Esercizi Analisi 1

Ottobre 2019

1 Sup e Inf

Esercizio 1.1. Determinare sup e inf dei seguenti sottoinsiemi di \mathbb{R} , specificando se si tratta anche di massimo/minimo:

- N
- R
- {0}
- $Q = \{x \in \mathbb{R} \mid 2 \le x^2 < 4\}$
- $R = \{\frac{1}{n} | n \in \mathbb{N}, n \ge 1\}$

- $S = \{x \in \mathbb{R} | x^2 + 1 = 0\}$
- $\bullet \ T = \{x \in \mathbb{Q} | \ x^2 \le 2\}$
- $U = \{x \in \mathbb{R} \mid x|x| < x^2\}$
- $V = \left\{ \frac{1}{n} \sin\left(\frac{n\pi}{2}\right) \mid n \in \mathbb{N} \right\}$

Esercizio 1.2. Siano A e B sottoinsiemi qualsiasi di \mathbb{R} . Dimostrare la seguente affermazione: $\sup(A \cup B) = \max\{\sup(A), \sup(B)\}$. Possiamo concludere che l'insieme $A \cup B$ ammette sempre un massimo?

Esercizio 1.3. Dati $A \in B$ sottoinsiemi limitati di \mathbb{R} , definiamo $A+B := \{c \mid c = a+b \ a \in A, \ b \in B\}$ e $A \cdot B := \{c \mid c = ab \ a \in A, \ b \in B\}$. Dimostrare o confutare le seguenti affermazioni (dando un senso alle operazioni nel caso in cui uno dei valori sia $\pm \infty$):

- $\sup(A+B) = \sup(A) + \sup(B)$;
- $\inf(A+B) = \inf(A) + \inf(B)$;
- $\sup(A \cdot B) = \sup(A) \cdot \sup(B)$.

Se uno tra A e B è illimitato, cosa possiamo salvare delle precedenti affermazioni? E cosa possiamo dire su sup e inf del prodotto in questo caso?

Esercizio 1.4. Sia $A \subset \mathbb{R}$. Definiamo $-A = \{-x \mid x \in A\}$.

- Dimostrare che A è superiormente limitato se e solo se -A è inferiormente limitato.
- Dimostrare che $\sup(A) = -\inf(-A)$ e $\inf(A) = -\sup(-A)$.
- Dimostrare che A ha massimo se e solo -A ha minimo e in tal caso $\max(A) = -\min(-A)$.

Esercizio 1.5. Sia $r \in \mathbb{R}$ un numero reale. Dimostrare che $sup(\{x \in \mathbb{Q} | x < r\}) = r$; ripensare dunque alla costruzione dei numeri reali con le sezioni di Dedekind alla luce di questo fatto.

2 Funzioni

Esercizio 2.1. Dire se le seguenti sono funzioni. Se lo sono, specificare se sono iniettive e/o surgettive e determinare la loro immagine.

1.
$$a: \mathbb{R} \to \mathbb{R}$$
; $a(x) = \tan x$.

2.
$$b: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}; \quad b(x) = \tan x.$$

3.
$$c: \mathbb{R} \to \mathbb{R} \setminus \{0\}; \quad c(x) = \tan x.$$

4.
$$d: \mathbb{R} \to \mathbb{R}$$
; $d(x) = \tan x$.

5.
$$e: \mathbb{R} \to \mathbb{R}$$
; $e(x) = \arctan x$.

6.
$$f: \mathbb{R}_{>0} \to [0, \frac{\pi}{2}); \quad f(x) = \arctan x.$$

7.
$$g: \mathbb{R}_{>0} \to (0, \frac{\pi}{2}]; \quad g(x) = \arctan x.$$

8.
$$h: \mathbb{R}_{\geq 0} \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]; \quad h(x) = \arctan x.$$

9.
$$i: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}; \quad i(x) = \sin x.$$

10.
$$l: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [0, 1]; \quad l(x) = \cos x.$$

11.
$$m: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to [-1, 1]; \quad m(x) = \sin x.$$

12.
$$n : \mathbb{R} \to \mathbb{R}_{>0}; \quad n(x) = e^{x^2}.$$

13.
$$o: \mathbb{R} \to [1, +\infty); \quad o(x) = e^{x^2}.$$

14.
$$p: \mathbb{R}_{>0} \to [1, +\infty); \quad p(x) = e^{x^2}.$$

15.
$$q: \mathbb{R}_{>0} \to [1, +\infty); \quad q(x) = e^{x^2}.$$

16.
$$r: \mathbb{R} \to \mathbb{R}$$
; $r(x) = \log(x+1)$.

