

2|Fs] = E[(Xti)
2E[(∆i)

2]|Fs] = E[(Xti)
2|Fs](ti+1 − ti).

We have used the tower property with Fti , then that ∆i⊥Fti and in the end that
E[∆i|Fti ] = E[∆i].

On the other and, we obtain for i < j that

E[XiXj∆i∆j|Fs] = E[XiXj∆i E[∆j]︸ ︷︷ ︸
=0

|Fs] = 0,

where we have used the tower property wrt Ftj , and that ∆j⊥Ftj .

If we put everything together we obtain

E[(

∫
X)2|Fs] =E[

∑
i∈Js,t

(Xti)
2(ti+1 − ti)|Fs] = E[

∑
i∈Js,t

∫ b

a

(Xti)
2I[ti,ti+1)(r)dr|Fs] =

=E[

∫ b

a

∑
i∈Js,t

(Xti)
2I[ti,ti+1)(r)dr|Fs] = E[

∫ b

a

(Xr)
2dr|Fs],

and this conclude.
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Corollary 11.11. Let X = (Xt)t≥0 be a square integrable process. Then

Mt :=

∫ t

0

XsdBs and Nt := M2
t −

∫ t

0

X2
sds

are martingle wrt (with respect to) the Brownian Filtration (Ft)t≥ in Setting (2).

Proof. We firstly consider Mt, then Nt but it is all really easy. We begin remembering that

∀t ≥ 0, Xt =
n∑
i=1

XtiI[ti,ti+1)(t)

for some n ≥ 2, and Xti a Fti −measurable r.v.

• We have for every t ≥ 0 that

Mt =
∑
i∈J0,t

Xti(Bti+1
−Bti),

so adaptness is immediate.

• We have thanks to Proposition (11.9) (Ito Isometry) that Mt is integrable for every t.

• It remain to prove the martingles property, but this is just an immediate application
of Proposition (11.10) and the splitting formula (11.7), because we have

E[Mt −Ms|Fs] = E[

∫ t

s

XrdBr|Fs] = 0,

so we have that Mt is a martingle.

Now we prove the same result for Nt.

• It is immediate that Nt is adapted wrt (Ft)t (we can write explicitly who is
∫ t

0
(Xs)

2ds).

• Thanks to (11.9), we have that M2
t is integrable for every t, so we just need to check

that
∫ t

0
(Xs)

2ds is integrable. This is true thanks to Fubini’ theorem. In fact

E[

∫ t

0

X2
sds] =

∫ t

0

E[(Xs)
2]ds = E[(Mt)

2] < +∞.

• Now we have to prove the martingles equality. We have

E[Nt|Fs] = E[(Mt)
2 −

∫ t

0

(Xr)
2dr|Fs] =

= E[(Mt)
2 −

∫ s

0

(Xr)
2dr|Fr]− E[

∫ t

s

(Xr)
2ds|Fs] =︸︷︷︸

(A)

.

88



By Proposition (11.10) we have E[
∫ t
s
(Xr)

2ds|Fs] = E[(Mt −Ms)
2|Fs], so if we substi-

tute we obtain

=︸︷︷︸
(A)

E[(Mt)
2 −

∫ s

0

(Xr)
2dr|Fs]− E[(Mt −Ms)

2|Fs]

= −(Ms)
2 −

∫ s

0

Xrdr + E[2MtMs|Fs] =︸︷︷︸
(B)

Now we have proved some lines above that Mt is a martingle, so E[Mt|Fs] = Ms, and
if we substitue we obtain

=︸︷︷︸
(B)

−(Ms)
2 −

∫ s

0

Xrdr + 2(Ms)
2 = (Ms)

2 −
∫ s

0

Xrdr = Ns

So we have the thesis.

11.4 Ito Integrals

• Let B = (Bt)t≥0 = (Ω,F , (Ft)t≥0,P) be a Bm.

• Let us consider (R,B(R)).

• Let X : [0,+∞)× Ω→ R be a S.P.

Definition 67. We denote as M2
B(a, b) the set of S.P. X = (Xt)t≥0 such that

1. X is progressively measurable in [a, b]. (Definition 36).

2. E[
∫ b
a
(Xt)

2dt] < +∞.

Remark 50. We observe that the hypotheses of Fubini’s theorem hold true, in fact

• X progressively measurable =⇒ X|[a,b]×Ω is B([a, b])⊗Fb −measurable.

• (X)2 is always positive.

So we can write that

E[

∫ b

a

(Xt)
2dt] =

∫
[a,b]×Ω

(X)2d(L ⊗ P) =

∫ b

a

E[(Xt)
2]︸ ︷︷ ︸

‖(Xt)2‖2
L2

dt,

where L denote the Lebesgue measure of [a, b].

More generally, the following proposition holds.

• Let us have (E,B(E)) a topological space (but in my opinion metric is more under-
standable).
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• Let us have X = (Ω,F , (Ft)t≥0,P) an (E,B(E))− S.P.