17.
$$s: \mathbb{R} \to \mathbb{R}$$
; $s(x) = \log(|x+1|)$.

18.
$$t: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$$
; $s(x) = \log(x+1)$.

19.
$$u: \mathbb{R} \to \mathbb{R}_{>0}$$
; $u(x) = e^{x^3 - x}$.

20.
$$v: [-1,1] \to [0,\frac{\pi}{2}]; \quad v(x) = \arcsin x^2.$$

21.
$$z: [-1,1] \to [0,\pi]; \quad z(x) = \arccos(-x^2).$$

Esercizio 2.2. Dimostrare che una funzione $f:A\to B$ è invertibile se e solo se è bigettiva.

Esercizio 2.3. Siano $f:A\to B,\,g:B\to C.$ Dimostrare i seguenti fatti:

- Se f e g sono iniettive allora $g \circ f$ è iniettiva.
- $\bullet\,$ Se fe gsono surgettive allora $g\circ f$ è surgettiva.
- Se f e g sono invertibili allora $g \circ f$ è invertibile. Dire qual è l'inversa.
- Se $g \circ f$ è iniettiva allora f è iniettiva.
- Se $g \circ f$ è surgettiva allora g è surgettiva.

Esercizio 2.4. Siano A, B due insiemi e sia $f: A \to B$. Supponiamo che esista $g: B \to A$ tale che f(g(b)) = b per ogni $b \in B$ e che esista $h: B \to A$ tale che h(f(a)) = a per ogni $a \in A$. Possiamo dire che f è invertibile?

Esercizio 2.5. Cosa si può dire della composizione di funzioni strettamente monotone? (Ci sono quattro casi).

E di funzioni debolmente monotone?

Esercizio 2.6. Dimostrare che

- $\arcsin(x) + \arccos(x) = \frac{\pi}{2} \text{ per ogni } x \in [-1, 1].$
- $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} & \text{se } x > 0\\ -\frac{\pi}{2} & \text{se } x < 0. \end{cases}$

3 Parte interna, frontiera e chiusura di un sottoinsieme di \mathbb{R}^n con metrica euclidea

Esercizio 3.1. Determinare parte interna, frontiera e chiusura dei seguenti sottoinsiemi di \mathbb{R} .

• R \ N

• Q • R\Q

• $\{0\} \cup \left(\frac{1}{2}, 3\right]$ • $\{x \in \mathbb{R} \mid |x|^3 < 8\}$

Esercizio 3.2. Sia A un sottoinsieme di \mathbb{R} . Dimostrare che la frontiera di A e la chiusura di A sono sottoinsiemi chiusi di \mathbb{R} , e che la parte interna di A è un aperto di \mathbb{R} .

Esercizio 3.3. Siano x, y numeri reali tali che $x \neq y$. Dimostrare che esistono due aperti A e B di \mathbb{R} con le seguenti proprietà:

• $x \in A$;

• $y \in B$;

• $A \cap B = \emptyset$.

Capire come si adatta la dimostrazione se x e y vivono in \mathbb{R}^n .

(Nota: uno spazio topologico X tale per cui per ogni $x, y \in X$ distinti esistono A e B con le proprietà enunciate nell'esercizio viene detto Hausdorff o T2.)

Esercizio 3.4. Sia (X, d) uno spazio metrico. Dimostrare che X è di Hausdorff.

Esercizio 3.5. (\longrightarrow) Dimostrare che è possibile trovare una successione A_n di sottoinsiemi chiusi non vuoti di \mathbb{R} tali che $A_{n+1} \subset A_n$, ma $\cap_{n \in \mathbb{N}} A_n = \emptyset$. Dimostrare che se in più chiedo che gli A_n siano tutti limitati (ossia, compatti) allora non esiste una tale successione.

4 Induzione

Esercizio 4.1. Dimostrare che per $x \neq 1$

$$1 + x + \ldots + x^n = \frac{x^{n+1} - 1}{x - 1}$$

Esercizio 4.2. Dimostrare le seguenti uguaglianze:

 $\bullet \sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2.$

$$\bullet \left(\sum_{k=1}^{n} a_k - b_k\right) \left(\sum_{k=1}^{n} a_k + b_k\right).$$

Esercizio 4.3. Provare che per ogni x > -1 si ha che

$$(1+x)^n \ge 1 + nx$$
 $\forall n \in \mathbb{N}$. (Disuguaglianza di Bernoulli)

Cosa si può dire per $x \le -1$?

5 Successioni e limiti

Esercizio 5.1. Calcolare (se esistono) i limiti (intesi sempre per $n \to \infty$) delle seguenti successioni:

$$\frac{\sin(n)}{n}$$

•
$$n^2 \sin(\frac{\pi n}{2})$$
 • $\binom{3n}{n}$

•
$$\frac{\arctan(n!)}{\sqrt{n}}$$

•
$$\sqrt{2}$$

$$\bullet$$
 $\sqrt[n]{n}$

$$\bullet \ \frac{5^n + (-2)^n}{4^n + (-3)^n}$$

Esercizio 5.2. • Sia
$$a_n = \sum_{k=n}^{k=2n} \frac{1}{k^2}$$
; calcolare $\lim_{n \to \infty} a_n$.

• Sia
$$b_n = \sum_{k=n}^{k=2n} \frac{1}{\sqrt{k}}$$
; calcolare $\lim_{n \to \infty} b_n$.

Esercizio 5.3. Sia a_n una successione; dimostrare che:

• se
$$a_n \to 0$$
, allora $|a_n| \to 0$;

• se
$$|a_n| \to 0$$
, allora $a_n \to 0$;

• se
$$a_n \to l \in \mathbb{R}$$
, allora $|a_n| \to |l|$.

Se invece abbiamo che $|a_n| \to l \in \mathbb{R}$, possiamo affermare qualcosa sul limite di a_n ?

Esercizio 5.4. Enunciare e dimostrare i teoremi algebrici di somma, prodotto e quoziente per successioni (in analogia con quelli visti a lezione per i limiti di funzioni).

Esercizio 5.5. Fornire un esempio di successioni a_n e b_n tali che $\lim_{n\to\infty}a_n=+\infty, \lim_{n\to\infty}b_n=0$ e:

1.
$$\lim_{n\to\infty} a_n \cdot b_n = l \neq 0, \quad l \in \mathbb{R};$$

$$2. \lim_{n \to \infty} a_n \cdot b_n = 0;$$

3.
$$\lim_{n\to\infty} a_n \cdot b_n = +\infty;$$

4.
$$\lim_{n\to\infty} a_n \cdot b_n$$
 non esiste.

Esercizio 5.6. Fornire un esempio di successioni a_n e b_n tali che $\lim_{n\to\infty} a_n = +\infty$, $\lim_{n\to\infty} b_n = -\infty$ e:

1.
$$\lim_{n\to\infty} a_n + b_n = l \in \mathbb{R};$$

$$2. \lim_{n \to \infty} a_n + b_n = +\infty;$$

$$3. \lim_{n \to \infty} a_n + b_n = -\infty;$$

4.
$$\lim_{n\to\infty} a_n + b_n$$
 non esiste.

6 Funzioni continue

Esercizio 6.1. Sia $f:[a,b] \to [a,b]$ una funzione continua. Dimostrare che esiste almeno un $x^* \in [a,b]$ tale per cui $f(x^*) = x^*$. (Un punto con tale proprietà si dice *punto fisso*.)

Esercizio 6.2. Sapendo che $\lim_{x\to 0} \frac{\arctan(x)}{x} = 1$, dire per quali $a,b\in\mathbb{R}$ la funzione $f:(-1,1)\to\mathbb{R}$ definita da

$$f(x) = \begin{cases} x^a \sin\left(\frac{1}{x}\right) & \text{se } x \in (-1,0) \\ 0 & \text{se } x = 0 \\ |x|^b \arctan(x) & \text{se } x \in (0,1) \end{cases}$$

è continua.

Esercizio 6.3. (Occhio, può servire Taylor!) Calcolare i seguenti limiti:

$$\lim_{x \to 0} \frac{\sin(x)}{x^2} \qquad \qquad \lim_{x \to 0} \frac{\log(1+x^2) - x^2}{5x^4}$$

$$\lim_{x \to 0} \frac{e^{x^2} - 1}{\sin^2(x)} \qquad \qquad \lim_{x \to 0} \frac{\tan(x)}{x}$$

$$\lim_{x \to 0} \frac{\log(1-x^2) + x^2}{\cos(x^2) - 1} \qquad \qquad \lim_{x \to +\infty} ((1 + \frac{1}{x})^x - e)x$$

Esercizio 6.4. Sia $f:[a,b] \to [a,b]$ una funzione continua. Sia $x_1 \in [a,b]$ e definiamo la seguente successione $(x_n)_{n \in \mathbb{N}}$ per ricorrenza:

$$x_{n+1} = f(x_n), \qquad n \ge 1$$

• Dimostrare che se f è crescente allora la successione è monotona. Dire che ammette limite l e dimostrare che l è un punto fisso, ovvero dire che

$$f(l) = l$$
.