Proposition 11.12. If

• X is adapted (wrt (Ft)t≥0),

• X is right (or left) continuous (everywhere, not only a.c.).

Then X is progressively measurable (Definition (36)).

Remark 51. We have that

{square integrable E.P.} ⊆M2
B(a, b).

In fact E.P. are right continuous everywhere (wrt the Brownian− Filtration).

Remark 52. We can define on M2
B(a, b) the following scalar product,

〈X, Y 〉M2 := E[

∫ b

a

XsYsds].

Remark 53. We denote as ‖X‖M2
:= (〈X,X〉) 1

2 , that is

‖X‖2
M2

= E[

∫ b

a

(Xs)
2ds].

In this exact moment, THIS IS NOT A NORM because we have not identified two r.v. that
are equal a.c.

Remark 54. We could make the identification with the following equivalence relation. For
all X ∈M2

B(a, b) and Y ∈M2
B(a, b),

X ≡ Y ⇐⇒ ‖X − Y ‖M2 = E[

∫ b

a

(Xs − Ys)2ds].

Though it would be nice, we don’t follow this convention, every element is in
relation just with itself.

Theorem 11.13 (Approximation Theorem in M2
B). Let (Xt)t≥0 ∈M2

B(a, b) be a S.P. Then

• There is (X(n))n≥1 a sequence of E.P. such that

– for all n, we have that X(n) ∈M2
B(a, b),

–
∥∥∥X −X(n)

∥∥∥
M2
B

→ 0 if n ↑ +∞.

• We can find even a sequence of continuous processes that converges to X in M2
B(a, b).

Proof. We do not prove this theorem (so this is not a proof).
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Remark 55. More general, if we have a sequence (X(n))n∈N of elements of M2
B(a, b) that

converges to an element of X ∈M2
B(a, b), we write that

X(n) n→+∞→
M2
B(a,b)

X.

We do not write n→ +∞ or the space M2
B(a, b) if it is clear what we are saying.

Now, we introduce this notation to simplify the following theorems. We remember that we
are always in Setting (2), so if we speak about Ω and F we know what we are referring to.

• We denote as EP the set of all the elementary processes.

• Now, let us fix 0 ≤ a ≤ b.

• We define the following function,

ϕ : EP → L2(Ω,F ,P), ϕ(X) :=

∫ b

a

XsdBs,

that is we associate to every EP its SI, that we remember briefly it is the following

Xt =
n∑
i=1

XtiI[ti,ti+1)(t) =⇒ ϕ(X) =
∑
i∈Ja,b

Xti(Bti+1
−Bti)

For more detail, see Definition (66). We note that, since Linearity of SI (Lemma
(11.8 ), we have that ϕ(X + Y ) = ϕ(X) + ϕ(Y ).

• We observe that Ito Isometry (Proposition (11.9)) become, thanks also to Remark (50),

E[(ϕ(X))2] =
∥∥ϕ(X)

∥∥2

L2 =‖X‖2
M2 =

∫ b

a

‖Xs‖2
L2 ds.

Now we are ready to enunciate and prove the theorem that also defines the Ito Integral.

Proposition 11.14. Let us have

• (X(n))n a sequence of E.P. in M2
B(a, b),

• X ∈M2
B(a, b),

and let us suppose that X(n) → X in M2
B(a, b). Then

1. the sequence (ϕ(X(n)))n is Cauchy in L2(Ω,F ,P).

2. If (Y (n))n is another sequence of E.P. such that Y (n) → X, then

lim
n
ϕ(X(n)) = lim

n
ϕ(Y (n)).

Proof. We prove first point 1.and then point 2.
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1. We have for all m ∈ N and n ∈ N that∥∥∥∥ϕ(X(n)
)
− ϕ

(
X(m)

)∥∥∥∥
L2

=

∥∥∥∥ϕ(X(n) −X(m)
)∥∥∥∥

L2

=
∥∥∥X(n) −X(m)

∥∥∥
M2
B

and this implies immediately that (ϕ(X(n))) is Cauchy in L2(Ω,F ,P).

2. We have, for all n ∈ N that∥∥∥∥ϕ(X(n)
)
− ϕ

(
Y (n)

)∥∥∥∥
L2

=
∥∥∥X(n) − Y (n)

∥∥∥
M2
B

≤
∥∥∥X(n) −X

∥∥∥
M2
B

+
∥∥∥Y (n) −X

∥∥∥
M2
B

,

and this permit us to conclude.

Remark 56. So, given the proposition above, we can extend ϕ to a new function ϕ̃ defined
in this way,

ϕ̃ : M2
B(a, b)→ L2(Ω,F ,P), ϕ̃(X) := lim

n
ϕ(X(n)),

with (X(n)) a sequence that converges to X in M2
B. We observe that ϕ̃|EP = ϕ. From now

on, we make no difference between ϕ̃ and ϕ.