• Dimostrare che se f è decrescente allora le due sottosuccessioni $(x_{2n})_{n\in\mathbb{N}}$ e $(x_{2n+1})_{n\in\mathbb{N}}$ sono monotone e convergenti.

Esercizio 6.5. Sia $f:[a,b] \to \mathbb{R}$ una funzione crescente. Dimostrare che se f prende tutti i valori fra f(a) e f(b) allora f è continua. Trovare un controesempio nel caso in cui f non è crescente.

Esercizio 6.6. Dimostrare o confutare (esibendo un controesempio) le seguenti affermazioni:

- se f e g sono continue (in A), allora f + g è continua (in A);
- se f e g sono continue, allora $f \cdot g$ è continua;
- se f e g sono continue e limitate, allora $f \cdot g$ è continua;
- se f è continua in A ed in B sottoinsiemi di \mathbb{R} , allora f è continua in $A \cup B$.

7 Serie

Esercizio 7.1. Determinare per quali valori del parametro reale positivo α la seguente serie converge

$$\sum_{n=2}^{+\infty} \frac{1}{n \log^{\alpha}(n)}.$$

Esercizio 7.2. Occhio a quelle a segno alterno, può servire Leibniz! Stabilire se le seguenti serie convergono, divergono o sono indeterminate:

$$\bullet \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}$$

$$\bullet \sum_{n=1}^{+\infty} \frac{\sin^2(n)}{e^n}$$

$$\bullet \sum_{n=1}^{+\infty} \cos(\pi n)$$

$$\bullet \sum_{n=1}^{+\infty} \frac{\sinh(n)}{\sinh(n^2)}$$

$$\bullet \sum_{n=1}^{+\infty} \frac{1}{n!}$$

$$\bullet \sum_{n=1}^{+\infty} \left(\frac{4n+1}{7n+5}\right)^n$$

$$\bullet \sum_{n=1}^{+\infty} \frac{n!}{n^n}$$

$$\bullet \sum_{n=1}^{+\infty} \frac{n^2}{7^n + n^7}$$

$$\bullet \sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$$

$$\bullet \sum_{n=1}^{+\infty} \frac{2+\sin(n)}{n+\sqrt{n}}$$

$$\bullet \sum_{n=1}^{+\infty} \frac{n^2+1}{n^3+2}$$

•
$$\sum_{n=2}^{+\infty} \log(\frac{n}{n+1})$$

$$\bullet \sum_{n=1}^{+\infty} \frac{\arctan(n!)}{n^2}$$

$$\bullet \sum_{n=1}^{+\infty} \log(1 + e^{-n^2})$$

$$\bullet \left(\begin{array}{c} \bullet \end{array} \right) \sum_{n=1}^{+\infty} \frac{\sin(n)}{n}$$

$$\bullet \sum_{n=1}^{+\infty} \frac{\sqrt{4n+3} - \sqrt{4n+1}}{\sqrt{4n^3+3} + \sqrt{4n^3+1}}$$

$$\bullet \sum_{n=1}^{+\infty} (\sqrt[n]{2} - 1)$$

$$\bullet \sum_{n=1}^{+\infty} \frac{\cos \frac{n\pi}{3}}{n}$$

•
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}} - \arctan(\frac{1}{(\sqrt{n})})$$

Esercizio 7.3. Stabilire per quali valori del parametro reale $\alpha > 0$ le seguenti serie convergono:

$$\bullet \sum_{n=1}^{+\infty} \frac{n^{56} + 9^n + 5}{n + 2016\alpha + \alpha^n}$$

$$\bullet \sum_{n=1}^{+\infty} \frac{\arctan(\alpha^n)}{n^{\alpha}}$$

$$\bullet \sum_{n=1}^{+\infty} \frac{\alpha^n}{n^{\alpha}}$$

$$\bullet \sum_{n=1}^{+\infty} \frac{\log(1+n^7+19^n)}{\alpha^n}$$

$$\bullet \sum_{n=1}^{+\infty} \frac{n^{\alpha}}{\sinh n^2}$$

$$\bullet \sum_{n=1}^{+\infty} (\sqrt[n]{n} - 1)^{\alpha}$$

Esercizio 7.4 (Teorema dei carabinieri per serie). Siano a_n , b_n e c_n successioni di numeri reali tali che definitivamente $a_n \leq b_n \leq c_n$; supponiamo inoltre che $\sum a_n$ e $\sum c_n$ convergano. Dimostrare che $\sum b_n$ converge.

Esercizio 7.5 (\longrightarrow). Sia a_n una successione di numeri reali positivi tale che $\sum a_n$ converge; è vero allora che esiste una costante c > 0 tale che definitivamente $a_n \leq \frac{c}{n}$?

8 Uniforme Continuità

Esercizio 8.1. Dimostrare che le funzioni Lipschitziane sono uniformemente continue.

Esercizio 8.2 (Lemma di riincollamento). Sia $a \ge 0$, b > a e $f: [0, +\infty] \to \mathbb{R}$. Supponiamo che:

- (i) f sia uniformemente continua in [a, b];
- (ii) f sia uniformemente continua in $[b, +\infty)$;

dimostrare che f è uniformemente continua in $[a, +\infty)$.

Esercizio 8.3. Sia $a \geq 0$ e sia $f: [a, +\infty) \to \mathbb{R}$ continua tale che $\lim_{x \to +\infty} f(x) = l \in \mathbb{R}$. Dimostrare che f è uniformemente continua in $[a, +\infty)$.

Esercizio 8.4. Sia $f:[0,+\infty)\to\mathbb{R}$ uniformemente continua. Dimostrare che f è *sublineare*, ossia che esistono $A,B\in\mathbb{R}$ tali che

$$|f(x)| \le Ax + B \qquad \forall x \in [0, +\infty).$$

Esercizio 8.5. Dimostrare o confutare (esibendo un controesempio) le seguenti affermazioni:

- se $f \in g$ sono uniformemente continue (in A), allora f + g è uniformemente continua (in A);
- se f e g sono uniformemente continue, allora $f \cdot g$ è uniformemente continua;
- se f e g sono uniformemente continue e limitate, allora $f \cdot g$ è uniformemente continua;
- se f è uniformemente continua in A ed in B sottoinsiemi di \mathbb{R} , allora f è uniformemente continua in $A \cup B$.

Esercizio 8.6. Trovare una $f:[0,+\infty)\to\mathbb{R}$ uniformemente continua su tutti i compatti di $[0,+\infty)$ ma non uniformemente continua in $[0,+\infty)$. Esiste una f che soddisfi queste richieste e che inoltre sia limitata?

9 Derivata, problemi di massimo e minimo

Esercizio 9.1. Calcolare usando la definizione e i limiti notevoli le seguenti derivate:

•
$$f(x) = \frac{1}{x^2+1}$$

•
$$h(x) = \tan(x)$$

•
$$g(x) = \sin(x)$$

•
$$k(x) = \frac{1}{xe^x}$$

Esercizio 9.2. Ricordiamo:

Teorema (Rolle). Sia $f:[a,b] \to \mathbb{R}$ continua in [a,b], derivabile in (a,b), tale che f(a)=f(b), allora esiste $c \in (a,b)$ tale che f'(c)=0.

Teorema (Lagrange). Sia $f : [a, b] \to \mathbb{R}$ continua in [a, b], derivabile in (a, b), allora esiste $c \in (a, b)$ tale che f'(c)(b-a) = f(b) - f(a).

- 1. Usando il Teorema di Rolle dimostrare il Teorema di Lagrange.
- 2. Trovare una funzione che soddisfi le ipotesi del Teorema di Lagrange per cui un tale c non è unico.
- 3. Trovare una funzione che abbia infiniti punti con la proprietà di c (ma non tutti i punti in (a,b)).
- 4. Se la funzione è strettamente convessa e ammette derivata seconda posso dire qualcosa in più?

Esercizio 9.3. Determinare fra tutti i rettangoli con area A fissata quello con diagonale minima.

Esercizio 9.4. Sia $f: \mathbb{R} \to \mathbb{R}$ definita come

$$f(x) = \lim_{n \to +\infty} \frac{x^2 + xe^{nx}}{1 + e^{nx}}.$$

Dire se f è ben definita e in tal caso dire se è continua e derivabile.

Esercizio 9.5. Dimostrare che

$$|\sin(x) - \sin(y)| \le |x - y|$$