Definition 68 (Stochastic Integral in M2
B). Given X ∈MB

2 , we define ϕ(X) the Stochastic
Integral (S.I.) of X (wrt the fixed Bm in Setting (2)).

Remark 57. Given X ∈ M2, we have that X is a measurable function, but ϕ(X) is a class
of equivalence of measurable function, so expression like ϕ(X)(ω) make no sense.

11.5 Property of SI

Theorem 11.15 (Ito Isometry in M2
B(a,b)). Let us have X ∈M2

B. Then

• If T > 0, we have

E[

∫ T

0

XsdBs] = 0,

E[(

∫ T

0

XsdBs)
2] = E[

∫ T

0

(Xs)
2ds].

• More generally, if 0 ≤ s ≤ t ≤ T , we have

E[

∫ t

s

XrdBr] = 0,

E[(

∫ t

s

XsdBs)
2|Fs] = E[

∫ t

s

(Xs)
2ds|Fs].
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• Moreover,

Mt :=

∫ t

0

XsdBs, and Nt := (Mt)
2 −

∫ t

0

(Xs)
2ds,

are martingles wrt (Ft)t≥0.

Proof. Da fare.

Remark 58. If it is not obvious the interval of integration in
∫ b
a
XsdBs, we denote it as

ϕa,b(X).

Remark 59. Let us have X, Y ∈ M2
B(0, T ). Then by Ito Isometry and the polarization

formula (cool name)

(X + Y )2 − (X − Y )2 = 4XY

we obtain

4〈X, Y 〉M2
B

= 4E[

∫ T

0

XsYs] =

=‖X + Y ‖2
M2
B
−‖X − Y ‖2

M2
B

=

=
∥∥ϕ(X + Y )

∥∥
L2 −

∥∥ϕ(X − Y )
∥∥
L2 =

= 4〈ϕ(X), ϕ(Y )〉L2 .

So the Ito Isometry conserves the scalar products.

11.5.1 Continuous Version of S.I.

• We have the following family of class of equivalence {
∫ t

0
XsdBs, t ∈ [0, T ]}.

• We would like to find a S.P. M = (Mt)t≥0 that has the following properties,

1. For every t ≥ 0, we have that Mt ∈
∫ t

0
XsdBs.

2. M is a.c. continuous.

One day we find it. Now We give this result without proof.

11.6 More general class of processes which we want to integrate

Let us have B = (Ω,F ,P, (Ft)t≥0). Let us have 0 ≤ a ≤ b, and let us have (Xt)t≥0 a S.P.

Definition 69. We say that a X ∈ Λ2
B(a, b) if

• X is progressively measurable,

• P({ω :
∫ b
a
Xs(ω)ds < +∞}) = 1.

Definition 70 (Convergence in Λ2
B(a, b)). Let us suppose to have the following setting.
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• Let us have (X(n))n a sequence of S.P. in Λ2
B(a, b).

• Let us have X ∈ Λ2
B(a, b).

We have that X(n) → X in Λ2
B(a, b) if

P

({
ω : lim

n

∥∥∥X(n)(ω)−X(ω)
∥∥∥
L2(a,b)

})
= 1.

with ∥∥∥X(n)(ω)−X(ω)
∥∥∥
L2(a,b)

=

∫ b

a

(X(n)
s (ω)−Xs(ω))2ds.

Remark 60. WE DO NOT CONSIDER Λ2
B(a, b) AS A CLASS OF EQUIVALENCE

CLASSES, EVEN THOUGH WE COULD DO SO. In this case the relation would
be

X ≡ Y in Λ2
B(a, b) ⇐⇒

∫ b

a

(Xs(ω)− Ys(ω))2 < +∞ a.s. ω ∈ Ω.

Theorem 11.16 (Approximation Theorem). Let us have X = (Xt)t≥0 ∈ Λ2
B(a, b). Then

• We can find (X(n))n a sequence of E.P. such that X(n) → X in Λ2
B(a, b).

• We can find a sequence of continuous processes tha converges to X in Λ2
B(a, b).

Proof. It is just a technical lemma, so we do not prove this.

Now we want to prove a crucial lemma that we use to define the S.I. of a function in
Λ2
B(a, b).

Lemma 11.17. Let X be an E.P. Then for every ε > 0 and ρ > 0, we have

P

(
|
∫ b

a

XsdBs| ≥ ε

)
≤ P

(∫ b

a

X2
sds ≥ ρ

)
+
ρ

ε2
.

Proof. The proof follow the following steps.

• Let us define

A := {
∫ b

a

X2
sds ≥ ρ}, so that AC = {

∫ b

a

X2
sds < ρ}.

Moreover, let us set

B := {|
∫ b

a

XsdBs| ≥ ε}.

• We have the simple estimate

P(B) = P(B ∩ A) + P(B ∩ AC) ≤ P(A) + P(B ∩ AC).

If we prove that P(B ∩ AC) ≤ ρ
ε2

, we finish.

•
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